生态环境学报 ›› 2022, Vol. 31 ›› Issue (8): 1657-1666.DOI: 10.16258/j.cnki.1674-5906.2022.08.018
李莹(), 张洲, 杨高明, 祖艳群, 李博, 陈建军*(
)
收稿日期:
2022-03-22
出版日期:
2022-08-18
发布日期:
2022-10-10
通讯作者:
* 陈建军(1970年生),男,教授,博士,主要研究方向为土壤重金属污染的植物修复。E-mail: chenjianjun94@126.com作者简介:
李莹(1999年生),女,硕士研究生,主要研究方向重金属修复工作。E-mail: liying990125@163.com
基金资助:
LI Ying(), ZHANG Zhou, YANG Gaoming, ZU Yanqun, LI Bo, CHEN Jianjun*(
)
Received:
2022-03-22
Online:
2022-08-18
Published:
2022-10-10
摘要:
以纸莎草(Cyperus papyrus L.)、鸢尾(Iris tectorum Maxim.)、美人蕉(Canna indica Linn)、香蒲(Typha orientalis Presl)、再力花(Thalia dealbata Fraser)作为供试植物,矿渣土作为底泥进行植物培养试验,研究5种植物根系泌氧(ROL)和根表铁膜对植物吸收重金属的影响及差异,为湿地植物修复重金属污染提供理论。结果表明,5种供试植物在高浓度Cd、Pb、As复合污染下,香蒲的根部特征都表现为促进生长状态,其他4种植物生长均受到抑制作用;5种供试植物的ROL速率均是呈现先增加后降低的趋势,在第40天时香蒲ROL显著高于其他4种植物,因其在Cd、Pb、As复合污染下孔隙度和通气组织的增大使其具有较高的ROL速率;5种供试植物铁膜中Fe含量都呈现为先增加后降低的趋势,在试验第20天,供试植物根表铁膜中Fe质量分数达到最大,美人蕉和香蒲分别为15.63 mg∙kg-1和13.72 mg∙kg-1,显著高于其他3种供试植物;5种供试植物铁膜中Cd、Pb含量都在第10—20天显著上升,后趋于稳定,而As含量则呈持续上升趋势,特别是香蒲和美人蕉根表铁膜中Cd、Pb、As含量显著高于其他3种供试植物;5种供试植物地上部和地下部Cd、Pb、As含量总体都为逐渐上升,其中纸莎草地下部重金属含量较其他4种植物多。通过相关性分析和回归性分析发现,ROL对植物吸收Cd、Pb、As的系数绝对值远大于根表铁膜抑制Cd、Pb、As吸收的系数绝对值,说明ROL对植物吸收Cd、Pb、As促进作用强于根表铁膜对Cd、Pb、As的抑制作用,ROL是作为湿地植物根部吸收重金属最主要的影响因素。
中图分类号:
李莹, 张洲, 杨高明, 祖艳群, 李博, 陈建军. 湿地植物根系泌氧能力和根表铁膜与根系吸收重金属的关系[J]. 生态环境学报, 2022, 31(8): 1657-1666.
LI Ying, ZHANG Zhou, YANG Gaoming, ZU Yanqun, LI Bo, CHEN Jianjun. The Relationship between the Radial Oxygen Loss and the Iron Plaque on Root Surfaces to Wetland Plants Absorb Heavy Metals[J]. Ecology and Environment, 2022, 31(8): 1657-1666.
植物种类 Plant species | 处理时间 Processing time/d | 根长 Root length | 叶绿素a含量 Chlorophyll a content | 叶绿素b含量 Chlorophyll b content | 根系活力 Root system vitality | 地上部RGR Shoot of RGR/ (mg∙g-1∙d-1) | 地下部RGR Root of RGR/ (mg∙g-1∙d-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cm | % | (mg∙g-1) | % | (mg∙g-1) | % | (mg∙g-1∙h -1) | % | |||||||
纸莎草 Cyperus papyrus | 0 | 53.39±12.18 | 12.25± 2.34c | 1.58±0.11 | -30.71± 7.13c | 0.25±0.03 | -35.63± 5.59b | 0.15±0.01 | 135.34± 17.48c | 11.59±0.19ab | 14.69±3.24bc | |||
40 | 58.94±1.3 | 1.1±0.19 | 0.15±0.01 | 0.28±0.05 | ||||||||||
鸢尾 Iris tectorum | 0 | 41.83±3.5 | 12.72± 2.87c | 1.43±0.04 | -13.29± 5.77a | 0.27±0.01 | -15.23± 4.2a | 0.17±0.01 | 247.93± 62.49b | 9.06±3.36ab | 12.95±2.91c | |||
40 | 45.9±4.86 | 1.25±0.1 | 0.22±0.02 | 0.58±0.05 | ||||||||||
美人蕉 Canna indica | 0 | 27.03±2.97 | 61.67± 19.48b | 1.5±0.1 | -15.22± 5.55ab | 0.26±0.04 | -16.67± 4.46a | 0.07±0.02 | -14.7± 7.1d | 6.95±4.75c | 24.96±2.81a | |||
40 | 43.63±6.41 | 1.24±0.05 | 0.2±0.03 | 0.06±0.01 | ||||||||||
香蒲 Typha orientalis | 0 | 24.93±0.38 | 86.8± 10.87a | 1.61±0.08 | -26.64± 5.08bc | 0.31±0.02 | -35.29± 12.28b | 0.09±0.03 | 181.98± 65.85bc | 7.84±1.17c | 14.42±3.85bc | |||
40 | 46.57±2.61 | 1.21±0.16 | 0.18±0.05 | 0.15±0.02 | ||||||||||
再力花 Thalia dealbata | 0 | 46.66±2.07 | -12.3± 2.73d | 1.32±0.05 | -20± 6.79abc | 0.21±0.03 | -20± 6.79ab | 0.02±0 | 427.44± 22.51a | 17.17±8.56a | 23.16±8.49ab | |||
40 | 37.87±5.58 | 1.05±0.08 | 0.13±0.01 | 0.11±0.03 |
表1 植物生理特性指标
Table 1 Indexes of plant physiological characteristics
植物种类 Plant species | 处理时间 Processing time/d | 根长 Root length | 叶绿素a含量 Chlorophyll a content | 叶绿素b含量 Chlorophyll b content | 根系活力 Root system vitality | 地上部RGR Shoot of RGR/ (mg∙g-1∙d-1) | 地下部RGR Root of RGR/ (mg∙g-1∙d-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cm | % | (mg∙g-1) | % | (mg∙g-1) | % | (mg∙g-1∙h -1) | % | |||||||
纸莎草 Cyperus papyrus | 0 | 53.39±12.18 | 12.25± 2.34c | 1.58±0.11 | -30.71± 7.13c | 0.25±0.03 | -35.63± 5.59b | 0.15±0.01 | 135.34± 17.48c | 11.59±0.19ab | 14.69±3.24bc | |||
40 | 58.94±1.3 | 1.1±0.19 | 0.15±0.01 | 0.28±0.05 | ||||||||||
鸢尾 Iris tectorum | 0 | 41.83±3.5 | 12.72± 2.87c | 1.43±0.04 | -13.29± 5.77a | 0.27±0.01 | -15.23± 4.2a | 0.17±0.01 | 247.93± 62.49b | 9.06±3.36ab | 12.95±2.91c | |||
40 | 45.9±4.86 | 1.25±0.1 | 0.22±0.02 | 0.58±0.05 | ||||||||||
美人蕉 Canna indica | 0 | 27.03±2.97 | 61.67± 19.48b | 1.5±0.1 | -15.22± 5.55ab | 0.26±0.04 | -16.67± 4.46a | 0.07±0.02 | -14.7± 7.1d | 6.95±4.75c | 24.96±2.81a | |||
40 | 43.63±6.41 | 1.24±0.05 | 0.2±0.03 | 0.06±0.01 | ||||||||||
香蒲 Typha orientalis | 0 | 24.93±0.38 | 86.8± 10.87a | 1.61±0.08 | -26.64± 5.08bc | 0.31±0.02 | -35.29± 12.28b | 0.09±0.03 | 181.98± 65.85bc | 7.84±1.17c | 14.42±3.85bc | |||
40 | 46.57±2.61 | 1.21±0.16 | 0.18±0.05 | 0.15±0.02 | ||||||||||
再力花 Thalia dealbata | 0 | 46.66±2.07 | -12.3± 2.73d | 1.32±0.05 | -20± 6.79abc | 0.21±0.03 | -20± 6.79ab | 0.02±0 | 427.44± 22.51a | 17.17±8.56a | 23.16±8.49ab | |||
40 | 37.87±5.58 | 1.05±0.08 | 0.13±0.01 | 0.11±0.03 |
图2 供试植物第0天和第40天根部通气组织变化 A:纸莎草;B:鸢尾;C:美人蕉;D:香蒲;E:再力花。1表示第0天取样,2表示第40天取样
Figure 2 Changes of aerenchyma in roots of tested plants on day 0 and day 40 A: C. papyrus; B: I. tectorum; C: C. indica; D: T. orientalis; E: T. dealbata. 1 means sampling on day 0 and 2 means sampling on day 40
指标Index | ROL | w(Fe in iron plaque) | w(Cd in iron plaque) | w(Cd in plant) | w(Pb in iron plaque) | w(Pd in plant) | w(As in iron plaque) | w(As in plant) |
---|---|---|---|---|---|---|---|---|
ROL | 1 | -0.453 | -0.353 | 0.849** | -0.412 | 0.690** | -0.195 | 0.661** |
w(Fe in iron plaque) | 1 | 0.888** | -0.542* | 0.877** | -0.703** | 0.671** | -0.782** | |
w(Cd in iron plaque) | 1 | -0.431 | 0.939** | -0.680** | 0.744** | -0.775** | ||
w(Cd in plant) | 1 | -0.564* | 0.879** | -0.433 | 0.778** | |||
w(Pb in iron plaque) | 1 | -0.673** | 0.892** | -0.718** | ||||
w(Pd in plant) | 1 | -0.454 | 0.957** | |||||
w(As in iron plaque) | 1 | -0.404 | ||||||
w(As in plant) | 1 |
表2 植物根系特征与植物吸收重金属的相关性
Table 2 Correlation of plant root characteristics with plant absorption of heavy metals
指标Index | ROL | w(Fe in iron plaque) | w(Cd in iron plaque) | w(Cd in plant) | w(Pb in iron plaque) | w(Pd in plant) | w(As in iron plaque) | w(As in plant) |
---|---|---|---|---|---|---|---|---|
ROL | 1 | -0.453 | -0.353 | 0.849** | -0.412 | 0.690** | -0.195 | 0.661** |
w(Fe in iron plaque) | 1 | 0.888** | -0.542* | 0.877** | -0.703** | 0.671** | -0.782** | |
w(Cd in iron plaque) | 1 | -0.431 | 0.939** | -0.680** | 0.744** | -0.775** | ||
w(Cd in plant) | 1 | -0.564* | 0.879** | -0.433 | 0.778** | |||
w(Pb in iron plaque) | 1 | -0.673** | 0.892** | -0.718** | ||||
w(Pd in plant) | 1 | -0.454 | 0.957** | |||||
w(As in iron plaque) | 1 | -0.404 | ||||||
w(As in plant) | 1 |
类别 Category | 回归方程 Regression equation | r2 | P |
---|---|---|---|
Cd | y=0.636+21.352x-0.103z | 0.752 | P<0.001 |
Pb | y=199.182+157.04x-3.501z | 0.667 | P=0.001 |
As | y=7.944+4.56x-0.132z | 0.731 | P<0.001 |
表3 植物根系特征与植物体内重金属含量回归分析
Table 3 Regression analysis of plant root characteristics and heavy metal content in plants
类别 Category | 回归方程 Regression equation | r2 | P |
---|---|---|---|
Cd | y=0.636+21.352x-0.103z | 0.752 | P<0.001 |
Pb | y=199.182+157.04x-3.501z | 0.667 | P=0.001 |
As | y=7.944+4.56x-0.132z | 0.731 | P<0.001 |
[1] |
ARMSTRONG J, ARMSTRONG W, 2001. Rice and Phragmites: Effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere[J]. American journal of botany, 88(8): 1359-1370.
PMID |
[2] |
DAN D, SHENG C W, FU Y W, et al., 2010. Effects of root anatomy and Fe plaque on arsenic uptake by rice seedlings grown in solution culture[J]. Environmental Pollution, 158(8): 2589-2595.
DOI PMID |
[3] |
HANSEL C M, FORCE M, FENDORF S, et al., 2002. Spatial and temporal association of As and Fe species on aquatic plant roots[J]. Environmental Science and Technology, 36(9): 1988-1994.
PMID |
[4] |
LAI W L, WANG S Q, PENG C L, et al., 2011. Root features related to plant growth and nutrient removal of 35 wetland plants[J]. Water Research, 45(13): 3941-3950.
DOI URL |
[5] |
LI H, YE Z H, WEI Z J, et al., 2011. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants[J]. Environmental Pollution, 159(1): 30-37.
DOI PMID |
[6] |
MEI X Q, LI Q S, WANG H L, et al., 2020. Effects of cultivars, water regimes, and growth stages on cadmium accumulation in rice with different radial oxygen loss[J]. Plant and Soil, 453(1-2): 529-543.
DOI URL |
[7] |
OTTE M L, KEARNS C C, DOYLE M O, 1995. Accumulation of arsenic and zinc in the rhizosphere of wetland plants[J]. Bulletin of Environmental Contamination and Toxicology, 55(11): 154-161.
DOI URL |
[8] |
TRIVEDI P, AXE L, 2000. Modeling Cd and Zn sorption to hydrous metal oxides[J]. Environmental Science & Technology, 34(11): 2215-2223.
DOI URL |
[9] |
WANG Q, HU Y B, XIE H J, et al., 2018. Constructed wetlands: A review on the role of radial oxygen loss in the rhizosphere by macrophytes[J]. Water, 10(6): 678.
DOI URL |
[10] |
XI M, ZHANG X L, KONG F L, et al., 2019. CO2 exchange under different vegetation covers in a coastal wetland of Jiaozhou Bay, China[J]. Ecological Engineering, 137: 26-33.
DOI URL |
[11] |
YANG J X, TAM F Y, YE Z H, 2014. Root porosity, radial oxygen loss and iron plaque on roots of wetland plants in relation to zinc tolerance and accumulation[J]. Plant and Soil, 374(1-2): 815-828.
DOI URL |
[12] |
YANG Y, ZHAO Y Q, TANG C, et al., 2019. Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2019.123708.
DOI |
[13] | 蔡妙珍, 罗安程, 章永松, 等, 2003. 水稻根表铁膜对磷的富集作用及其与水稻磷吸收的关系[J]. 中国水稻科学, 17(2): 94-97. |
CAI M Z, LUO A C, ZHANG Y S, et al., 2003. Adsorption of phosphate by iron plaque on rice roots in relation to phosphate uptake by rice[J]. Chinese Journal of Rice Science, 17(2): 94-97. | |
[14] | 陈琳, 李晨光, 单欣, 等, 2021. 水生态修复植物生物活性评价与应用[J]. 环境科学与技术, 44(11): 159-166. |
CHEN L, LI C G, SHAN X, et al., 2021. Evaluation and Application of the Bioactivity of Aquatic Plant in Water Purification and Ecological Restoration[J]. Environmental Science & Technology, 44(11): 159-166. | |
[15] | 冯岚, 严岩, 韩建刚, 2021. 根表铁膜对凤眼莲吸收环丙沙星的影响[J]. 生态毒理学报, 16(5): 326-333. |
FENG L, YAN Y, HAN J G, 2021. Effect of root surface iron membrane on absorption of ciprofloxacin by Eichhornia crassipes[J]. Asian Journal of Ecotoxicology, 16(5): 326-333. | |
[16] | 伏箫诺, 赵志忠, 吴丹, 等, 2017. 海南岛八门湾红树林沉积物重金属有效态空间分异特征[J]. 江苏农业科学, 45(12): 241-245. |
FU X N, ZHAO Z Z, WU D, et al., 2017. Spatial differentiation characteristics of heavy metal active state in mangrove sediments in Bamen Bay, Hainan Island, China[J]. Jiangsu Agricultural Sciences, 45(12): 241-245. | |
[17] |
谷建诚, 郭彬, 林义成, 等, 2020. 根表铁膜对水稻镉吸收的影响[J]. 浙江农业学报, 32(6): 963-970.
DOI |
GU J C, GUO B, LIN Y C, et al., 2020. Effects of iron plaque in root surface on cadmium uptake of rice[J]. Acta Agriculturae Zhejiangensis, 32(6): 963-970.
DOI |
|
[18] | 黄磊, 梁银坤, 梁岩, 等, 2019. 生物炭添加对湿地植物菖蒲根系通气组织和根系泌氧的影响[J]. 环境科学, 40(3): 1280-1286. |
HUANG L, LIANG Y K, LIANG Y, et al., 2019. Influences of biochar application on root aerenchyma and radial oxygen loss of Acorus calamus in relation to subsurface flow in a constructed wetland[J]. Environmental Science, 40(3): 1280-1286.
DOI URL |
|
[19] | 黄鑫星, 蒋家陆, 罗沛, 等, 2020. 氨态氮浓度和收割频率对绿狐尾藻根系泌氧特性的影响[J]. 江苏农业学报, 36(5): 1112-1118. |
HUANG X X, JIANG J L, LUO P, et al., 2020. Effects of ammonia nitrogen concentration and harvesting frequency on radial oxygen loss characteristics of Myriophyllum aquaticum[J]. Jiangsu Journal of Agricultural Sciences, 36(5): 1112-1118. | |
[20] | 李方, 邢承华, 蔡妙珍, 等, 2010. 根表铁膜、锰膜对水稻铝吸收和运输的影响[J]. 浙江大学学报 (农业与生命科学版), 36(3): 335-340. |
LI F, XING C H, CAI M Z, et al., 2010. Effects of iron and manganese plaques on aluminum uptake and translocation by rice seedlings[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 36(3): 335-340. | |
[21] | 李光辉, 何长欢, 刘建国, 2010. 不同湿地植物的根系泌氧作用与重金属吸收[J]. 水资源保护, 26(1): 17-20. |
LI G H, HE C H, LIU J G, 2010. Root oxygen release and heavy metal uptake of various wetland plants[J]. Water Resources Protection, 26(1): 17-20. | |
[22] | 李开叶, 赵婷婷, 陈佳, 等, 2021. 不同有机物料对水稻根表铁膜及砷镉吸收转运的影响[J]. 环境科学, 42(4): 2047-2055. |
LI K Y, ZHAO T T, CHEN J, et al., 2021. Effects of different organic materials on absorption and translocation of arsenic and cadmium in rice[J]. Environmental Science, 42(4): 2047-2055.
DOI URL |
|
[23] | 李奕林, 2012. 水稻根系通气组织与根系泌氧及根际硝化作用的关系[J]. 生态学报, 32(7): 2066-2074. |
LI Y L, 2012. Relationship among rice root aerechyma, root radial oxygen loss and rhizosphere nitrification[J]. Acta Ecologica Sinica, 32(7): 2066-2074.
DOI URL |
|
[24] | 刘春英, 陈春丽, 弓晓峰, 等, 2014. 湿地植物根表铁膜研究进展[J]. 生态学报, 34(10): 2470-2480. |
LIU C Y, CHEN C L, GONG X F, et al., 2014. Progress in research of iron plaque on root surface of wetland plants[J]. Acta Ecologica Sinica, 34(10): 2470-2480. | |
[25] | 刘振国, 王天慧, 王伟, 2016. 纳米氧化铜 (CuO NPs) 对紫花苜蓿幼苗根系活性氧 (ROS)、抗氧化酶活性和根系活力的影响[J]. 生态毒理学报, 11(5): 117-124. |
LIU Z G, WANG T H, WANG W, 2016. Effects of CuO NPs on ROS, antioxidant enzyme activity and root activity of the alfalfa seedlings[J]. Asian Journal of Ecotoxicology, 11(5): 117-124. | |
[26] | 罗才贵, 罗仙平, 周娜娜, 等, 2014. 南方废弃稀土矿区生态失衡状况及其成因[J]. 中国矿业, 23(10): 65-70. |
LUO C G, LUO X P, ZHOU N N, et al., 2014. Status and causes of ecological imbalance of abandoned rare-earth mine in South China[J]. China Mining Magazine, 23(10): 65-70. | |
[27] | 毛凌晨, 叶华, 2018. 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 31(10): 1669-1676. |
MAO L H, YE H, 2018. Influence of redox potential on heavy metal behavior in soils: A review[J]. Research of Environmental Sciences, 31(10): 1669-1676. | |
[28] | 沈小雪, 李瑞利, 柴民伟, 等, 2018. 深圳湾典型红树植物根表铁膜及其重金属富集特征[J]. 环境科学, 39(4): 1851-1860. |
SHEN X X, LI R L, CHAI M W, et al., 2018. Characteristics of iron plaque and its heavy metal enrichment in typical mangrove plants in Shenzhen Bay, China[J]. Environmental Science, 39(4): 1851-1860. | |
[29] | 宋阳煜, 吴娟, 成水平, 2021. 厌氧环境下美人蕉根表铁膜对重金属积累转运的影响[J]. 环境科学研究, 34(3): 734-741. |
SONG Y Y, WU J, CHEN S P, 2021. Effects of iron plaque on heavy metal accumulation and translocation by Canna indica in anoxic sediment[J]. Research of Environmental Sciences, 34(3): 734-741. | |
[30] | 王丹, 李鑫, 王代长, 等, 2015. 硫素对水稻根系铁锰胶膜形成及吸收镉的影响[J]. 环境科学, 36(5): 1877-1887. |
WANG D, LI X, WANG D C, et al., 2015. Influence of sulfur on the formation of Fe-Mn plaque on root and uptake of Cd by rice (Oryza satova L.)[J]. Environmental Science, 36(5): 1877-1887. | |
[31] | 王震宇, 刘利华, 温胜芳, 等, 2010. 2种湿地植物根表铁氧化物胶膜的形成及其对磷素吸收的影响[J]. 环境科学, 31(3): 781-786. |
WANG Z Y, LIU L H, WEN S F, et al., 2010. Effect of iron plaque on root surfaces on phosphorus uptake of two wetland plants[J]. Environmental Science, 31(3): 781-786. | |
[32] | 向语兮, 王晓, 单保庆, 等, 2020. 白洋淀表层沉积物重金属形态分布特征及生态风险评价[J]. 环境科学学报, 40(6): 2237-2246. |
XIANG Y X, WANG X, SHAN B Q, et al., 2020. Spatial distribution, fractionation and ecological risk of heavy metals in surface sediments from Baiyangdian Lake[J]. Acta Scientiae Circumstantiae, 40(6): 2237-2246. | |
[33] | 谢换换, 叶志鸿, 2021. 湿地植物根形态结构和泌氧与盐和重金属吸收、积累、耐性关系的研究进展[J]. 生态学杂志, 40(3): 864-875. |
XIE H H, YE Z H, 2021. Research advances in the relationship between root morphological structure, radial oxygen loss and salt/heavy metal uptake, accumulation and tolerance of wetland plants[J]. Chinese Journal of Ecology, 40(3): 864-875. | |
[34] | 徐德福, 李映雪, 赵晓莉, 等, 2009. 3种湿地植物对锌的吸收分配及其与根表铁氧化物胶膜的关系[J]. 西北植物学报, 29(1): 116-121. |
XU D F, LI Y X, ZHAO X L, et al., 2009. Relationship between zinc uptake and accumulation of wetland plant and iron plaque on the root surface[J]. Acta Botanica Boreali-Occidentalia Sinica, 29(1): 116-121. | |
[35] | 徐昔保, 杨桂山, 江波, 2018. 湖泊湿地生态系统服务研究进展[J]. 生态学报, 38(20): 7149-7158. |
[ XU X B, YANG G S, Jiang B, 2018. Progress in lake-wetland ecosystem services[J]. Acta Ecologica Sinica, 38(20): 7149-7158. | |
[36] | 杨俊兴, 任红艳, 郭庆军, 等, 2014. 湿地植物通气组织和渗氧对其重金属吸收和耐性研究进展[J]. 土壤, 46(3): 394-401. |
YANG J X, REN H Y, GUO Q J, et al., 2014. Effects of aerenchyma and radial oxygen loss of wetland plants on their heavy metal uptake and tolerance: A review[J]. Soils, 46(3): 394-401. | |
[37] | 俞佳, 黄颖, 张晋龙, 等, 2021. 砷胁迫下外源磷对香蒲根表铁膜形成及吸附砷的影响[J]. 生态环境学报, 30(4): 866-873. |
YU J, HUANG Y, ZHANG J L, et al., 2021. Effect of phosphorus on the formation and adsorption of arsenic in the iron film of the fennel root table under arsenic stress[J]. Ecology and Environment Sciences, 30(4): 866-873. | |
[38] | 张秀, 郭再华, 杜爽爽, 等, 2013. 砷胁迫下水磷耦合对不同磷效率水稻根表铁膜及其各部位砷含量的影响[J]. 生态毒理学报, 8(2): 172-177. |
ZHANG X, GUO Z H, DU S S, et al., 2013. Couple effect of water and phosphorus on iron plaque and As Concentration in different organs of different P efficiency rices under As-stress conditions[J]. Asian Journal of Ecotoxicology, 8(2): 172-177. | |
[39] | 张玉盛, 周亮, 肖欢, 等, 2021. 氮肥对双季稻根表铁膜形成及双季稻镉积累的影响[J]. 农业环境科学学报, 40(2): 260-268. |
ZHANG Y S, ZHOU L, XIAO H, et al., 2021. Effect of nitrogen fertilizer on iron plaque formation on the root surface of double cropping rice and cadmium accumulation in double-season rice[J]. Journal of Agro-Environment Science, 40(2): 260-268. | |
[40] | 钟顺清, 2015. 根表铁膜对2种景观湿地植物根系发育及活力的影响[J]. 水生态学杂志, 36(1): 74-79. |
ZHONG S Q, 2015. Effect of iron plaque on root growth and activity of two wetland plants[J]. Journal of Hydroecology, 36(1): 74-79. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[3] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[4] | 肖洁芸, 周伟, 石佩琪. 土壤重金属含量高光谱反演[J]. 生态环境学报, 2023, 32(1): 175-182. |
[5] | 王哲, 田胜尼, 张永梅, 张和禹, 周忠泽. 巢湖派河口滩涂植物群落特征研究[J]. 生态环境学报, 2022, 31(9): 1823-1831. |
[6] | 黄宏, 郑欣芸, 李迎东, 赵旭, 俞锦辰, 汪振华. 大陈岛海域不同年龄褐菖鲉对重金属富集作用研究[J]. 生态环境学报, 2022, 31(9): 1885-1891. |
[7] | 马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900. |
[8] | 陶玲, 黄磊, 周怡蕾, 李中兴, 任珺. 污泥-凹凸棒石共热解生物炭对矿区土壤重金属生物有效性和环境风险的影响[J]. 生态环境学报, 2022, 31(8): 1637-1646. |
[9] | 罗松英, 李秋霞, 邱锦坤, 邓素炎, 李一锋, 陈碧珊. 南三岛土壤-红树植物系统中重金属形态特征及迁移转化规律[J]. 生态环境学报, 2022, 31(7): 1409-1416. |
[10] | 董乐恒, 王旭刚, 陈曼佳, 王子豪, 孙丽蓉, 石兆勇, 吴琪琪. 光照和避光条件下石灰性水稻土Fe氧化还原与Cu活性关系研究[J]. 生态环境学报, 2022, 31(7): 1448-1455. |
[11] | 彭红丽, 谭海霞, 王颖, 魏建梅, 冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价[J]. 生态环境学报, 2022, 31(6): 1235-1243. |
[12] | 黄敏, 赵晓峰, 梁荣祥, 王鹏忠, 戴安然, 何晓曼. 3种螯合剂对Cd、Cu复合污染土壤淋洗修复的对比研究[J]. 生态环境学报, 2022, 31(6): 1244-1252. |
[13] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
[14] | 施建飞, 靳正忠, 周智彬, 王鑫. 额尔齐斯河流域典型尾矿库区周边土壤重金属污染评价[J]. 生态环境学报, 2022, 31(5): 1015-1023. |
[15] | 钱学诗, 李勇, 钱壮壮, 葛晓敏, 唐罗忠. 北亚热带东部次生阔叶林降水过程中的镉、铅、砷含量变化[J]. 生态环境学报, 2022, 31(5): 979-989. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||