生态环境学报 ›› 2021, Vol. 30 ›› Issue (9): 1923-1932.DOI: 10.16258/j.cnki.1674-5906.2021.09.017
汪进1,2,3(), 韩智勇1,2,3,*(
), 冯燕4, 周若昕1,2,3, 王双超1,2,3
收稿日期:
2020-12-02
出版日期:
2021-09-18
发布日期:
2021-12-08
通讯作者:
*韩智勇,男,教授,研究方向为固体废物处理处置与资源化利用,土壤与地下水污染评价与修复。E-mail: hanzhiyong13@cdut.edu.cn作者简介:
汪进(1997年生),男,硕士研究生,研究方向为污染场地控制与修复。E-mail: 1358485612@qq.com
基金资助:
WANG Jin1,2,3(), HAN Zhiyong1,2,3,*(
), FENG Yan4, ZHOU Ruoxin1,2,3, WANG Shuangchao1,2,3
Received:
2020-12-02
Online:
2021-09-18
Published:
2021-12-08
摘要:
为了解成都市工业区绿地土壤中重金属的形态分布特征及生态风险情况,以成都市各区县工业区绿地土壤为研究对象,分析了土壤重金属Cr、Cd、Pb、Cu、Zn的赋存形态特征,并选用了基于形态分析的原生相与次生相比值法(RSP)和风险评价编码法(RAC),对研究区内土壤重金属的生态风险进行了评价与讨论。结果表明:(1)成都市工业区绿地土壤中Cr、Pb、Cu和Zn的赋存形态几乎都以残渣态为主(Pb:48.7%—84.25%、Cu:63.82%—94.45%、Zn:67.54%—95.58%、Cr:81.73%—92.49%),但Cd的赋存形态分布差异较大(Cd:0.00%—93.02%);(2)由次生相与原生相比值法评价结果可知,除Cd为中度污染外(RSP=2.84),Cr、Pb、Cu和Zn次生相与原生相比值均小于1,这表明研究区内Cd污染较其余几类重金属更严重;(3)根据风险评价编码法评价结果,研究区内重金属生态风险强弱顺序为Cd (14.62%)>Pb (1.61%)>Cu (1.29%)>Cr (1.02%)>Zn (0.86%),其中中部东南侧Cd的生态风险相对较高。综合上述评价结果,成都市工业区绿地土壤中主要重金属污染因子为Cd,且其生态风险远高于其他重金属,在今后的风险管控及土壤修复过程中应被重点关注。
中图分类号:
汪进, 韩智勇, 冯燕, 周若昕, 王双超. 成都市工业区绿地土壤重金属形态分布特征及生态风险评价[J]. 生态环境学报, 2021, 30(9): 1923-1932.
WANG Jin, HAN Zhiyong, FENG Yan, ZHOU Ruoxin, WANG Shuangchao. Morphological Distribution Characteristics and Ecological Risk Assessment of Heavy Metal in the Green Soil of Industrial Zone in Chengdu[J]. Ecology and Environment, 2021, 30(9): 1923-1932.
RSP | <1 | 1-2 | 2-3 | >3 |
---|---|---|---|---|
污染等级 Pollution level | 无 None | 轻度 Slight | 中等 Medium | 重度 Severe |
表1 RSP评价标准
Table 1 Rating criteria of RSP
RSP | <1 | 1-2 | 2-3 | >3 |
---|---|---|---|---|
污染等级 Pollution level | 无 None | 轻度 Slight | 中等 Medium | 重度 Severe |
RAC | <1% | 1%-10% | 10%-30% | 30%-50% | >50% |
---|---|---|---|---|---|
风险程度 Degree of risk | 无 None | 轻微 Slight | 中等 Medium | 高 High | 极高 Extremely high |
表2 RAC评价标准
Table 2 Rating criteria of RAC
RAC | <1% | 1%-10% | 10%-30% | 30%-50% | >50% |
---|---|---|---|---|---|
风险程度 Degree of risk | 无 None | 轻微 Slight | 中等 Medium | 高 High | 极高 Extremely high |
重金属 Heavy metal | 相关系数 Correlation coefficient | Cr | Cu | Cd | Pb | Zn |
---|---|---|---|---|---|---|
Cr | Pearson相关系数 Person correlation coefficient | 1.00 | ||||
Sig. | ||||||
Cu | Pearson相关系数 Person correlation coefficient | 0.73** | 1.00 | |||
Sig. | 0.00 | |||||
Cd | Pearson相关系数 Person correlation coefficient | -0.10 | -0.33 | 1.00 | ||
Sig. | 0.70 | 0.20 | ||||
Pb | Pearson相关系数 Person correlation coefficient | 0.52* | 0.58* | 0.00 | 1.00 | |
Sig. | 0.03 | 0.02 | 0.99 | |||
Zn | Pearson相关系数 Person correlation coefficient | 0.65** | 0.74** | -0.21 | 0.31 | 1.00 |
Sig. | 0.01 | 0.00 | 0.42 | 0.23 |
表3 重金属相关系数
Table 3 Correlation coefficient of heavy metals
重金属 Heavy metal | 相关系数 Correlation coefficient | Cr | Cu | Cd | Pb | Zn |
---|---|---|---|---|---|---|
Cr | Pearson相关系数 Person correlation coefficient | 1.00 | ||||
Sig. | ||||||
Cu | Pearson相关系数 Person correlation coefficient | 0.73** | 1.00 | |||
Sig. | 0.00 | |||||
Cd | Pearson相关系数 Person correlation coefficient | -0.10 | -0.33 | 1.00 | ||
Sig. | 0.70 | 0.20 | ||||
Pb | Pearson相关系数 Person correlation coefficient | 0.52* | 0.58* | 0.00 | 1.00 | |
Sig. | 0.03 | 0.02 | 0.99 | |||
Zn | Pearson相关系数 Person correlation coefficient | 0.65** | 0.74** | -0.21 | 0.31 | 1.00 |
Sig. | 0.01 | 0.00 | 0.42 | 0.23 |
重金属 Heavy metal | 含量 Content/(mg∙kg-1) | 标准差 Standard deviation/(mg∙kg-1) | 平均值 Average value/(mg∙kg-1) | 变异系数 Coefficient of Variation/% | 背景值 Background values/(mg∙kg-1) |
---|---|---|---|---|---|
Cr | 31.33-105.06 | 17.63 | 71.78 | 24.56 | 79.00 |
Cu | 16.86-40.58 | 6.58 | 29.10 | 22.62 | 31.10 |
Cd | 0.16-1.40 | 0.33 | 0.53 | 61.90 | 0.079 |
Pb | 8.16-27.67 | 4.74 | 20.45 | 23.18 | 30.90 |
Zn | 149.97-265.73 | 33.57 | 198.47 | 16.92 | 86.50 |
表4 重金属含量分析
Table 4 Summary analysis of heavy metals
重金属 Heavy metal | 含量 Content/(mg∙kg-1) | 标准差 Standard deviation/(mg∙kg-1) | 平均值 Average value/(mg∙kg-1) | 变异系数 Coefficient of Variation/% | 背景值 Background values/(mg∙kg-1) |
---|---|---|---|---|---|
Cr | 31.33-105.06 | 17.63 | 71.78 | 24.56 | 79.00 |
Cu | 16.86-40.58 | 6.58 | 29.10 | 22.62 | 31.10 |
Cd | 0.16-1.40 | 0.33 | 0.53 | 61.90 | 0.079 |
Pb | 8.16-27.67 | 4.74 | 20.45 | 23.18 | 30.90 |
Zn | 149.97-265.73 | 33.57 | 198.47 | 16.92 | 86.50 |
采样点 Sampling Sites | RSP | ||||
---|---|---|---|---|---|
Cr | Cu | Cd | Pb | Zn | |
C1 | 0.12 | 0.08 | 0.97 | 0.26 | 0.14 |
C2 | 0.08 | 0.21 | 0.23 | 0.60 | 0.22 |
C3 | 0.14 | 0.12 | 26.64 | 0.30 | 0.46 |
C4 | 0.11 | 0.16 | 1.49 | 0.85 | 0.13 |
C5 | 0.13 | 0.13 | 1.47 | 0.73 | 0.09 |
C6 | 0.17 | 0.25 | — | 1.05 | 0.43 |
C7 | 0.09 | 0.10 | 0.08 | 0.19 | 0.11 |
C8 | 0.12 | 0.16 | 5.74 | 0.62 | 0.23 |
C9 | 0.15 | 0.57 | 0.60 | 0.67 | 0.19 |
C10 | 0.12 | 0.08 | 0.58 | 0.51 | 0.13 |
C11 | 0.12 | 0.06 | 2.02 | 0.19 | 0.10 |
C12 | 0.17 | 0.17 | 1.35 | 0.63 | 0.48 |
C13 | 0.11 | 0.17 | 0.15 | 0.78 | 0.17 |
C14 | 0.16 | 0.25 | 0.36 | 0.73 | 0.44 |
C15 | 0.11 | 0.12 | 0.08 | 0.30 | 0.05 |
C16 | 0.22 | 0.18 | 0.13 | 0.48 | 0.05 |
C17 | 0.16 | 0.28 | 3.62 | 0.71 | 0.38 |
标准差 Standard deviation | 0.03 | 0.11 | 6.32 | 0.24 | 0.15 |
平均值 Average value | 0.13 | 0.18 | 2.84 | 0.57 | 0.22 |
变异系数 Coefficient of variation/% | 25.20 | 63.56 | 222.24 | 42.51 | 66.50 |
表5 RSP评价结果
Table 5 Evaluation results of RSP
采样点 Sampling Sites | RSP | ||||
---|---|---|---|---|---|
Cr | Cu | Cd | Pb | Zn | |
C1 | 0.12 | 0.08 | 0.97 | 0.26 | 0.14 |
C2 | 0.08 | 0.21 | 0.23 | 0.60 | 0.22 |
C3 | 0.14 | 0.12 | 26.64 | 0.30 | 0.46 |
C4 | 0.11 | 0.16 | 1.49 | 0.85 | 0.13 |
C5 | 0.13 | 0.13 | 1.47 | 0.73 | 0.09 |
C6 | 0.17 | 0.25 | — | 1.05 | 0.43 |
C7 | 0.09 | 0.10 | 0.08 | 0.19 | 0.11 |
C8 | 0.12 | 0.16 | 5.74 | 0.62 | 0.23 |
C9 | 0.15 | 0.57 | 0.60 | 0.67 | 0.19 |
C10 | 0.12 | 0.08 | 0.58 | 0.51 | 0.13 |
C11 | 0.12 | 0.06 | 2.02 | 0.19 | 0.10 |
C12 | 0.17 | 0.17 | 1.35 | 0.63 | 0.48 |
C13 | 0.11 | 0.17 | 0.15 | 0.78 | 0.17 |
C14 | 0.16 | 0.25 | 0.36 | 0.73 | 0.44 |
C15 | 0.11 | 0.12 | 0.08 | 0.30 | 0.05 |
C16 | 0.22 | 0.18 | 0.13 | 0.48 | 0.05 |
C17 | 0.16 | 0.28 | 3.62 | 0.71 | 0.38 |
标准差 Standard deviation | 0.03 | 0.11 | 6.32 | 0.24 | 0.15 |
平均值 Average value | 0.13 | 0.18 | 2.84 | 0.57 | 0.22 |
变异系数 Coefficient of variation/% | 25.20 | 63.56 | 222.24 | 42.51 | 66.50 |
采样点 Sampling Sites | RAC/% | ||||
---|---|---|---|---|---|
Cr | Cu | Cd | Pb | Zn | |
C1 | 0.76 | 0.89 | 10.02 | 1.28 | 0.67 |
C2 | 0.67 | 0.54 | 6.32 | 1.34 | 0.37 |
C3 | 0.91 | 1.46 | 8.32 | 1.21 | 1.04 |
C4 | 1.11 | 1.21 | 30.77 | 1.28 | 2.32 |
C5 | 1.06 | 1.28 | 9.28 | 1.67 | 0.64 |
C6 | 0.80 | 0.84 | 34.32 | 0.99 | 1.32 |
C7 | 0.72 | 0.96 | 5.89 | 1.28 | 0.72 |
C8 | 1.08 | 3.58 | 49.67 | 4.61 | 1.07 |
C9 | 0.81 | 1.66 | 22.72 | 2.33 | 0.60 |
C10 | 1.04 | 0.84 | 5.04 | 1.58 | 0.54 |
C11 | 1.36 | 0.92 | 19.90 | 0.76 | 0.92 |
C12 | 1.39 | 0.40 | 9.98 | 0.54 | 0.60 |
C13 | 1.15 | 2.51 | 4.14 | 3.25 | 1.40 |
C14 | 1.09 | 1.39 | 8.03 | 0.97 | 1.06 |
C15 | 0.80 | 1.10 | 5.20 | 1.06 | 0.56 |
C16 | 1.47 | 1.07 | 6.34 | 2.28 | 0.32 |
C17 | 1.05 | 1.23 | 12.51 | 0.91 | 0.49 |
标准差 Standard deviation/% | 0.23 | 0.74 | 12.45 | 0.99 | 0.48 |
平均值 Average value/% | 1.02 | 1.29 | 14.62 | 1.61 | 0.86 |
变异系数 Coefficient of Variation/% | 22.87 | 57.10 | 85.16 | 61.55 | 55.38 |
表6 RAC评价结果
Table 6 Evaluation results of RAC
采样点 Sampling Sites | RAC/% | ||||
---|---|---|---|---|---|
Cr | Cu | Cd | Pb | Zn | |
C1 | 0.76 | 0.89 | 10.02 | 1.28 | 0.67 |
C2 | 0.67 | 0.54 | 6.32 | 1.34 | 0.37 |
C3 | 0.91 | 1.46 | 8.32 | 1.21 | 1.04 |
C4 | 1.11 | 1.21 | 30.77 | 1.28 | 2.32 |
C5 | 1.06 | 1.28 | 9.28 | 1.67 | 0.64 |
C6 | 0.80 | 0.84 | 34.32 | 0.99 | 1.32 |
C7 | 0.72 | 0.96 | 5.89 | 1.28 | 0.72 |
C8 | 1.08 | 3.58 | 49.67 | 4.61 | 1.07 |
C9 | 0.81 | 1.66 | 22.72 | 2.33 | 0.60 |
C10 | 1.04 | 0.84 | 5.04 | 1.58 | 0.54 |
C11 | 1.36 | 0.92 | 19.90 | 0.76 | 0.92 |
C12 | 1.39 | 0.40 | 9.98 | 0.54 | 0.60 |
C13 | 1.15 | 2.51 | 4.14 | 3.25 | 1.40 |
C14 | 1.09 | 1.39 | 8.03 | 0.97 | 1.06 |
C15 | 0.80 | 1.10 | 5.20 | 1.06 | 0.56 |
C16 | 1.47 | 1.07 | 6.34 | 2.28 | 0.32 |
C17 | 1.05 | 1.23 | 12.51 | 0.91 | 0.49 |
标准差 Standard deviation/% | 0.23 | 0.74 | 12.45 | 0.99 | 0.48 |
平均值 Average value/% | 1.02 | 1.29 | 14.62 | 1.61 | 0.86 |
变异系数 Coefficient of Variation/% | 22.87 | 57.10 | 85.16 | 61.55 | 55.38 |
[1] |
AHN Y, HAN M, CHOI J, 2020. Monitoring the mobility of heavy metals and risk assessment in mine-affected soils after stabilization[J]. Journal of Hazardous Materials, DOI: 10.1016/j.jhazmat.2020. 123231.
DOI |
[2] |
CHAUHAN P, MATHUR J, 2020. Phytoremediation efficiency of Helianthus annuus L. for reclamation of heavy metals-contaminated industrial soil[J]. Environmental Science and Pollution Research, 27(24): 29954-29966.
DOI URL |
[3] |
EL-SOROGY A S, YOUSSEF M, AL-KAHTANY K, 2020. Distribution, source, contamination, and ecological risk status of heavy metals in the Red Sea-Gulf of Aqaba coastal sediments, Saudi Arabia[J]. Marine Pollution Bulletin, DOI: 10.1016/j.marpolbul.2021.112748.
DOI |
[4] |
FACCHINELLI A, SACCHI E, MALLEN L, 2001. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils[J]. Environmental Pollution, 114(3): 313-324.
DOI URL |
[5] |
JAFARABADI A R, MITRA S, RAUDONYTE-SVIRBUTAVICIENE E, 2020. Large-scale evaluation of deposition, bioavailability and ecological risks of the potentially toxic metals in the sediment cores of the hotspot coral reef ecosystems (Persian Gulf, Iran)[J]. Journal of Hazardous Materials, DOI: 10.1016/j.jhazmat.2020.122988.
DOI |
[6] |
JAIN C K, 2004. Metal fractionation study on bed sediments of river Ya-muna, India[J]. Water Research, 38(3): 569-578.
DOI URL |
[7] |
LI X D, THORNTON I, 2001. Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities[J]. Applied Geochemistry, 16(15): 1693-1706.
DOI URL |
[8] |
PENG J F, SONG Y H, YUAN P, et al., 2009. The remediation of heavy metals contaminated sediment[J]. Journal of Hazardous Materials, 161(2-3): 633-640.
DOI URL |
[9] |
QUEVAUVILLER P, RAURET G, LOPEZSANCHEZ J F, et al., 1997. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure[J]. Science of the Total Environment, 205(2-3):223-234.
DOI URL |
[10] |
SALEH H N, PANAHANDE M, YOUSEFI M, et al., 2019. Carcinogenic and non-carcinogenic risk assessment of heavy metals in groundwater wells in neyshabur plain, iran[J]. Biological Trace Element Research, 190(1): 251-261.
DOI URL |
[11] |
SARRET G, BLOMMAERT H, WIGGENHAUSER M, 2020. Comment on “Speciation and fate of toxic cadmium in contaminated paddy soils and rice using XANES/EXAFS spectroscopy”[J]. Journal of Hazardous Materials, DOI: 10.1016/j.jhazmat.2020.123240.
DOI |
[12] |
TOKALIOGLU S, KARTAL S, 2003. Relationship between vegetable metal and soil-extractable metal contents by the BCR sequential extraction procedure: Chemometrical interpretation of the data[J]. International Journal of Environmental Analytical Chemistry, 83(11): 935-952.
DOI URL |
[13] | 陈昌东, 张安宁, 腊明, 等, 2019. 平顶山矿区矸石山周边土壤重金属污染及优势植物富集特征[J]. 生态环境学报, 28(6): 1216-1223. |
CHEN C D, ZHANG A N, LA M, et al., 2019. Soil Heavy Metal Contamination and Enrichment of Dominant Plants in Coal Waste Piles in Pingdingshan Area[J]. Ecology and Environmental Sciences, 28(6): 1216-1223. | |
[14] | 陈江军, 刘波, 蔡烈刚, 等, 2018. 基于多种方法的土壤重金属污染风险评价对比--以江汉平原典型场区为例[J]. 水文地质工程地质, 45(6): 164-172. |
CHEN J J, LIU B, CAI L G, et al., 2018. Comparison of risk assessment based on the various methods of heavy metals in soil: A case study for the typical field areas in the Jianghan Plain[J]. Hydrogeology & Engineering Geology, 45(6): 164-172. | |
[15] | 陈静生, 董林, 邓宝山, 等, 1987. 铜在沉积物各相中分配的实验模拟与数值模拟研究--以鄱阳湖为例[J]. 环境科学学报, 7(2): 140-149. |
CHEN J S, DONG L, DENG B S, et al., 1987. Modeling study on copper partitioning in sediments: A case study of Poyang Lake[J]. Acta Scientiae Circumstantiae, 7(2): 140-149. | |
[16] | 陈世俭, 胡霭堂, 1995. 土壤铜形态及有机物质的影响[J]. 长江流域资源与环境, 4(4): 367-371. |
CHEN S J, HU A T, 1995. Soil copper forms and the influence of organic matter[J]. Resources and Environment in the Yangtze Basin, 4(4): 367-371. | |
[17] | 陈文轩, 李茜, 王珍, 等, 2020. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 41(6): 2822-2833. |
CHEN W X, LI Q, WANG Z, et al., 2020. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China[J]. Environmental Science, 41(6): 2822-2833. | |
[18] | 陈岳龙, 杨忠芳, 陈德友, 等, 2003. 成都市浮尘物理与化学特征的初步研究[J]. 物探与化探, 27(6): 484-486, 483. |
CHEN Y L, YANG Z F, CHEN D Y, et al., 2003. Chemical characteristics of floating dusts over Chengdu city, Sichuan province[J]. Geophysical and Geochemical Exploration, 27(6): 484-486, 483. | |
[19] | 冯艳红, 郑丽萍, 应蓉蓉, 等, 2017. 黔西北炼锌矿区土壤重金属形态分析及风险评价[J]. 生态与农村环境学报, 33(2): 142-149. |
FENG Y H, ZHENG L P, YING R R, et al., 2017. Forms of heavy metals in soils of zinc mining area in northwestern Guizhou province and their environmental risks[J]. Journal of Ecology and Rural Environment, 33(2): 142-149. | |
[20] | 韩存亮, 黄泽宏, 肖荣波, 等, 2018. 粤北某矿区周边镉锌污染稻田土壤田间植物修复研究[J]. 生态环境学报, 27(1): 158-165. |
HAN C L, HUANG Z H, XIAO R B, et al., 2018. Field phytoremediation of cadmium and zinc contaminated paddy soil around a mining area in northern Guangdong province[J]. Ecology and Environmental Sciences, 27(1): 158-165. | |
[21] | 黄宝莹, 周妍姿, 常文静, 等, 2019. 深圳市不同功能区道路灰尘重金属污染分异及生态风险分析[J]. 生态环境学报, 28(12): 2398-2408. |
HUANG B Y, ZHOU Y Z, CHANG W J, et al., 2019. Differential characteristics of heavy metal pollution in road dust and its ecological risk in different function areas of Shenzhen city[J]. Ecology and Environmental Sciences, 28(12): 2398-2408. | |
[22] | 雷鸣, 廖柏寒, 秦普丰, 2007. 土壤重金属化学形态的生物可利用性评价[J]. 生态环境, 16(5): 1551-1556. |
LEI M, LIAO B H, QIN P F, 2007. Assessment of bioavailability of heavy metal in contaminated soils with chemical fractionation[J]. Ecology and Environmental Sciences, 16(5): 1551-1556. | |
[23] | 李冰, 王昌全, 谭婷, 等, 2009. 成都平原土壤重金属区域分布特征及其污染评价[J]. 核农学报, 23(2): 308-315. |
LI B, WANG C Q, TAN T, et al., 2009. Regional Distribution and Pollution Evaluation of Heavy Metal Pollution in Topsoils of the Chengdu Plain[J]. Journal of Nuclear Agricultural Sciences, 23(2): 308-315. | |
[24] | 李艳玲, 卢一富, 陈卫平, 等, 2020. 工业城市农田土壤重金属时空变异及来源解析[J]. 环境科学, 41(3): 1432-1439. |
YANG Y Q, LU Y F, CHEN W P, et al., 2020. Spatial-temporal variation and source change of heavy metals in the cropland soil in the industrial city[J]. Environmental Science, 41(3): 1432-1439.
DOI URL |
|
[25] | 刘东盛, 杨忠芳, 夏学齐, 等, 2008. 成都经济区天降水与下渗水元素地球化学特征及土壤元素输入输出通量[J]. 地学前缘, 15(5): 74-81. |
LIU D S, YANG Z F, XIA X Q, et al., 2008. Geochemical characteristics and fluxes of elements in rain water and soil leaching water in the Chengdu economic region[J]. Earth Science Frontiers, 15(5): 74-81. | |
[26] | 刘红樱, 谢志仁, 陈德友, 等, 2004. 成都地区土壤环境质量初步评价[J]. 环境科学学报, 24(2): 297-303. |
LIU H Y, XIE Z Q, CHEN D Y, et al., 2004. Primary assessment of environmental quality of soils in Chengdou Area[J]. Acta Scientiae Circumstantiae, 24(2): 297-303. | |
[27] | 栾文楼, 温小亚, 马忠社, 等, 2008. 冀东平原土壤中重金属元素的地球化学特征[J]. 现代地质, 22(6): 939-947. |
LUAN W L, WEN X Y, MA Z S, et al., 2008. Geochemical characteristics of heavy metal elements in soils of eastern Hebei Plain[J]. Geoscience, 22(6): 939-947. | |
[28] | 罗谦, 李英菊, 秦樊鑫, 等, 2020. 铅锌矿区周边耕地土壤团聚体重金属污染状况及风险评估[J]. 生态环境学报, 29(3): 605-614. |
LUO Q, LI Y J, QIN F X, et al., 2020. Contamination status and risk assessment of heavy metals in soil aggregates of Pb-Zn mining area[J]. Ecology and Environmental Sciences, 29(3): 605-614. | |
[29] | 罗帅, 马新月, 王东, 等, 2020. 重庆市场地土壤污染特征分析及行业来源识别[J]. 生态环境学报, 29(4): 810-818. |
LUO S, MA X, WANG D, et al., 2020. Analysis of Soil Pollution Characteristics and Identification of Industry Sources in Contaminated Sites in Chongqing City, China[J]. Ecology and Environmental Sciences, 29(4): 810-818. | |
[30] | 罗松英, 王嘉琦, 周敏, 等, 2018. 湛江东海岛红树林湿地表层土壤重金属空间分布特征及生态风险评价[J]. 生态环境学报, 27(8): 1547-1555. |
LUO S Y, WANG J Q, ZHOU M, et al., 2018. Spatial Distribution and Ecological Risk Assessment of Heavy Metals in the Surface Soils of Mangrove Wetland in Donghai Island, Zhanjiang[J]. Ecology and Environmental Sciences, 27(8): 1547-1555. | |
[31] | 麻冰涓, 王海邻, 李小超, 等, 2015. 河南省武陟县大田土壤重金属形态分布及潜在生态风险评价[J]. 安全与环境学报, 15(4): 363-367. |
MA B J, WANG H L, LI X C, et al., 2015. Fractional distribution and ecological risk assessment of heavy metals in farmland soil, Wuzhi, Henan[J]. Journal of Safety and Environment, 15(4): 363-367. | |
[32] | 茹淑华, 徐万强, 侯利敏, 等, 2019. 连续施用有机肥后重金属在土壤-作物系统中的积累与迁移特征[J]. 生态环境学报, 28(10): 2070-2078. |
RU S H, XU W Q, HOU L M, et al., 2019. Effects of continuous application of organic fertilizer on the accumulation and migration of heavy metals in soil-crop systems[J]. Ecology and Environmental Sciences, 28(10): 2070-2078. | |
[33] | 石一茜, 赵旭, 林军, 等, 2019. 基于总量和形态的表层沉积物重金属污染及来源--以马鞍列岛海域为例[J]. 中国环境科学, 39(3): 1189-1198. |
SHI Y Q, ZHAO X, LIN J, et al., 2019. Contamination level and source determination of heavy metals in surface sediments from the Ma'an Archipelago based on the total content and speciation analysis[J]. China Environmental Science, 39(3): 1189-1198. | |
[34] | 孙境蔚, 于瑞莲, 胡恭任, 等, 2017. 应用铅锶同位素示踪研究泉州某林地垂直剖面土壤中重金属污染及来源解析[J]. 环境科学, 38(4): 1566-1575. |
SUN J W, YU R L, HU G R, et al., 2017. Assessment of heavy metal pollution and tracing sources by Pb & Sr Isotope in the soil profile of woodland in Quanzhou[J]. Environmental Science, 38(4): 1566-1575. | |
[35] | 孙瑞瑞, 陈华清, 李杜康, 2015. 基于土壤中铅化学形态的生态风险评价方法比较[J]. 安全与环境工程, 22(5): 47-51. |
SUN R R, CHEN H Q, LI D K, 2015. Comparison of ecological risk assessment methods based on the chemical forms of lead in soil[J]. Journal of Safety and Environment, 22(5): 47-51. | |
[36] | 汤奇峰, 杨忠芳, 张本仁, 等, 2007. 成都经济区农业生态系统土壤镉通量研究[J]. 地质通报, 26(7): 869-877. |
TANG Q F, YANG Z F, ZHANG B R, et al., 2007. Cadmium flux in soils of the agroecosystem in the Chengdu economic region, Sichuan, China[J]. Geological Bulletin of China, 26(7): 869-877. | |
[37] | 王科, 张成, 杨勋, 等, 2019. 成都市岷江流域水稻土重金属含量及其潜在生态危害评价[J]. 四川农业科技 (2): 28-30. |
WANG K, ZHANG C, YANG X, et al., 2019. Heavy metal content of paddy soil in the Minjiang River Basin of Chengdu City and its potential ecological damage assessment[J]. Sichuan Agricultural Science and Technology (2): 28-30. | |
[38] | 王莉, 张旭, 赵刘义, 等, 2020. 清潩河流域沉积物重金属形态分布特征及风险评价[J]. 生态环境学报, 29(6): 1225-1234. |
WANG LI, ZHANG X, ZHAO L Y, et al., 2020. Speciation distribution and risk assessment of heavy metals in sediments from the Qingyi River Basin[J]. Ecology and Environmental Sciences, 29(6): 1225-1234. | |
[39] | 王桢, 张建强, 渡边泉, 等, 2018. 铁路和道路沿线土壤重金属含量及来源解析[J]. 生态环境学报, 27(2): 364-372. |
WANG Z, ZHANG J Q, WATANABE I, et al., 2018. Concentrations and Sources of Heavy Metals in Soil near Railway and Road[J]. Ecology and Environmental Sciences, 27(2): 364-372. | |
[40] | 文霄, 刘迎云, 关永兵, 2013. 湘南某铅锌矿区重金属赋存形态分析[J]. 安全与环境工程, 20(5): 42-45. |
WEN X, LIU Y Y, GUAN Y B, et al., 2013. Analysis of Chemical Speciation of Heavy Metals in a Lead-zinc Mine Located in Southern Hunan[J]. Safety and Environmental Engineering, 20(5): 42-45. | |
[41] | 吴迪, 程志飞, 刘品祯, 等, 2018. 蓬莱仙界园区土壤-蔬菜系统重金属形态解析及关联特征[J]. 生态环境学报, 27(3): 581-587. |
WU Di, CHENG Z F, LIU P Z, et al., 2018. Speciation analysis and association feature of heavy metals in soil-vegetable system of Penglai Paradise[J]. Ecology and Environmental Sciences, 27(3): 581-587. | |
[42] | 杨少斌, 于鑫, 孙向阳, 等, 2018. 北京城区绿地土壤重金属污染评价与空间分析[J]. 生态环境学报, 27(5): 933-941. |
YANG S B, YU X, SUN X Y, et al., 2018. Pollution assessment and spatial structure analysis of heavy metals of greenbelt soil in Beijing urban area[J]. Ecology and Environmental Sciences, 27(5): 933-941. | |
[43] | 杨新明, 庄涛, 韩磊, 等, 2019. 小清河污灌区农田土壤重金属形态分析及风险评价[J]. 环境化学, 38(3): 644-652. |
YANG X M, ZHUNG T, HAN L, et al., 2019. Fraction distribution and ecological risk assessment of soil heavy metals in the farmland soil from the sewage irrigated area of Xiaoqing River[J]. Environmental Chemistry, 38(3): 644-652. | |
[44] | 杨学福, 王蕾, 关建玲, 等, 2017. 渭河西咸段表层沉积物重金属赋存形态及风险评价[J]. 安全与环境学报, 17(2): 725-729. |
YANG X F, WANG L, GUAN J L, et al., 2017. Speciation and risk assessment of heavy metals in the surface sediment of the Xi'an-Xianyang section of Weihe River[J]. Journal of Safety and Environment, 17(2): 725-729. | |
[45] | 杨艳, 许峻模, 潘良浩, 2017. 北部湾盐沼茳芏盐沼湿地土壤-植物系统重金属污染评价[J]. 生态环境学报, 26(11): 1969-1976. |
YANG Y, XU J M, PAN L H, 2017. Assessment of heavy mental contamination in the soil-plant system of Cyperus malaccensis salt marsh wetland in Beibu Gulf[J]. Ecology and Environmental Sciences, 26(11): 1969-1976. | |
[46] | 易文利, 董奇, 杨飞, 等, 2018. 宝鸡市不同功能区土壤重金属污染特征、来源及风险评价[J]. 生态环境学报, 27(11): 2142-2149. |
YI W, DONG Q, YANG F, et al., 2018. Pollution characteristics, sources analysis and potential ecological risk assessment of heavy metals in different functional zones of Baoji city[J]. Ecology and Environmental Sciences, 27(11): 2142-2149. | |
[47] | 张桂芹, 谭路遥, 张怀成, 等, 2020. 济南城市主干道降尘重金属污染特征及生态风险评价[J]. 生态环境学报, 29(1): 156-164. |
ZHANG G Q, TAN L Y, ZHANG H C, et al., 2020. Heavy metal pollution characteristics and ecological risk assessment of dust falling on urban main road in Jinan[J]. Ecology and Environmental Sciences, 29(1): 156-164. | |
[48] | 张涵, 李奇翎, 郭珊珊, 等, 2019. 成都平原典型区地下水污染时空异质性及污染源分析[J]. 环境科学学报, 39(10): 3516-3527. |
ZHANG H, LI Q L, GUO S S, et al., 2019. Spatial-temporal heterogeneity and pollution sources of groundwater pollution in typical area of Chengdu Plain[J]. Acta Scientiae Circumstantiae, 39(10): 3516-3527. | |
[49] | 赵兵, 王玉云, 徐德江, 等, 2019. 四川石棉工业园区周边土壤重金属污染及生态风险评价研究[J]. 四川环境, 38(6): 138-142. |
ZHAO B, WANG Y Y, XU D J, et al., 2019. Assessment of heavy metal pollution and potential ecological risk of soils near a industrial park in Shimian Sichuan province[J]. Sichuan Enviroment, 38(6): 138-142. | |
[50] | 中华人民共和国农业部, 2006. 土壤监测第1部分:土壤样品的采集、处理及贮存 (NY/T 1121.1-2006)[S]. 北京: 中国农业出版社: 1-3. |
Ministry of Agriculture of the People's Republic of China, 2006. Soil monitoring Part 1: Collection, processing and storage of soil samples (NY/T1121.1-2006) [S]. Beijing: Agriculture Press in China: 1-3. | |
[51] | 周艳, 万金忠, 李群, 等, 2020. 铅锌矿区玉米中重金属污染特征及健康风险评价[J]. 环境科学, 41(10): 4733-4739. |
ZHOU Y, WAN J Z, LI Q, et al., 2020. Heavy metal contamination and health risk assessment of corn grains from a Pb-Zn mining area[J]. Environmental Science, 41(10): 4733-4739. |
[1] | 施建飞, 靳正忠, 周智彬, 王鑫. 额尔齐斯河流域典型尾矿库区周边土壤重金属污染评价[J]. 生态环境学报, 2022, 31(5): 1015-1023. |
[2] | 谢邵文, 郭晓淞, 杨芬, 黄强, 陈曼佳, 魏兴琥, 刘承帅. 广州市城市公园土壤重金属累积特征、形态分布及其生态风险[J]. 生态环境学报, 2022, 31(11): 2206-2215. |
[3] | 余楚, 李剑锋, 吕敦玉. 大兴安岭南段某矿区河流表层沉积物重金属污染及风险评价[J]. 生态环境学报, 2021, 30(11): 2223-2231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||