生态环境学报 ›› 2023, Vol. 32 ›› Issue (12): 2228-2235.DOI: 10.16258/j.cnki.1674-5906.2023.12.014
陈敏毅1(), 宋清梅2, 叶权运2, 游学睿2, 吴颖欣2,*(
)
收稿日期:
2023-08-23
出版日期:
2023-12-18
发布日期:
2024-02-05
通讯作者:
*吴颖欣。E-mail: wuyingxin@scies.org作者简介:
陈敏毅(1971年生),男,高级工程师,研究方向为土壤环境管理与防治。E-mail: gzdavidchen@163.com
基金资助:
CHEN Minyi1(), SONG Qingmei2, YE Quanyun2, YOU Xuerui2, WU Yingxin2,*(
)
Received:
2023-08-23
Online:
2023-12-18
Published:
2024-02-05
摘要:
金属制品制造因涉及大量金属材料加工和使用,可能导致土壤重金属污染。揭示该行业场地土壤重金属的空间分布特征、成因和生态风险具有重要的现实意义。以华南典型金属制品制造遗留场地为对象,采集0-9 m土壤样品共517个,检测As、Cd、Cr、Hg、Ni、Pb、Sn、Zn等8种重金属元素,利用ArcGIS分析土壤各层重金属分布,通过相关性和变异性分析揭示空间分布特征与来源,并采用潜在生态风险指数法评估其生态风险。结果表明,表层(0-50 cm)土壤As、Cd、Cr、Ni和Zn等元素出现不同程度的累积,富集系数排序为Cd (13.27)>Zn (1.45)>As (1.22)>Ni (1.17)>Cr (1.15)。在水平分布上,As、Cd、Cr、Ni和Zn等元素呈现“斑块状聚集”现象,主要集中在木工和烤漆车间等区域,不同元素聚集特征与金属制品生产工艺密切相关。在垂向分布上,相关性分析表明各重金属质量分数与采样深度存在一定的负相关关系;受土壤质地、有机质含量等理化性质的共同影响,不同重金属的垂向迁移行为有所差异,垂向迁移能力排序为Ni>Cr>Sn>Pb>Zn。相关性分析结果等揭示土壤重金属可能来源于生产过程中产生的废水和废气,通过地面渗滤进入表层土壤。潜在生态风险评价表明,该场地的生态风险属于“极强”水平,主要集中在0-2 m深度范围内,且Cd是最主要的生态危害贡献因子。该研究可为金属制品生产企业场地土壤污染刻画与治理修复提供支撑。
中图分类号:
陈敏毅, 宋清梅, 叶权运, 游学睿, 吴颖欣. 华南典型金属制品遗留生产场地重金属空间分布特征[J]. 生态环境学报, 2023, 32(12): 2228-2235.
CHEN Minyi, SONG Qingmei, YE Quanyun, YOU Xuerui, WU Yingxin. Spatial Distribution Characteristics of Heavy Metals in a Brownfield Site of Metal Manufacture in Southern China[J]. Ecology and Environment, 2023, 32(12): 2228-2235.
[1] |
ACKAH M, 2019. Soil elemental concentrations, geoaccumulation index, non-carcinogenic and carcinogenic risks in functional areas of an informal e-waste recycling area in Accra, Ghana[J]. Chemosphere, 235: 908-917.
DOI PMID |
[2] |
AMIGUES J P, MOREAUX M, 2019. Competing land uses and fossil fuel, and optimal energy conversion rates during the transition toward a green economy under a pollution stock constraint[J]. Journal of Environmental Economics and Management, 97: 92-115.
DOI URL |
[3] |
CHEN Y F, LIU D X, MA J H, et al., 2021. Assessing the influence of immobilization remediation of heavy metal contaminated farmland on the physical properties of soil[J]. Science of the Total Environment, 781: 146773.
DOI URL |
[4] |
CHEN Z Q, LIU X, AI Y W, et al., 2019. How backfill soil type influencing on Cd and Pb migration in artificial soil on railway rock-cut slopes[J]. Science of the Total Environment, 665: 531-537.
DOI URL |
[5] |
CUI X Y, MAO P, SUN S, et al., 2021. Phytoremediation of cadmium contaminated soils by Amaranthus Hypochondriacus L.: The effects of soil properties highlighting cation exchange capacity[J]. Chemosphere, 283: 131067.
DOI URL |
[6] |
DI SANTE M, MAZZIERI F, PASQUALINI E, 2009. Assessment of the sanitary and environmental risks posed by a contaminated industrial site[J]. Journal of Hazardous Materials, 171(1): 524-534.
DOI URL |
[7] |
GUO G H, WU F C, XIE F Z, et al., 2012. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China[J]. Journal of Environmental Sciences, 24(3): 410-418.
PMID |
[8] |
HAO L T, ZHANG B G, FENG C P, et al., 2021. Human health risk of vanadium in farmland soils near various vanadium ore mining areas and bioremediation assessment[J]. Chemosphere, 263: 128246.
DOI URL |
[9] |
HOU D Y, O’CONNOR D, NATHANAIL P, et al., 2017. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review[J]. Environmental Pollution, 231(Part 1): 1188-1200.
DOI URL |
[10] |
JIA X L, FU T T, HU B F, et al., 2020. Identification of the potential risk areas for soil heavy metal pollution based on the source-sink theory[J]. Journal of Hazardous Materials, 393: 122424.
DOI URL |
[11] |
JIANG Z C, GUO Z H, PENG C, et al., 2021. Heavy metals in soils around non-ferrous smelteries in China: Status, health risks and control measures[J]. Environmental Pollution, 282: 117038.
DOI URL |
[12] |
KE W S, ZENG J Q, ZHU F, et al., 2022. Geochemical partitioning and spatial distribution of heavy metals in soils contaminated by lead smelting[J]. Environmental Pollution, 307: 119486.
DOI URL |
[13] |
LI P Z, LIN C Y, CHENG H G, et al., 2015. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China[J]. Ecotoxicology and Environmental Safety, 113: 391-399.
DOI PMID |
[14] |
NI Z B, LI X, WANG Y F, et al., 2019. Potential impact of hydrodynamic shear force in aquifer thermal energy storage on dissolved organic matter releasement: A vigorous shaking batch study[J]. Science of the Total Environment, 677(6): 263-271.
DOI URL |
[15] |
PENG J Y, ZHANG S, HAN Y Y, et al., 2022. Soil heavy metal pollution of industrial legacies in China and health risk assessment[J]. Science of The Total Environment, 816(11): 151632.
DOI URL |
[16] |
WANG M, ZHANG C, ZHANG Z, et al., 2016. Distribution and integrated assessment of lead in an abandoned lead-acid battery site in Southwest China before redevelopment[J]. Ecotoxicology and Environmental Safety, 128: 126-132.
DOI PMID |
[17] |
WON J, WIRTH X, BURNS S E, 2019. An experimental study of cotransport of heavy metals with kaolinite colloids[J]. Journal of Hazardous Materials, 373: 476-482.
DOI PMID |
[18] |
XU D M, FU R B, LIU H Q, et al., 2021. Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review[J]. Journal of Cleaner Production, 286(3): 124989.
DOI URL |
[19] |
ZENG J Q, LUO X H, CHENG Y Z, et al., 2022. Spatial distribution of toxic metal(loid)s at an abandoned zinc smelting site, Southern China[J]. Journal of Hazardous Materials, 425: 127970.
DOI URL |
[20] |
ZHAO W T, GU C H, YING H, et al., 2021. Fraction distribution of heavy metals and its relationship with iron in polluted farmland soils around distinct mining areas[J]. Applied Geochemistry, 130: 104969.
DOI URL |
[21] |
ZOU M M, ZHOU S L, ZHOU Y J, et al., 2021. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review[J]. Environmental Pollution, 280: 116965.
DOI URL |
[22] |
陈敏毅, 朱航海, 佘伟铎, 等, 2023. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 32(4): 794-804.
DOI |
CHEN M Y, ZHU H H, SHE W D, et al., 2023. Health risk assessment and source apportionment of soil heavy metals at a legacy shipyard site in Pearl River Delta[J]. Ecology and Environmental Sciences, 32(4): 794-804. | |
[23] | 陈亭悦, 2020. 腐殖酸不同分子量组分对铅生物有效性的调控效应与机制[D]. 重庆: 西南大学. |
CHEN T Y, 2020. Effects of humic acids fractions with different molecular weight on speciation of bioavailability of lead[D]. Chongqing: Southwest University. | |
[24] | 陈展祥, 陈传胜, 陈卫平, 等, 2018. 凹凸棒石及其改性材料对土壤镉生物有效性的影响与机制[J]. 环境科学, 39(10): 4744-4751. |
CHEN Z X, CHEN C S, CHEN W P, et al., 2018. Effect and mechanism of Attapulgite and its modified materials on bioavailability of cadmium in soil[J]. Environmental Science, 39(10): 4744-4751. | |
[25] | 窦韦强, 安毅, 秦莉, 等, 2021. 农田土壤重金属垂直分布迁移特征及生态风险评价[J]. 环境工程, 39(2): 166-172. |
DOU W Q, AN Y, QIN L, et al., 2021. Characteristics of vertical distribution and migration of heavy metals in farmland soils and ecological risk assessment[J]. Environmental Engineering, 39(2): 166-172. | |
[26] | 冯娟, 艾昊, 陈清敏, 等, 2023. 金属矿区土壤重金属污染的分布特征及因果关系解析——以某金矿为例[EB/OL]. 农业环境科学学报. [2023-10-11]. https://link.cnki.net/urlid/12.1347.S.20231010.1421.002. |
FENG J, AI H, CHEN Q M, et al., 2023. Distribution characteristics and causality analysis of soil heavy metal pollution in a metal mining area: A case study of a gold mine[EB/OL]. Journal of Agro- Environment Science [2023-10-11]. https://link.cnki.net/urlid/12.1347.S.20231010.1421.002. | |
[27] | 付光辉, 2021. 粤港澳大湾区典型工业集聚区周边土壤重金属污染评价[J]. 四川化工, 24(2): 59-62. |
FU G H, 2021. Evaluation of heavy metal pollution in soil around typical industrial parks in Guangdong-Hong Kong-Macao greater bay area[J]. Sichuan Chemical, 24(2): 59-62. | |
[28] | 国家环境保护总局, 2004. 土壤环境监测技术规范: HJ/T 166—2004[S]. 北京: 中国环境出版集团: 中国环境出版集团: 1-34. |
STATE ENVIRONMENT PROTECTION ADMINISTRATION, 2004. The Technical Specification for Soil Environmental Monitoring: HJ/T 166—2004: Beijing: China Environmental Science Press: 1-34. | |
[29] | 韩张雄, 万的军, 胡建平, 等, 2017. 土壤中重金属元素的迁移转化规律及其影响因素[J]. 矿产综合利用 (6): 5-9. |
HAN Z X, WAN D J, HU J P, et al., 2017. Migration and transformation of heavy metals in soil and its influencing factors[J]. Multipurpose Utilization of Mineral Resources (6): 5-9. | |
[30] | 李琴, 方雯, 李静, 等, 2023. 丹江口库区沿岸农田土壤重金属分布与来源解析[EB/OL]. 环境保护科学. [2023-11-29]. https://doi.org/10.16803/j.cnki.issn.1004-6216.202307055. |
LI Q, FANG W, LI J, et al., 2023. Distribution and source analysis of heavy metals in farmland soils along Danjiangkou reservoir area[EB/OL]. Environmental Protection Science. [2023-11-29]. https://doi.org/10.16803/j.cnki.issn.1004-6216.202307055. | |
[31] | 廖敏, 谢正苗, 黄昌勇, 1998. 镉在红壤中的吸附特征[J]. 浙江农业大学学报, 24(2): 199-202. |
LIAO M, XIE Z M, HUANG C Y, 1998. Adsorption characteristics of cadmium in red soils[J]. Journal of Zhejiang Agricultural University, 24(2): 199-202. | |
[32] | 桑康云, 张可能, 吴霞, 等, 2023. 某焦化场地重金属与多环芳烃复合污染特征与评价[J]. 环境化学, 42(5): 1651-1662. |
SANG K Y, ZHANG K N, WU X, et al., 2023. Co-contaminated characteristics and assessment of heavy metal and polycyclic aromatic hydrocarbons in a coking site[J]. Environmental Chemistry, 42(5): 1651-1662. | |
[33] | 生态环境部, 2019. 建设用地土壤污染状况调查技术导则: HJ 25.1—2019北京: 中国环境出版集团: 1-12. |
MINISTRY OF ECOLOGY AND ENVIRONMENT, 2019. Technical Guidelines for Investigation on Soil Contamination of Land for Construction: HJ 25.1—2019[S]. China Environmental Science Press: 1-12. | |
[34] |
石含之, 刘帆, 黄永东, 等, 2021. 土壤溶解性有机物的动态变化对水溶态铜的影响[J]. 生态环境学报, 30(9): 1896-1902.
DOI |
SHI H Z, LIU F, HUANG Y D, et al., 2021. Effects of dynamic change of dissolved organic matter in soil on water-soluble copper[J]. Ecology and Environmental Sciences, 30(9): 1896-1902. | |
[35] | 史锐, 岳荣, 张红, 2016. 有色金属采选冶基地周边土壤中重金属纵向分层研究[J]. 土壤通报, 47(1): 186-191. |
SHI R, YUE R, ZHANG H, 2016. Research on vertical distribution of heavy metal in soil around non-ferrous metal industry area[J]. Chinese Journal of Soil Science, 47(1): 186-191. | |
[36] | 孙宗斌, 周俊, 胡蓓蓓, 等, 2014. 天津城市道路灰尘重金属污染特征[J]. 生态环境学报, 23(1): 157-163. |
SUN Z B, ZHOU J, HU B B, et al., 2014. Characteristics of heavy metal pollution in urban street dust of Tianjin[J]. Ecology and Environmental Sciences, 23(1): 157-163. | |
[37] |
他维媛, 康桢, 孟昭君, 等, 2021. 秦岭典型停产关闭锌冶炼企业场地土壤重金属污染特征研究[J]. 生态环境学报, 30(7): 1513-1521.
DOI |
TA W Y, KANG Z, MENG Z J, et al., 2021. Research of pollution characteristics of heavy metals in soil of typical closed zinc smelting enterprises in Qinling Mountains[J]. Ecology and Environmental Sciences, 30(7): 1513-1521. | |
[38] | 谭海剑, 黄祖照, 宋清梅, 等, 2021. 粤港澳大湾区典型城市遗留地块土壤污染特征研究[J]. 环境科学研究, 34(4): 976-986. |
TAN H J, HUANG Z Z, SONG Q M, et al., 2021. Characterization of soil contaminations in brownfield sites in a typical city in Guangdong-Hong Kong-Macao greater bay area[J]. Research of Environmental Sciences, 34(4): 976-986. | |
[39] | 吴文成, 任露陆, 蔡信德, 等, 2014. 茅尾海沉积物重金属空间分布特征与生态风险[J]. 环境科学研究, 27(2): 147-156. |
WU W C, REN L L, CAI X D, et al., 2014. Spatial pattern and ecological risk of heavy metals in sediments from Maowei Sea, Southern China[J]. Research of Environmental Sciences, 27(2): 147-156. | |
[40] | 谢志宜, 张雅静, 陈丹青, 等, 2016. 土壤重金属污染评价方法研究——以广州市为例[J]. 农业环境科学学报, 35(7): 1329-1337. |
XIE Z Y, ZHANG Y J, CHEN D G, et al., 2016. Research on assessment methods for soil heavy metal pollution: A case study of Guangzhou[J]. Journal of Agro-Environment Science, 35(7): 1329-1337. | |
[41] | 徐争启, 倪师军, 庹先国, 等, 2008. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 31(2): 112-115. |
XU Z Q, NI S J, TUO X G, et al., 2008. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 31(2): 112-115. | |
[42] | 杨慧燕, 王志春, 成明, 等, 2014. 广州酸雨观测站2008年-2012年酸雨资料分析[J]. 气象研究与应用, 35(2): 52-56. |
YANG H Y, WANG Z C, CHENG M, et al., 2014. Analysis on acid rain observatory data in Guangzhou during 2008-2008[J]. Journal of Meteorological Research and Application, 35(2): 52-56. | |
[43] | 杨丽红, 黄剑锋, 郑秀端, 等, 2018. 南安市五金集控区水体中重金属锌的污染状况及评价[J]. 海峡预防医学杂志, 24(2): 82-84. |
YANG L H, HUANG J F, ZHENG X D, et al., 2018. Pollution status and evaluation of heavy metal zinc in water body in hardware centralized control area of Nan’an City[J]. Strait Journal of Preventive Medicine, 24(2): 82-84. | |
[44] | 詹淑威, 潘伟斌, 曹英姿, 等, 2014. 三类工业污染场地重金属污染调查及评价[C]// 中华环保联合会. 第十届环境与发展论坛论文集. 北京: 海洋出版社: 333-339. |
ZHAN S W, PAN W B, CAO Y Z, et al., 2014. Investigation and evaluation of heavy metal pollution in three types of industrial polluted sites[C]// All-China Environment Federation. Proceedings of the Tenth Forum on Environment and Development. Beijing: Ocean Press: 333-339. | |
[45] |
张静静, 赵永芹, 王菲菲, 等, 2019. 膨润土、褐煤及其混合添加对铅污染土壤钝化修复效应研究[J]. 生态环境学报, 28(2): 395-402.
DOI |
ZHANG J J, ZHAO Y Q, WANG F F, et al., 2019. Immobilization and remediation of Pb contaminated soil treated with bentonite, lignite and their mixed addition[J]. Ecology and Environmental Sciences, 28(2): 395-402. | |
[46] | 张雨菲, 谭静强, 邓敏, 等, 2022. 华中某铅冶炼场地土壤重金属空间分布及其生态风险评价[J]. 中国科学院大学学报, 39(4): 481-489. |
ZHANG Y F, TAN J Q, DENG M, et al., 2022. Spatial distribution and ecological risk assessment of heavy metals in a leads melting site in Central China[J]. Journal of University of Chinese Academy of Sciences, 39(4): 481-489. | |
[47] | 庄小舟, 2015. 东莞市某五金制品厂车间空气污染特征及防治对策[D]. 广州: 华南理工大学. |
ZHUANG X Z, 2015. Countermeasures and characteristics of air pollution about the workshop of hardware products factory in Dongguan[D]. Guangzhou: South China University of Technology. |
[1] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
[2] | 王宁, 刘效东, 甘先华, 苏宇乔, 吴国章, 黄芳芳, 张卫强. 亚热带典型林分降水过程中的水质效应[J]. 生态环境学报, 2023, 32(8): 1365-1375. |
[3] | 刘炳妤, 王一佩, 姚作芳, 杨钙仁, 徐晓楠, 邓羽松, 黄钰涵. 沼液还田下不同种植模式的重金属风险评价及安全消纳量分析[J]. 生态环境学报, 2023, 32(8): 1507-1515. |
[4] | 李惠梅, 李荣杰, 晏旭昇, 武非非, 高泽兵, 谭永忠. 青海湖流域生态风险评价及生态功能分区研究[J]. 生态环境学报, 2023, 32(7): 1185-1195. |
[5] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[6] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[7] | 杨春亮, 刘旻霞, 王千月, 苗乐乐, 肖音迪, 王敏. 单户与联户放牧经营下草玉梅与嵩草种群空间格局及其关联性[J]. 生态环境学报, 2023, 32(4): 651-659. |
[8] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[9] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[10] | 胡习邦, 关晓彤, 谢紫霞, 张修玉. 农用地土壤中邻苯二甲酸二乙基已基酯的污染现状及生态风险评估[J]. 生态环境学报, 2023, 32(12): 2083-2093. |
[11] | 韩迁, 张玉娇, 赖承钺, 杨璐瑶, 孟旭. 成都市河流中四环素、喹诺酮类抗生素污染特征及生态风险评价[J]. 生态环境学报, 2023, 32(11): 1922-1932. |
[12] | 黄世聪, 陈丽珂, 张政杰, 陈科华, 陈澄宇, 曾巧云. 四环素对不同品种蔬菜毒性阈值及其敏感性分布[J]. 生态环境学报, 2023, 32(11): 1988-1995. |
[13] | 刘安, 吴昊, 何贝贝. 陆地环境中纳米塑料毒性效应的研究进展[J]. 生态环境学报, 2023, 32(11): 2030-2040. |
[14] | 童银栋, 黄兰兰, 杨宁, 张奕妍, 李子芃, 邵波. 全球水体微囊藻毒素分布特征及其潜在环境风险分析[J]. 生态环境学报, 2023, 32(1): 129-138. |
[15] | 肖洁芸, 周伟, 石佩琪. 土壤重金属含量高光谱反演[J]. 生态环境学报, 2023, 32(1): 175-182. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||