生态环境学报 ›› 2023, Vol. 32 ›› Issue (11): 1922-1932.DOI: 10.16258/j.cnki.1674-5906.2023.11.003
收稿日期:
2022-11-28
出版日期:
2023-11-18
发布日期:
2024-01-17
通讯作者:
* 张玉娇。E-mail: 379181725@qq.com作者简介:
韩迁(1996年生),女,助理工程师,主要研究方向为水环境中新兴污染物。E-mail: 1585518710@qq.com
基金资助:
HAN Qian(), ZHANG Yujiao*(
), LAI Chengyue, YANG Luyao, MENG Xu
Received:
2022-11-28
Online:
2023-11-18
Published:
2024-01-17
摘要:
近年来抗生素的大量使用和滥用,导致抗生素在多种环境介质中均被检测到,其带来的生态风险和健康风险日益引起人们的广泛关注。成都市目前尚缺乏有关地表水抗生素污染的数据,因此,为了评估成都市不同流域中抗生素的分布特征以及生态风险,采用固相萃取(SPE)和高效液相色谱串联质谱法(HPLC-MS/MS),分别监测了成都市府河、西江河、毗河、濛阳河以及蒲江河5条流域中四环素、喹诺酮两大类共计25种抗生素在丰水期和枯水期的污染水平,并对其进行生态风险评价。结果表明,两个水期共检出16种抗生素,检出率介于0-90.3%之间;四环素在丰水期和枯水期均表现出较高的检出率,分别为87.1%和77.4%。两类抗生素总质量浓度表现为枯水期远高于丰水期,总质量浓度范围介于ND-642 ng∙L−1之间,平均质量浓度为65.6 ng∙L−1。质量浓度最高的抗生素为喹诺酮类的氟罗沙星和氧氟沙星,分别为642 ng∙L−1和384 ng∙L−1,平均为245 ng∙L−1和42.9 ng∙L−1。在被研究的5个流域中,抗生素的残留水平依次为西江河>蒲江河>府河>毗河>濛阳河;与国内其他水体比较,成都市研究河流中抗生素的污染程度处于中等水平。根据欧盟技术指导文件中关于抗生素环境风险评价的方法,对其中比较常见的9种抗生素进行生态风险评价。结果表明,枯水期生态风险高于丰水期,其中,洛美沙星和诺氟沙星在濛阳河及西江河流域、强力霉素在蒲江河流域中的RQ均大于1。抗生素生态加和风险RQ≥1,表明抗生素污染物的暴露对该流域生态环境有着潜在危害。
中图分类号:
韩迁, 张玉娇, 赖承钺, 杨璐瑶, 孟旭. 成都市河流中四环素、喹诺酮类抗生素污染特征及生态风险评价[J]. 生态环境学报, 2023, 32(11): 1922-1932.
HAN Qian, ZHANG Yujiao, LAI Chengyue, YANG Luyao, MENG Xu. Pollution Characteristics and Ecological Risk Assessment of Tetracycline and Quinolone Antibiotics in Rivers of Chengdu[J]. Ecology and Environment, 2023, 32(11): 1922-1932.
药物 | 丰水期 | 枯水期 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
质量浓度范围 | 检出率 | 均值 | 中值 | 质量浓度最高点位 | 质量浓度范围 | 检出率 | 均值 | 中值 | 质量浓度最高点位 | ||
EATC | ND 1) | 0 | ND | ND | ‒ 2) | ND | 0 | ND | ND | ‒ | |
ATC | ND | 0 | ND | ND | ‒ | ND | 0 | ND | ND | ‒ | |
CTE | ND | 0 | ND | ND | ‒ | ND | 0 | ND | ND | ‒ | |
DCTC | 3.34‒111 | 9.68 | 40.2 | 5.78 | S25 | ND | 0 | ND | ND | ‒ | |
DC | 1.85‒3.41 | 13.3 | 2.67 | 2.86 | S7 | 25.9‒158 | 16.1 | 65.6 | 44.7 | S28 | |
MTC | 0.530‒11.4 | 32.3 | 3.64 | 2.29 | S28 | 1.86‒84.3 | 58.1 | 19.9 | 15.2 | S19 | |
TC | 0.140‒0.960 | 87.1 | 0.420 | 0.350 | S12 | 0.170‒3.78 | 77.4 | 1.27 | 0.840 | S22 | |
CINO | 0.130‒11.5 | 16.1 | 3.53 | 2.20 | S23 | 17.6‒65.1 | 12.9 | 42.7 | 44.0 | S25 | |
CIP | 0.420‒4.97 | 29.0 | 1.84 | 1.28 | S5 | 1.29‒36.6 | 32.3 | 17.6 | 16.4 | S29 | |
DAN | ND | 0 | ND | ND | ‒ | ND | 0 | ND | ND | ‒ | |
DIF | ND | 0 | ND | ND | ‒ | ND | 0 | ND | ND | ‒ | |
ENO | 0.490‒12.4 | 22.5 | 5.92 | 6.23 | S8 | 2.45‒23.7 | 6.45 | 13.1 | 13.1 | S12 | |
ENR | 0.250‒4.85 | 25.8 | 1.74 | 1.61 | S12 | 21.2‒42.0 | 9.66 | 29.1 | 25.7 | S12 | |
FLE | ND | 0 | ND | ND | ‒ | 31.1‒642 | 9.68 | 245 | 61.3 | S15 | |
FLU | 0.140‒25.9 | 90.3 | 2.41 | 0.910 | S23 | 1.66‒46.3 | 54.8 | 18.7 | 14.8 | S14 | |
LOM | 0.120‒0.640 | 6.45 | 0.380 | 0.380 | S4 | 6.39‒27.5 | 9.68 | 19.5 | 24.8 | S13 | |
MAR | 0.170‒0.640 | 9.68 | 0.420 | 0.470 | S15 | 5.38‒157 | 16.1 | 53.4 | 35.9 | S15 | |
NA | 0.120‒0.750 | 6.45 | 0.430 | 0.430 | S26 | 19.2‒75.4 | 22.6 | 46.4 | 43.2 | S6 | |
NOR | 0.320‒0.920 | 12.9 | 0.510 | 0.410 | S3 | 12.4‒42.7 | 12.9 | 24.4 | 21.4 | S3 | |
OFL | 0.340‒141 | 61.3 | 11.9 | 2.24 | S24 | 8.88‒384 | 54.9 | 73.8 | 42.0 | S11 | |
ORB | ND | 0 | ND | ND | ‒ | 2.27‒4.79 | 9.68 | 3.76 | 4.12 | S13 | |
PEF | ND | 0 | ND | ND | ‒ | ND | 0 | ND | ND | ‒ | |
PPA | ND | 0 | ND | ND | ‒ | ND | 0 | ND | ND | ‒ | |
SAR | ND | 0 | ND | ND | ‒ | ND | 0 | ND | ND | ‒ | |
SPA | ND | 0 | ND | ND | ‒ | ND | 0 | ND | ND | ‒ |
表1 不同水期抗生素检出率、质量浓度范围以及平均值
Table 1 Detection rate, mass concentration range, and average value of antibiotics in different water stages ng?L?1
药物 | 丰水期 | 枯水期 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
质量浓度范围 | 检出率 | 均值 | 中值 | 质量浓度最高点位 | 质量浓度范围 | 检出率 | 均值 | 中值 | 质量浓度最高点位 | ||
EATC | ND 1) | 0 | ND | ND | ‒ 2) | ND | 0 | ND | ND | ‒ | |
ATC | ND | 0 | ND | ND | ‒ | ND | 0 | ND | ND | ‒ | |
CTE | ND | 0 | ND | ND | ‒ | ND | 0 | ND | ND | ‒ | |
DCTC | 3.34‒111 | 9.68 | 40.2 | 5.78 | S25 | ND | 0 | ND | ND | ‒ | |
DC | 1.85‒3.41 | 13.3 | 2.67 | 2.86 | S7 | 25.9‒158 | 16.1 | 65.6 | 44.7 | S28 | |
MTC | 0.530‒11.4 | 32.3 | 3.64 | 2.29 | S28 | 1.86‒84.3 | 58.1 | 19.9 | 15.2 | S19 | |
TC | 0.140‒0.960 | 87.1 | 0.420 | 0.350 | S12 | 0.170‒3.78 | 77.4 | 1.27 | 0.840 | S22 | |
CINO | 0.130‒11.5 | 16.1 | 3.53 | 2.20 | S23 | 17.6‒65.1 | 12.9 | 42.7 | 44.0 | S25 | |
CIP | 0.420‒4.97 | 29.0 | 1.84 | 1.28 | S5 | 1.29‒36.6 | 32.3 | 17.6 | 16.4 | S29 | |
DAN | ND | 0 | ND | ND | ‒ | ND | 0 | ND | ND | ‒ | |
DIF | ND | 0 | ND | ND | ‒ | ND | 0 | ND | ND | ‒ | |
ENO | 0.490‒12.4 | 22.5 | 5.92 | 6.23 | S8 | 2.45‒23.7 | 6.45 | 13.1 | 13.1 | S12 | |
ENR | 0.250‒4.85 | 25.8 | 1.74 | 1.61 | S12 | 21.2‒42.0 | 9.66 | 29.1 | 25.7 | S12 | |
FLE | ND | 0 | ND | ND | ‒ | 31.1‒642 | 9.68 | 245 | 61.3 | S15 | |
FLU | 0.140‒25.9 | 90.3 | 2.41 | 0.910 | S23 | 1.66‒46.3 | 54.8 | 18.7 | 14.8 | S14 | |
LOM | 0.120‒0.640 | 6.45 | 0.380 | 0.380 | S4 | 6.39‒27.5 | 9.68 | 19.5 | 24.8 | S13 | |
MAR | 0.170‒0.640 | 9.68 | 0.420 | 0.470 | S15 | 5.38‒157 | 16.1 | 53.4 | 35.9 | S15 | |
NA | 0.120‒0.750 | 6.45 | 0.430 | 0.430 | S26 | 19.2‒75.4 | 22.6 | 46.4 | 43.2 | S6 | |
NOR | 0.320‒0.920 | 12.9 | 0.510 | 0.410 | S3 | 12.4‒42.7 | 12.9 | 24.4 | 21.4 | S3 | |
OFL | 0.340‒141 | 61.3 | 11.9 | 2.24 | S24 | 8.88‒384 | 54.9 | 73.8 | 42.0 | S11 | |
ORB | ND | 0 | ND | ND | ‒ | 2.27‒4.79 | 9.68 | 3.76 | 4.12 | S13 | |
PEF | ND | 0 | ND | ND | ‒ | ND | 0 | ND | ND | ‒ | |
PPA | ND | 0 | ND | ND | ‒ | ND | 0 | ND | ND | ‒ | |
SAR | ND | 0 | ND | ND | ‒ | ND | 0 | ND | ND | ‒ | |
SPA | ND | 0 | ND | ND | ‒ | ND | 0 | ND | ND | ‒ |
名称 | TCs | QNs | 参考文献 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTC | DC | TC | TCsum | ENR | OFL | LOM | FLU | CIP | NOR | QNsum | |||
黄浦江 | ‒ 1) | ‒ | 15.1‒113 | 15.1‒113 | ND2) | ND‒6.50 | ‒ | ‒ | ND‒2.70 | ND‒2.60 | ND‒11.8 | Jiang et al., | |
珠江 | ND‒33.0 | ‒ | ND‒349 | ND‒382 | ‒ | ND‒703 | ‒ | ND‒463 | ND‒91.8 | ND‒54.2 | ND‒1.31×103 | Li et al., | |
青狮潭 | ‒ | ‒ | ‒ | ‒ | 4.59‒6.06 | 50.0‒660 | ‒ | ‒ | 3.49‒6.22 | 3.70‒5.00 | 61.8‒677 | 莫苑敏等, | |
清河 | ‒ | ‒ | ‒ | ‒ | 3.10‒ 6.30 | 6.40‒3.14×103 | ‒ | ‒ | 35.8‒ 672 | ‒ | 45.3‒3.82×103 | 高丽等, | |
浑河 | ‒ | ‒ | ND‒ 10.1 | ND‒ 10.1 | ND‒ 4.40 | ND‒ 32.1 | ‒ | ‒ | ND‒ 14.2 | ‒ | ND‒50.7 | 卢正山, | |
苏州市 | ‒ | 3.27‒454 | 4.06‒547 | 7.33‒1.00×103 | ‒ | 1.64‒195 | ‒ | ‒ | ND‒90.5 | 1.17‒556 | 2.81‒841 | 杨俊等, | |
袁河 | ND‒ 156 | ND‒ 38.6 | ND‒ 7.95 | ND‒ 203 | ND | ND‒ 0.870 | ‒ | ‒ | ND | ND | ND‒ 0.870 | 李佳乐等, | |
赛里木湖 | ND‒ 15.9 | ‒ | ND | ND‒ 15.9 | ND‒ 5.90 | ‒ | ‒ | ‒ | ND | ND‒ 10.7 | ND‒ 16.6 | 张亚茹等, | |
辽河 | ‒ | ‒ | ND‒4.60 | ND‒4.60 | ND‒49.3 | ‒ | ‒ | ‒ | ND‒23.7 | ND‒83.8 | ND‒436 | 张晓娇等, | |
本研究 | ‒ | ND‒158 | ND‒3.78 | ND‒162 | ND‒41.9 | ND‒384 | ND‒27.5 | ND‒46.3 | ND‒36.7 | ND‒42.7 | ND‒580 |
表2 国内不同地区水体中抗生素残留水平
Table 2 Antibiotic residue levels in different domestic regions ng?L?1
名称 | TCs | QNs | 参考文献 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTC | DC | TC | TCsum | ENR | OFL | LOM | FLU | CIP | NOR | QNsum | |||
黄浦江 | ‒ 1) | ‒ | 15.1‒113 | 15.1‒113 | ND2) | ND‒6.50 | ‒ | ‒ | ND‒2.70 | ND‒2.60 | ND‒11.8 | Jiang et al., | |
珠江 | ND‒33.0 | ‒ | ND‒349 | ND‒382 | ‒ | ND‒703 | ‒ | ND‒463 | ND‒91.8 | ND‒54.2 | ND‒1.31×103 | Li et al., | |
青狮潭 | ‒ | ‒ | ‒ | ‒ | 4.59‒6.06 | 50.0‒660 | ‒ | ‒ | 3.49‒6.22 | 3.70‒5.00 | 61.8‒677 | 莫苑敏等, | |
清河 | ‒ | ‒ | ‒ | ‒ | 3.10‒ 6.30 | 6.40‒3.14×103 | ‒ | ‒ | 35.8‒ 672 | ‒ | 45.3‒3.82×103 | 高丽等, | |
浑河 | ‒ | ‒ | ND‒ 10.1 | ND‒ 10.1 | ND‒ 4.40 | ND‒ 32.1 | ‒ | ‒ | ND‒ 14.2 | ‒ | ND‒50.7 | 卢正山, | |
苏州市 | ‒ | 3.27‒454 | 4.06‒547 | 7.33‒1.00×103 | ‒ | 1.64‒195 | ‒ | ‒ | ND‒90.5 | 1.17‒556 | 2.81‒841 | 杨俊等, | |
袁河 | ND‒ 156 | ND‒ 38.6 | ND‒ 7.95 | ND‒ 203 | ND | ND‒ 0.870 | ‒ | ‒ | ND | ND | ND‒ 0.870 | 李佳乐等, | |
赛里木湖 | ND‒ 15.9 | ‒ | ND | ND‒ 15.9 | ND‒ 5.90 | ‒ | ‒ | ‒ | ND | ND‒ 10.7 | ND‒ 16.6 | 张亚茹等, | |
辽河 | ‒ | ‒ | ND‒4.60 | ND‒4.60 | ND‒49.3 | ‒ | ‒ | ‒ | ND‒23.7 | ND‒83.8 | ND‒436 | 张晓娇等, | |
本研究 | ‒ | ND‒158 | ND‒3.78 | ND‒162 | ND‒41.9 | ND‒384 | ND‒27.5 | ND‒46.3 | ND‒36.7 | ND‒42.7 | ND‒580 |
项目 | 抗生素名称缩写 | ||||||||
---|---|---|---|---|---|---|---|---|---|
DC | TC | CIP | DIF | ENR | FLU | LOM | NOR | OFL | |
ρn/(ng∙L−1) | 131 | 5.00×103 | 5.00×103 | 4.35×105 | 49.0 | 2.84×104 | 19.9 | 16.0 | 1.08×103 |
表3 9种目标抗生素的ρn值
Table 3 The ρn values of the nine target antibiotics
项目 | 抗生素名称缩写 | ||||||||
---|---|---|---|---|---|---|---|---|---|
DC | TC | CIP | DIF | ENR | FLU | LOM | NOR | OFL | |
ρn/(ng∙L−1) | 131 | 5.00×103 | 5.00×103 | 4.35×105 | 49.0 | 2.84×104 | 19.9 | 16.0 | 1.08×103 |
流域 | 抗生素风险熵 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
DC | TC | CIP | DIF | ENR | FLU | LOM | NOR | OFL | RQsum | |
濛阳河 | 0.0260 | 0.00 | 0.00 | ‒ | 0.0582 | 0.00 | 0.0321 | 0.0575 | 4.6×10−3 | 0.179 |
毗河 | ‒ 1) | 0.00 | 0.00 | ‒ | - | 0.00 | ‒ | ‒ | 1.48×10−2 | 0.0152 |
西江河 | 0.0150 | 0.00 | 0.00 | ‒ | 0.0371 | 0.00 | ‒ | 0.0237 | 2.10×10−3 | 0.0785 |
府河 | ‒ | 0.00 | ‒ | ‒ | ‒ | 0.00 | ‒ | 0.0200 | 0.131 | 0.151 |
蒲江河 | 0.0240 | 0.00 | ‒ | ‒ | ‒ | 0.00 | ‒ | ‒ | 9.00×10−4 | 0.0252 |
表4 丰水期研究流域水体中抗生素风险熵
Table 4 Antibiotic risk entropy in water waterments
流域 | 抗生素风险熵 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
DC | TC | CIP | DIF | ENR | FLU | LOM | NOR | OFL | RQsum | |
濛阳河 | 0.0260 | 0.00 | 0.00 | ‒ | 0.0582 | 0.00 | 0.0321 | 0.0575 | 4.6×10−3 | 0.179 |
毗河 | ‒ 1) | 0.00 | 0.00 | ‒ | - | 0.00 | ‒ | ‒ | 1.48×10−2 | 0.0152 |
西江河 | 0.0150 | 0.00 | 0.00 | ‒ | 0.0371 | 0.00 | ‒ | 0.0237 | 2.10×10−3 | 0.0785 |
府河 | ‒ | 0.00 | ‒ | ‒ | ‒ | 0.00 | ‒ | 0.0200 | 0.131 | 0.151 |
蒲江河 | 0.0240 | 0.00 | ‒ | ‒ | ‒ | 0.00 | ‒ | ‒ | 9.00×10−4 | 0.0252 |
流域 | 抗生素风险熵 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
DC | TC | CIP | DIF | ENR | FLU | LOM | NOR | OFL | RQsum | |
濛阳河 | 0.197 | 2.00×10−4 | 3.80×10−3 | ‒ | 0.519 | 2.00×10−4 | 1.24 | 2.67 | 0.0634 | 4.70 |
毗河 | 0.00 | 4.00×10−4 | 0.00 | ‒ | 0.00 | 1.30×10−3 | 0.00 | 0.00 | 0.145 | 0.147 |
西江河 | 0.548 | 5.00×10−4 | 4.20×10−3 | ‒ | 0.857 | 1.60×10−3 | 1.38 | 1.68 | 0.106 | 4.58 |
府河 | 0.341 | 8.00×10−4 | 3.00×10−4 | ‒ | ‒ | 1.60×10−3 | 0.00 | ‒ | 0.0597 | 0.403 |
蒲江河 | 1.21 | 6.00×10−4 | 7.30×10−3 | ‒ | ‒ | ‒ | ‒ | ‒ | 0.356 | 1.58 |
表5 枯水期研究流域水体中抗生素风险熵
Table 5 Antibiotic risk entropy in water basin
流域 | 抗生素风险熵 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
DC | TC | CIP | DIF | ENR | FLU | LOM | NOR | OFL | RQsum | |
濛阳河 | 0.197 | 2.00×10−4 | 3.80×10−3 | ‒ | 0.519 | 2.00×10−4 | 1.24 | 2.67 | 0.0634 | 4.70 |
毗河 | 0.00 | 4.00×10−4 | 0.00 | ‒ | 0.00 | 1.30×10−3 | 0.00 | 0.00 | 0.145 | 0.147 |
西江河 | 0.548 | 5.00×10−4 | 4.20×10−3 | ‒ | 0.857 | 1.60×10−3 | 1.38 | 1.68 | 0.106 | 4.58 |
府河 | 0.341 | 8.00×10−4 | 3.00×10−4 | ‒ | ‒ | 1.60×10−3 | 0.00 | ‒ | 0.0597 | 0.403 |
蒲江河 | 1.21 | 6.00×10−4 | 7.30×10−3 | ‒ | ‒ | ‒ | ‒ | ‒ | 0.356 | 1.58 |
[1] |
ASHTON D, HILTON M, THOMAS K V, 2004. Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom[J]. Science of the Total Environment, 333(1-3): 167-184.
DOI PMID |
[2] |
BENOǏT F, RAPHAEL M, BERNARD V, et al., 2009. Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment[J]. Environmental Toxicology and Chemistry, 23(5): 1344-1354.
DOI URL |
[3] |
BACKHAUS T, SCHOLZE M, GRIMME L H, 2000. The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri[J]. Aquatic Toxicology, 49: 49-61.
DOI URL |
[4] |
CLEUVERS M, 2004. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen and acetylsalicylic acid[J]. Ecotoxicology and Environmental Safety, 59(3): 309-315.
DOI URL |
[5] |
CLEUVERS M, 2003. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects[J]. Toxicology Letters, 142(3): 185-194.
DOI PMID |
[6] |
DONG D M, ZHANG L W, LIU S, et al., 2016. Antibiotics in water and sediments from Liao River in Jilin Province, China: Occurrence, distribution, and risk assessment[J]. Environmental Earth Sciences, 75(16): 1202.
DOI URL |
[7] | European Chemicals Bureau, 2003. Technical guidance document on risk assessment[R]. European Communities: European Commission Joint Research Center: 93-101. |
[8] |
FATTA-KASSINOS D, MERIC S, NIKOLAOU A, 2011. Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research[J]. Analytical Bioanalytical Chemistry, 399: 251-275.
DOI URL |
[9] |
JIANG L, HU X L, YIN D Q, et al., 2011. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 82(6): 822-828.
DOI PMID |
[10] |
LI S, SHI W Z, LI H M, et al., 2018. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River estuary, South China[J]. Science of the Total Environment, 636: 1009-1019.
DOI URL |
[11] |
LIU X H, LU S Y, GUO W, et al., 2018. Antibiotics in the aquatic environments: A review of lakes, China[J]. Science of the Total Environment, 627: 1195-1208.
DOI URL |
[12] |
LUO Y, XU L, RYSZ M, et al., 2011. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River basin, China[J]. Environment Science & Technology, 45(5): 1827-1833.
DOI URL |
[13] |
LOFTIN K A, ADAMS C D, MEYER M T, et al., 2008. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics[J]. Journal of Environmental Qual, 37: 378-386.
DOI URL |
[14] |
MA Y P, LI M WU M M, et al., 2015. Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge[J]. Science of the Total Environment, 518-519: 498-506.
DOI URL |
[15] |
PARK S, CHOI K, 2008. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems[J]. Ecotoxicology, 17(6): 526-538.
DOI PMID |
[16] |
QUINN B, GAGNE F, BLAISE C, 2008. An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata [J]. Science of the Total Environment, 389(2-3): 306-314.
DOI URL |
[17] | SASSMAN S A, LEE L S, 2005. Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange[J]. Environmental Science & Technology, 39(19): 7452-7459. |
[18] | VAN D X, DEWULF J, VAN L H, et al., 2014. Fluoroquinolone antibiotics: an emerging class of environmental micropollutants[J]. Science of the Total Environment, 500-501: 250-269. |
[19] |
WANG Z Y, CHEN Q W, ZHANG J Y, et al., 2019. Characterization and source identification of tetracycline antibiotics in the drinking water sources of the lower Yangtze River[J]. Journal of Environmental Management, 244: 13-22.
DOI PMID |
[20] |
WANG Z, DU Y, YANG C, et al., 2017. Occurrence and ecological hazard assessment of selected antibiotics in the surfacewaters in and around Lake Honghu, China[J]. Science of The Total Environment, 609: 1423.
DOI URL |
[21] | WANG D, SUI Q, ZHAO W T, et al., 2014. Pharmaceutical and personal care products in the surface water of China: A review[J]. Chinese Science Bulletin, 59(9): 743-751. (in Chinese) |
[22] |
ZHANG Q Q, YING G G, PAN C G, et al., 2015. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 49(11): 6772-6782.
DOI URL |
[23] | ZHOU L J, YING G G, ZHANG R Q, et al., 2013. Use patterns, excretion masses and contamination profiles of antibiotics in a typical swine farm, south China[J]. Environmental Science Processes & Impacts, 15(4): 802-813. |
[24] | 陈亚君, 2020. 四环素类抗生素在微塑料和土壤中的吸附行为及其机理研究[D]. 南京: 南京师范大学: 3-4. |
CHEN Y J, 2020. Adsorption behavior and mechanism of tetracycline antibiotics in microplastics and soil[D]. Nanjing: Nanjing Normal University: 3-4. | |
[25] | 高丽, 李翔, 张远, 等, 2014. 北京市清河中抗生素的污染特征研究[J]. 生态科学, 33(1): 83-92. |
GAO L, LI X, ZHANG Y, et al., 2014. Research on pollution characteristics of antibiotics in Qinghe River in Beijing[J]. Ecological Science, 33(1): 83-92. | |
[26] | 侯为道, 傅小鲁, 杨元, 等, 2004. 动物性食品中兽药残留水平及膳食安全性评价[J]. 现代预防医学, 31(1): 47-49. |
HOU W D, FU X L, YANG Y, et al., 2004. Evaluation of veterinary drug residue levels and dietary safety in animal foods[J]. Modern Preventive medicine, 31(1): 47-49. | |
[27] | 卢正山, 2020. 浑河沈抚段水体典型抗生素分布特征及风险评价[D]. 沈阳: 沈阳师范大学:19-28. |
LU Z S, 2020. Typical antibiotic distribution characteristics and risk assessment of water bodies in Shenfu section of Hunhe River[D]. Shenyang: Shenyang Normal University:19-28. | |
[28] | 李士俊, 谢文明, 2019. 污水处理厂中抗生素去除规律研究进展[J]. 环境科学与技术, 42(3): 17-29. |
LI S J, XIE W M, 2019. Research advances in antibiotics removal in wastewater treatment plants: A review[J]. Environmental Science & Technology, 42(3): 17-29. | |
[29] | 李佳乐, 王瑶, 董一慧, 等, 2022. 鄱阳湖流域袁河水体典型抗生素分布特征及生态风险评价[J]. 生态毒理学报, 17(4): 7-12. |
LI J L, WANG Y, DONG Y H, et al., 2022. Distribution characteristics and ecological risk assessment of typical antibiotics in Yuanhe River of Poyang Lake Basin[J]. Asian Journal of Ecotoxicology, 17(4): 7-12. | |
[30] | 莫苑敏, 黄亮亮, 2019. 广西青狮潭水库水体喹诺酮类抗生素的分布特征及生态风险评价[J]. 湖泊科学, 31(1): 124-133. |
MO Y M, HUANG L L, 2019. Distribution characteristics and ecological risk assessment of quinolone antibiotics in Qingshitan Reservoir, Guangxi[J]. Journal of Lake Sciences, 31(1): 124-133.
DOI URL |
|
[31] | 农业部畜牧兽医局, 2003. 农业部发布动物性食品中兽药最高残留限量[J]. 中国兽药杂志, 37(2): 7-9. |
Animal Husbandry and Veterinary Bureau of the Ministry of Agriculture, 2003. The Ministry of Agriculture issues the maximum residue limits of veterinary drugs in animal food[J]. Chinese Journal of Veterinary Medicine, 37(2): 7-9. | |
[32] | 王桥军, 亦如瀚, 莫测辉, 等, 2009. 广州市水环境中喹诺酮类抗生素的污染特征[J]. 生态科学, 28(3): 276-280. |
WANG Q J, YI R H, MO C H, et al., 2009. The concentration characteristics of fluoroquinolone antibiotics in the aquatic environmental of Guangzhou[J]. Ecological Science, 28(3): 276-280. | |
[33] |
杨俊, 王汉欣, 2019. 苏州市水环境中典型抗生素污染特征及生态风险评估[J]. 生态环境学报, 28(2): 359-368.
DOI |
YANG J, WANG H X, 2019. Occurrence, distribution and risk assessment of typical antibiotics in the aquatic environment of Suzhou city[J]. Journal of Eco-Environment, 28(2): 359-368. | |
[34] | 赵富强, 高会, 张克玉, 等, 2021. 中国典型河流水域抗生素的赋存状况及风险评估研究[J]. 环境污染与防治, 43(1): 94-102. |
ZHAO F Q, GAO H, ZHANG K Y, et al., 2021. Study on the occurrence and risk assessment of antibiotics in typical river waters in China[J]. Environmental Pollution and Control, 43(1): 94-102. | |
[35] | 张亚茹, 张国栋, 王永强, 等, 2021. 新疆赛里木湖近岸表层水典型抗生素的赋存与风险评价[J]. 湖泊科学, 33(2): 483-493. |
ZHANG Y R, ZHANG G D, WANG Y Q, et al., 2021. Occurrence and ecological risk of typical antibiotics in surface water of the Lake Sayram, Xinjiang[J]. Journal of Lake Sciences, 33(2): 483-493.
DOI URL |
|
[36] | 张晶晶, 陈娟, 王沛芳, 等, 2021. 中国典型湖泊四大类抗生素污染特征[J]. 中国环境科学, 41(9): 4271-4283. |
HANG J J, CHEN J, WANG P F, et al., 2021. Pollution characteristics of four-type antibiotics in typical lakes in China[J]. China Environmental Science, 41(9): 4271-4283. | |
[37] | 张亚茹, 张国栋, 2021. 新疆赛里木湖近岸表层水典型抗生素的赋存与风险评价[J]. 湖泊科学, 33(2): 483-493. |
ZHANG Y R, ZHANG G D, 2021. Appearance and risk evaluation of typical antibiotics in the coastal surface water of Sailimu Lake, Xinjiang[J]. Lake Science, 33(2): 483-493. | |
[38] |
赵腾辉, 陈奕涵, 韩巍, 等, 2016. 东江上游典型抗生素污染特征及生态风险评价[J]. 生态环境学报, 25(10): 1707-1713.
DOI |
ZHAO T H, CHEN Y H, HAN W, et al., 2016. The contamination characteristics and ecological risk assessment of typical antibiotics in the upper reaches of the Dongjiang River[J]. Ecology and Environmental Sciences, 25(10): 1707-1713. | |
[39] | 张晓娇, 柏杨巍, 张远, 等, 2017. 辽河流域地表水中典型抗生素污染特征及生态风险评估[J]. 环境科学, 38(11): 4553-4561. |
ZHANG X J, BO Y W, ZHANG Y, et al., 2017. Characteristics of typical antibiotic contamination and ecological risk assessment in surface water in the Liaohe River Basin[J]. Environmental Science, 38(11): 4553-4561. |
[1] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
[2] | 黄世聪, 陈丽珂, 张政杰, 陈科华, 陈澄宇, 曾巧云. 四环素对不同品种蔬菜毒性阈值及其敏感性分布[J]. 生态环境学报, 2023, 32(11): 1988-1995. |
[3] | 施建飞, 靳正忠, 周智彬, 王鑫. 额尔齐斯河流域典型尾矿库区周边土壤重金属污染评价[J]. 生态环境学报, 2022, 31(5): 1015-1023. |
[4] | 李喆, 陈圣宾, 陈芝阳. 地表温度与土地利用类型间的空间尺度依赖性——以成都为例[J]. 生态环境学报, 2022, 31(5): 999-1007. |
[5] | 谢邵文, 郭晓淞, 杨芬, 黄强, 陈曼佳, 魏兴琥, 刘承帅. 广州市城市公园土壤重金属累积特征、形态分布及其生态风险[J]. 生态环境学报, 2022, 31(11): 2206-2215. |
[6] | 汪进, 韩智勇, 冯燕, 周若昕, 王双超. 成都市工业区绿地土壤重金属形态分布特征及生态风险评价[J]. 生态环境学报, 2021, 30(9): 1923-1932. |
[7] | 余楚, 李剑锋, 吕敦玉. 大兴安岭南段某矿区河流表层沉积物重金属污染及风险评价[J]. 生态环境学报, 2021, 30(11): 2223-2231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||