生态环境学报 ›› 2022, Vol. 31 ›› Issue (5): 979-989.DOI: 10.16258/j.cnki.1674-5906.2022.05.013
钱学诗1(), 李勇2, 钱壮壮1, 葛晓敏3, 唐罗忠1,*(
)
收稿日期:
2022-01-19
出版日期:
2022-05-18
发布日期:
2022-07-12
通讯作者:
* 唐罗忠,教授,主要从事森林培育理论与技术研究。E-mail: luozhongtang@njfu.edu.cn作者简介:
钱学诗(1996年生),女,硕士研究生,主要开展森林生态系统研究。E-mail: 1741150389@qq.com
基金资助:
QIAN Xueshi1(), LI Yong2, QIAN Zhuangzhuang1, GE Xiaomin3, TANG Luozhong1,*(
)
Received:
2022-01-19
Online:
2022-05-18
Published:
2022-07-12
摘要:
系统研究森林生态系统水文过程中污染物的变化规律是提高森林净化功能的重要基础。为揭示森林对降水中重金属的调节能力,以江苏省句容市下蜀林场的麻栎(Quercus acutissima)+枫香(Liquidambar formosana)次生阔叶混交林为研究对象,对大气降雨、林内雨、树干茎流和地表径流中的镉(Cd)、铅(Pb)、砷(As)质量浓度和通量进行了为期1年的调查研究。结果表明,从2015年1—12月,大气降雨量为1763.1 mm,其中55.76%的降水集中在6—8月;林内雨、树干茎流和地表径流分别占大气降雨量的90.89%、3.81%和13.63%。各类降水中重金属存在季节性变化规律,在雨季质量浓度普遍较低,旱季质量浓度普遍较高。大气降雨中Cd、Pb、As的年均加权质量浓度分别为0.114、0.151、0.681 μg∙L-1;与大气降雨相比,林内雨中Cd的年均加权质量浓度较低,Pb和As质量浓度较高;树干茎流中各元素年均加权质量浓度均明显高于大气降雨和林内雨;地表径流的Pb质量浓度低于林内雨,高于大气降雨,Cd和As质量浓度均高于大气降雨和林内雨。从重金属通量看,大气降雨经过林冠和树干后增加了57.44%,经过凋落物和土壤表层后,降低了87.2%,表明林地凋落物和土壤表层对降雨中的重金属具有良好的截留作用。今后有必要针对土壤渗透水量和水质进行研究,以便于全面评价该森林对降水污染的净化效应。
中图分类号:
钱学诗, 李勇, 钱壮壮, 葛晓敏, 唐罗忠. 北亚热带东部次生阔叶林降水过程中的镉、铅、砷含量变化[J]. 生态环境学报, 2022, 31(5): 979-989.
QIAN Xueshi, LI Yong, QIAN Zhuangzhuang, GE Xiaomin, TANG Luozhong. Changes of Cadmium, Lead and Arsenic Contents during Precipitation in the Secondary Broad-leaved Forest in the Eastern Area of North Subtropics, China[J]. Ecology and Environment, 2022, 31(5): 979-989.
林龄 Stand age/a | 林分密度 Stand density/(plant∙hm-2) | 平均胸径 Diameter at breast height/cm | 平均树高 Tree height/m | 郁闭度 Canopy density | 凋落物生物量 Litter biomass/(t∙hm-2) |
---|---|---|---|---|---|
80-100 | 512 | 25.6 | 12.4 | 0.80 | 7.59 |
表1 林分优势木基本情况
Table 1 Basic characteristics of dominant trees in stand
林龄 Stand age/a | 林分密度 Stand density/(plant∙hm-2) | 平均胸径 Diameter at breast height/cm | 平均树高 Tree height/m | 郁闭度 Canopy density | 凋落物生物量 Litter biomass/(t∙hm-2) |
---|---|---|---|---|---|
80-100 | 512 | 25.6 | 12.4 | 0.80 | 7.59 |
土壤容重 Bulk density/(g∙cm-3) | 土壤pH Soil pH | w(OM)/% | w(Cd)/(mg∙kg-1) | w(Pd)/(mg∙kg-1) | w(As)/(mg∙kg-1) |
---|---|---|---|---|---|
1.04±0.07 | 4.30±0.07 | 8.72±0.36 | 0.042±0.007 | 11.494±0.381 | 1.474±0.077 |
表2 林地土壤表层(0—15 cm)理化性质
Table 2 Physicochemical properties of the surface soil (0-15 cm) in the sample plot
土壤容重 Bulk density/(g∙cm-3) | 土壤pH Soil pH | w(OM)/% | w(Cd)/(mg∙kg-1) | w(Pd)/(mg∙kg-1) | w(As)/(mg∙kg-1) |
---|---|---|---|---|---|
1.04±0.07 | 4.30±0.07 | 8.72±0.36 | 0.042±0.007 | 11.494±0.381 | 1.474±0.077 |
大气降雨 Bulk precipitation/ mm | 林内雨 Throughfall/ mm | 树干茎流 Stemflow/ mm | 地表径流 Surface runoff/ mm |
---|---|---|---|
1763.10 | 1602.49 | 67.19 | 240.23 |
表3 大气降雨、林内雨、树干茎流和地表径流的年累积量
Table 3 Accumulation of bulk precipitation, throughfall, stemflow and surface runoff in 2015
大气降雨 Bulk precipitation/ mm | 林内雨 Throughfall/ mm | 树干茎流 Stemflow/ mm | 地表径流 Surface runoff/ mm |
---|---|---|---|
1763.10 | 1602.49 | 67.19 | 240.23 |
元素 Element | 大气降雨 Bulk precipitation | 林内雨 Throughfall | 树干茎流 Stemflow | 地表径流 Surface runoff |
---|---|---|---|---|
Cd | -0.552** | -0.524* | -0.418* | -0.321 |
Pb | 0.044 | -0.495* | -0.589** | -0.380 |
As | -0.514* | -0.536* | -0.611** | -0.385 |
表4 重金属质量浓度与不同类型降雨量的相关性
Table 4 Correlation between heavy metal concentration and different types of rainfall
元素 Element | 大气降雨 Bulk precipitation | 林内雨 Throughfall | 树干茎流 Stemflow | 地表径流 Surface runoff |
---|---|---|---|---|
Cd | -0.552** | -0.524* | -0.418* | -0.321 |
Pb | 0.044 | -0.495* | -0.589** | -0.380 |
As | -0.514* | -0.536* | -0.611** | -0.385 |
元素 Element | PC1 | PC2 |
---|---|---|
Cd | 0.842 | 0.185 |
As | 0.810 | 0.235 |
Pb | 0.244 | 0.969 |
解释总方差 Explain the total variance/% | 47.462 | 34.284 |
累积解释总方差 Cumulative explained total variance/% | 81.746 |
表5 大气降雨重金属的旋转成分矩阵
Table 5 Rotational composition matrix of heavy metals in bulk precipitation
元素 Element | PC1 | PC2 |
---|---|---|
Cd | 0.842 | 0.185 |
As | 0.810 | 0.235 |
Pb | 0.244 | 0.969 |
解释总方差 Explain the total variance/% | 47.462 | 34.284 |
累积解释总方差 Cumulative explained total variance/% | 81.746 |
降水类型 Precipitation type | 元素 Element | |||
---|---|---|---|---|
Cd | Pb | As | ||
大气降雨 Bulk precipitation | 年均质量浓度/ (μg∙L-1) | 0.114 | 0.151 | 0.681 |
林内雨 Throughfall | 年均质量浓度/(μg∙L-1) | 0.097 | 0.413 | 0.934 |
净淋溶量/(μg∙L-1) | -0.017 | 0.262 | 0.253 | |
淋溶系数 | 0.850 | 2.735 | 1.371 | |
麻栎树干茎流 Stemflow of Quercus acutissima | 年均质量浓度/(μg∙L-1) | 0.397 | 3.943 | 1.903 |
净淋溶量/(μg∙L-1) | 0.283 | 3.792 | 1.222 | |
淋溶系数 | 3.482 | 26.112 | 2.794 | |
枫香树干茎流 Stemflow of Liquidambar formosana | 年均质量浓度/(μg∙L-1) | 0.402 | 3.588 | 1.747 |
净淋溶量/(μg∙L-1) | 0.288 | 3.437 | 1.066 | |
淋溶系数 | 3.526 | 23.761 | 2.565 | |
地表径流 Surface runoff | 年均质量浓度/(μg∙L-1) | 0.116 | 0.371 | 1.069 |
净淋溶量/(μg∙L-1) | 0.002 | 0.220 | 0.388 | |
淋溶系数 | 1.017 | 2.456 | 1.569 |
表6 各水文过程中重金属的年均质量浓度、净淋溶量和淋溶系数
Table 6 Annual weighted concentration, net leaching amount and leaching coefficient of heavy metals in the hydrologic processes
降水类型 Precipitation type | 元素 Element | |||
---|---|---|---|---|
Cd | Pb | As | ||
大气降雨 Bulk precipitation | 年均质量浓度/ (μg∙L-1) | 0.114 | 0.151 | 0.681 |
林内雨 Throughfall | 年均质量浓度/(μg∙L-1) | 0.097 | 0.413 | 0.934 |
净淋溶量/(μg∙L-1) | -0.017 | 0.262 | 0.253 | |
淋溶系数 | 0.850 | 2.735 | 1.371 | |
麻栎树干茎流 Stemflow of Quercus acutissima | 年均质量浓度/(μg∙L-1) | 0.397 | 3.943 | 1.903 |
净淋溶量/(μg∙L-1) | 0.283 | 3.792 | 1.222 | |
淋溶系数 | 3.482 | 26.112 | 2.794 | |
枫香树干茎流 Stemflow of Liquidambar formosana | 年均质量浓度/(μg∙L-1) | 0.402 | 3.588 | 1.747 |
净淋溶量/(μg∙L-1) | 0.288 | 3.437 | 1.066 | |
淋溶系数 | 3.526 | 23.761 | 2.565 | |
地表径流 Surface runoff | 年均质量浓度/(μg∙L-1) | 0.116 | 0.371 | 1.069 |
净淋溶量/(μg∙L-1) | 0.002 | 0.220 | 0.388 | |
淋溶系数 | 1.017 | 2.456 | 1.569 |
降水类型 Precipitation type | 年通量 Annual flux/(g∙hm-2∙a-1) | |||
---|---|---|---|---|
Cd | Pb | As | 总量 Amount | |
大气降雨 Bulk precipitation | 2.017 | 2.685 | 12.084 | 16.786 |
林内雨 Throughfall | 1.588 | 6.786 | 15.349 | 23.722 |
树干茎流 Stemflow | 0.181 | 1.702 | 0.825 | 2.707 |
地表径流 Surface runoff | 0.227 | 0.724 | 2.086 | 3.036 |
表7 各水文过程中的重金属年通量
Table 7 Annual fluxes of heavy metals in the hydrologic processes
降水类型 Precipitation type | 年通量 Annual flux/(g∙hm-2∙a-1) | |||
---|---|---|---|---|
Cd | Pb | As | 总量 Amount | |
大气降雨 Bulk precipitation | 2.017 | 2.685 | 12.084 | 16.786 |
林内雨 Throughfall | 1.588 | 6.786 | 15.349 | 23.722 |
树干茎流 Stemflow | 0.181 | 1.702 | 0.825 | 2.707 |
地表径流 Surface runoff | 0.227 | 0.724 | 2.086 | 3.036 |
[1] |
ABRAHAM J, DOWLING K, FLORENTINE S, 2018. Controlled burn and immediate mobilization of potentially toxic elements in soil, from a legacy mine site in Central Victoria, Australia[J]. Science of the Total Environment, 616-617: 1022-1034.
DOI URL |
[2] |
AVILA A, RODRIGO A, 2004. Trace metal fluxes in bulk deposition, throughfall and stemflow at two evergreen oak stands in NE Spain subject to different exposure to the industrial environment[J]. Atmospheric Environment, 38(2): 171-180.
DOI URL |
[3] |
CHEN H, RUCKER A, SU Q, et al., 2020. Dynamics of dissolved organic matter and disinfection byproduct precursors along a low elevation gradient in woody wetlands - an implication of hydrologic impacts of climate change on source water quality[J]. Water Research, DOI: 10.1016/j.watres.2020.115908.
DOI |
[4] |
CIZMECIOGLU S C, MUEZZINOGLU A, 2008. Solubility of deposited airborne heavy metals[J]. Atmospheric Research, 89(4): 396-404.
DOI URL |
[5] |
FU S, WEI C Y, 2013. Multivariate and spatial analysis of heavy metal sources and variations in a large old antimony mine, China[J]. Journal of Soils and Sediments, 13(1): 106-116.
DOI URL |
[6] |
GANDOIS L, TIPPING E, DUMAT C, et al., 2010. Canopy influence on trace metal atmospheric inputs on forest ecosystems: Speciation in throughfall[J]. Atmospheric Environment, 44(6): 824-833.
DOI URL |
[7] | GONCALVES M S, DA SILVA L C S, BETTIN J P, et al., 2020. Sorption and leaching of metals in the soil due to application of dissolved organic matter[J]. Revista Internacional De Contaminacion Ambiental, 36(3): 703-710. |
[8] |
HOU H, TAKAMATSU T, KOSHIKAWA M K, et al., 2005. Trace metals in bulk precipitation and through fall in a suburban area of Japan[J]. Atmospheric Environment, 39(20): 3583-3595.
DOI URL |
[9] |
HOU Q Y, YANG Z F, JI J F, et al., 2014. Annual net input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta, China[J]. Journal of Geochemical Exploration, 139(1): 68-84.
DOI URL |
[10] |
HUANG J H, GUNTER I, EGBERT M, 2011. Fluxes and budgets of Cd, Zn, Cu, Cr and Ni in a remote forested catchment in Germany[J]. Biogeochemistry, 103(1-3): 59-70.
DOI URL |
[11] |
LORENZ M, BRUNKE M, 2021. Trends of nutrients and metals in precipitation in northern Germany: the role of emissions and meteorology[J]. Environmental Monitoring and Assessment, 193(6): 325-325.
DOI URL |
[12] |
PRZYBYSZ A, SAEO A, HANSLIN H M, et al., 2014. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time[J]. Science of the Total Environment, 481: 360-369.
DOI URL |
[13] |
SCHRIJVER A D, GEUDENS G, AUGUSTO L, et al., 2007. The effect of forest type on throughfall deposition and seepage flux: A review[J]. Oecologia, 153(3): 663-674.
DOI URL |
[14] |
SCUDLARK J R, RICE K C, CONKO K M, et al., 2005. Transmission of atmospherically derived trace elements through an undeveloped, forested Maryland watershed[J]. Water, Air, and Soil Pollution, 163(1): 53-79.
DOI URL |
[15] |
SHAHID M, DUMAT C, KHALID S, et al., 2017. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake[J]. Journal of Hazardous Materials, 325: 36-58.
DOI URL |
[16] |
TAN S Y, ZHAO H R, YANG W Q, et al., 2019. Forest canopy can efficiently filter trace metals in deposited precipitation in a subalpine spruce plantation[J]. Forests, 10(4): 318.
DOI URL |
[17] |
XU X H, ZHAO Y C, ZHAO X Y, et al., 2014. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China[J]. Ecotoxicology and Environmental Safety, 108: 161-167.
DOI URL |
[18] |
ZANG F, WANG H, ZHAO C Y, et al., 2021. Atmospheric wet deposition of trace elements to forest ecosystem of the Qilian Mountains, northwest China[J]. Catena, DOI: 10.1016/j.catena.2020.104966.
DOI |
[19] |
ZHANG S L, YU J X, PAN T C, et al., 2021. Difference between rainfall and throughfall chemistry for different forest stands in the Qinling Mountains, China[J]. Hydrology Research, 52(2): 523-535.
DOI URL |
[20] |
ZIA A, VAN DEN BERG L, AHMAD M N, et al., 2018. Controls on accumulation and soil solution partitioning of heavy metals across upland sites in United Kingdom (UK)[J]. Journal of Environmental Management, 222: 260-267.
DOI URL |
[21] | 程志辉, 李法云, 李海燕, 等, 2019. 辽东山地水源涵养林典型植被凋落物C、N、P溶出特征及其影响因素[J]. 生态学杂志, 38(4): 1031-1040. |
CHENG Z H, LI F Y, LI H Y, et al., 2019. Characteristics of carbon, nitrogen and phosphorus leaching from litters of typical vegetation types in eastern Liaoning mountain water conservation forests and affecting factors[J]. Chinese Journal of Ecology, 38(4): 1031-1040. | |
[22] | 陈步峰, 陈勇, 尹光天, 等, 2004. 珠江三角洲城市森林植被生态系统水质效应研究[J]. 林业科学研究, 17(4): 453-460. |
CHEN B F, CHEN Y, YIN G T, et al., 2004. Study on the water quality of urban forest ecosystem in the Pearl River Delta[J]. Forest Research, 17(4): 453-460. | |
[23] | 蔡志全, 阮宏华, 叶镜中, 2001. 栓皮栎林对城郊重金属元素的吸收和积累[J]. 南京林业大学学报, 25(1): 18-22. |
CAI Z Q, RUAN H H, YE J Z, 2001. A preliminary study on the absorption and accumulation in oak (Quercus variabilis) stand in suburb of Nanjing[J]. Journal of Nanjing Forestry University, 25(1): 18-22. | |
[24] | 邓林俐, 张凯山, 殷子渊, 等, 2020. 基于PMF模型的PM2.5中金属元素污染及来源的区域特征分析[J]. 环境科学, 41(12): 5276-5287. |
DENG L L, ZHANG K S, YIN Z Y, et al., 2020. Characterization of metal pollution of regional atmospheric PM2.5 and its sources based on the PMF model[J]. Environmental Science, 41(12): 5276-5287. | |
[25] | 方江平, 项文化, 刘韶辉, 2010. 西藏南伊沟原始林芝云杉林水文学过程的水化学特征[J]. 林业科学, 46(9): 14-19. |
FANG J P, XIANG W H, LIU S H, 2010. Chemical characteristics of hydrological processes in a primeval Picea likiangensis var. linzhiensis forest in Nanyigou of Tibet[J]. Scientia Silvae Sinicae, 46(9): 14-19. | |
[26] | 高郯, 张铎, 卢杰, 等, 2022. 色季拉山高山松林降雨再分配及重金属元素的时空特征研究[J]. 西南林业大学学报 (自然科学版), 42(1): 115-123. |
GAO T, ZHANG D, LU J, et al., 2022. Study on temporal and spatial characteristics of precipitation redistribution and heavy metal elements at Pinus densata forest in Sejila mountain[J]. Journal of Southwest Forestry University (Natural Sciences Edition), 42(1): 115-123. | |
[27] | 葛晓敏, 卢晓强, 陈水飞, 等, 2020. 武夷山常绿阔叶林生态系统降水分配与离子输入特征[J]. 生态环境学报, 29(2): 250-259. |
GE X M, LU X Q, CHEN S F, et al., 2020. Reallocation and chemical characteristics of atmospheric precipitation in a mid-subtropical evergreen broad-leaved forest in Wuyi Mountains, Fujian Province, China[J]. Ecology and Environmental Sciences, 29(2): 250-259. | |
[28] | 顾家伟, 2019. 我国城市大气颗粒物重金属污染研究进展与趋势[J]. 地球与环境, 47(3): 385-396. |
GU J W, 2019. A review on heavy metals in atmospheric suspended particles of China cities and its implication for future references[J]. Earth and Environment, 47(3): 385-396. | |
[29] | 国家环境保护总局, 2002. 地表水环境质量标准:GB 3838—2002 [S]. 北京: 中国环境科学出版社. |
State Environmental Protection Administration, 2002. Environmental quality standards for surface water: GB 3838—2002 [S]. Beijing: China Environmental Science Press. | |
[30] | 韩春, 陈宁, 孙杉, 等, 2019. 森林生态系统水文调节功能及机制研究进展[J]. 生态学杂志, 38(7): 2191-2199. |
HAN C, CHEN N, SUN S, et al., 2019. A review on hydrological mediating functions and mechanisms in forest ecosystems[J]. Chinese Journal of Ecology, 38(7): 2191-2199. | |
[31] | 韩红霞, 陈亮, 孙梦晴, 等, 2017. 多源污染条件下南京北郊地区降水离子特征研究[J]. 广东化工, 44(12): 192-194. |
HAN H X, CHEN L, SUN M Q, et al., 2017. Research on the ions characteristics of rainwater under complex pollutions in north suburb area of Nanjing[J]. Guangdong Chemical Industry, 44(12): 192-194. | |
[32] | 康希睿, 张涵丹, 王小明, 等, 2021. 北亚热带3种森林群落对大气湿沉降重金属的调控[J]. 生态学报, 41(6): 2107-2117. |
KANG X R, ZHANG H D, WANG X M, et al., 2021. Distribution of heavy metals in precipitation by three forest communities in northern subtropical region of China[J]. Acta Ecologica Sinica, 41(6): 2107-2117. | |
[33] | 梁翠萍, 张胜利, 2011. 秦岭锐齿栎林和油松林林冠层对大气降雨水质的影响[J]. 东北林业大学学报, 39(2): 53-56. |
LIANG C L, ZHANG S L, 2011. Effects of forest canopies of Quercus aliena var. acuteserrata and Pinus tabulaeformis stands on rain water quality in Qinling mountain range[J]. Journal of Northeast Forestry University, 39(2): 53-56. | |
[34] | 李定远, 石德强, 申锐莉, 等, 2008. 江汉平原大气污染源分析[J]. 现代地质, 22(6): 915-921. |
LI D Y, SHI D Q, SHEN R L, et al., 2008. Analysis on source apportionment of atmosphere particulates in Jianghan Plain, China[J]. Geoscience, 22(6): 915-921. | |
[35] | 林静, 张健, 杨万勤, 等, 2013. 岷江下游小型集水区3种人工林对降雨重金属含量的影响[J]. 环境科学学报, 33(10): 2871-2878. |
LIN J, ZHANG J, YANG W Q, et al., 2013. Effect of Metasequoia glyptostroboides, Cunninghamia lanceolata and Eucalyptus grandis plantations on heavy metal contents in the precipitation of a small catchment at the downstream of Minjiang river[J]. Acta Scientiae Circumstantiae, 33(10): 2871-2878. | |
[36] | 刘凯, 文仕知, 何功秀, 等, 2013. 湘潭锰矿栾树人工林林内外降水重金属含量变化[J]. 中南林业科技大学学报, 33(6): 88-93. |
LIU K, WEN S Z, HE G X, et al., 2013. Changes of heavy metal contents in the precipitation inside and outside Koelreuteria paniculata plantation in Xiangtan manganese mine[J]. Journal of Central South University of Forestry and Technology, 33(6): 88-93. | |
[37] | 刘茜, 满秀玲, 田野宏, 2015. 白桦次生林降雨水化学及养分输入特征[J]. 北京林业大学学报, 37(8): 83-89. |
LIU X, MAN X L, TIAN Y H, 2015. Hydro-chemical and nutrient importing characteristics of precipitation in secondary Betula platyphylla forests[J]. Journal of Beijing Forestry University, 37(8): 83-89. | |
[38] | 刘永杰, 党坤良, 王连贺, 等, 2014. 秦岭南坡2种林分类型林冠层对大气降水水质的生态效应[J]. 西北农林科技大学学报 (自然科学版), 42(7): 89-94. |
LIU Y J, DANG K L, WANG L H, et al., 2014. Ecological effects of canopies of two forest types on rain water quality on the south slope of Qinling mountain[J]. Journal of Northwest Agriculture and Forestry University (Natural Sciences Edition), 42(7): 89-94. | |
[39] | 李伟, 张胜利, 孟庆旭, 等, 2016. 秦岭华山松林生态系统对大气降雨水化学特性的影响[J]. 西北林学院学报, 31(5): 15-22. |
LI W, ZHANG S L, MENG Q X, et al., 2016. Effects of Pinus armandii forest ecosystem on the chemical features of atmospheric rainfall water in Qinling mountain[J]. Journal of Northwest Forestry University, 31(5): 15-22. | |
[40] | 马明, 孙涛, 李定凯, 等, 2017. 缙云山常绿阔叶林湿沉降过程中不同空间层次水质变化特征[J]. 环境科学, 38(12): 5056-5062. |
MA M, SUN T, LI D K, et al., 2017. Dynamics of the water quality in a broad-leaf evergreen forest at different spatial levels on Jinyun mountain[J]. Environmental Science, 38(12): 5056-5062. | |
[41] | 盛后财, 蔡体久, 琚存勇, 2015. 小兴安岭白桦林降水转化过程元素特征分析[J]. 北京林业大学学报, 37(2): 59-66. |
SHENG H C, CAI T J, JU C Y, 2015. Element characteristics in the precipitation conversion process in Betula platyphlla forest of Xiaoxing’an Mountains,northeastern China[J]. Journal of Beijing Forestry University, 37(2): 59-66. | |
[42] | 孙涛, 马明, 王定勇, 2016. 中亚热带典型森林生态系统对降水中铅镉的截留特征[J]. 生态学报, 36(1): 218-225. |
SUN T, MA M, WANG D Y, 2016. Interceptive characteristics of lead and cadmium in a representative forest ecosystem in mid-subtropical area in China[J]. Acta Ecologica Sinica, 36(1): 218-225.
DOI URL |
|
[43] | 田贺忠, 程轲, 卢龙, 等, 2012. 中国典型有害重金属大气污染排放发展趋势及控制对策[C]// 中国环境科学学会. 第19届中国大气环境科学与技术大会暨中国环境科学学会. 青岛: 142-142. |
TIAN H Z, CHENG K, LU L, et al., 2012. Development trend and control countermeasures of air pollution emission of typical harmful heavy metals in China[C]// Chinese Society of Environmental Sciences. The 19th China Atmospheric Environmental Science and Technology Conference and China Environmental Science Society. Qingdao: 142-142. | |
[44] | 王梦梦, 原梦云, 苏德纯, 2017. 我国大气重金属干湿沉降特征及时空变化规律[J]. 中国环境科学, 37(11): 4085-4096. |
WANG M M, YUAN M Y, SU D C, 2017. Characteristics and spatial-temporal variation of heavy metals in atmospheric dry and wet deposition of China[J]. China Environmental Science, 37(11): 4085-4096. | |
[45] | 王桢, 张建强, 渡边泉, 等, 2018. 铁路和道路沿线土壤重金属含量及来源解析[J]. 生态环境学报, 27(2): 364-372. |
WANG Z, ZHANG J Q, WATANABE I, et al., 2018. Concentrations and sources of heavy metals in soil near railway and road[J]. Ecology and Environmental Sciences, 27(2): 364-372. | |
[46] | 文仕知, 文娟, 罗佳, 等, 2009. 枫香人工林林内外降水重金属含量变化[J]. 中南林业科技大学学报, 29(2): 45-48. |
WEN S Z, WEN J, LUO J, et al., 2009. Changes of heavy metal contents in the precipitation inside and outside Liquidambar formosana plantation[J]. Journal of Central South University of Forestry and Technology, 29(2): 45-48. | |
[47] | 杨忠平, 卢文喜, 龙玉桥, 等, 2009. 长春市城区大气湿沉降中重金属及pH值调查[J]. 吉林大学学报 (地球科学版), 39(5): 887-892. |
YANG Z P, LU W X, LONG Y Q, et al., 2009. Current situation of pH and wet deposition of heavy metals in precipitation in Changchun city, China[J]. Journal of Jilin University (Earth Science Edition), 39(5): 887-892. | |
[48] | 姚琳, 廖欣峰, 张海洋, 等, 2012. 中国大气重金属污染研究进展与趋势[J]. 环境科学与管理, 37(9): 41-44. |
YAO L, LIAO X F, ZHANG H Y, et al., 2012. Progress and trend of atmospheric heavy metal pollution in China[J]. Environmental Science and Management, 37(9): 41-44. | |
[49] | 张娜, 乔玉娜, 刘兴诏, 等, 2010. 鼎湖山季风常绿阔叶林大气降雨、穿透雨和树干流的养分特征[J]. 热带亚热带植物学报, 18(5): 502-510. |
ZHANG N, QIAO Y N, LIU X Z, et al., 2010. Nutrient characteristics in incident rainfall, throughfall, and stemflow in monsoon evergreen broad-leaved forest at Dinghushan[J]. Journal of Tropical and Subtropical Botany, 18(5): 502-510. | |
[50] | 张淑芬, 马明, 2017. 中亚热带典型林分不同层次降水的水质变化特征[J]. 中国农学通报, 33(22): 47-52. |
ZHANG S F, MA M, 2017. Precipitation levels of typical forest stand in mid-subtropical zone: variation characteristics of water quality[J]. Chinese Agricultural Science Bulletin, 33(22): 47-52. | |
[51] | 张胜利, 2009. 秦岭火地塘林区森林生态系统对降水中重金属的作用[J]. 林业科学, 45(11): 55-62. |
ZHANG S L, 2009. Effects of forest ecosystem on heavy metals in water during the rainfall-runoff processes in the Huoditang forest area of the Qinling mountain range[J]. Scientia Silvae Sinicae, 45(11): 55-62. | |
[52] | 赵晓韵, 李金娟, 孙哲, 等, 2014. 贵州典型酸雨城市大气降水化学组成特征[J]. 地球与环境, 42(3): 316-321. |
ZHAO X Y, LI J J, SUN Z, et al., 2014. Characteristics of chemical compositions of precipitation in a typical acid-rain in city in Guizhou province[J]. Earth and Environment, 42(3): 316-321. | |
[53] | 赵宇豪, 高俊红, 高婵婵, 等, 2017. 黑河天涝池流域典型林分生态水文化学特征[J]. 生态学报, 37(14): 4636-4645. |
ZHAO Y H, GAO J H, GAO C C, et al., 2017. Ecohydrology and chemical characteristics of typical forests in the Tianlaochi catchment of the Heihe River Basin[J]. Acta Ecologica Sinica, 37(14): 4636-4645. | |
[54] | 中华人民共和国环境保护部, 2014. 水质65种元素的测定电感耦合等离子体质谱法: HJ 700—2014 [S]. 北京: 中国环境科学出版社. |
Ministry of Environmental Protection, PRC, 2014. Water quality- Determination of 65 elements-Inductively coupled plasma-mass spectrometry: HJ 700—2014 [S]. Beijing: China Environmental Science Press. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[3] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[4] | 肖洁芸, 周伟, 石佩琪. 土壤重金属含量高光谱反演[J]. 生态环境学报, 2023, 32(1): 175-182. |
[5] | 陈小弯, 田华川, 常军军, 陈礼强, 舒兴权, 冯秀祥. 杞麓湖中河河口表流湿地净化河道污染水的效果及其微生物群落特征[J]. 生态环境学报, 2022, 31(9): 1865-1875. |
[6] | 黄宏, 郑欣芸, 李迎东, 赵旭, 俞锦辰, 汪振华. 大陈岛海域不同年龄褐菖鲉对重金属富集作用研究[J]. 生态环境学报, 2022, 31(9): 1885-1891. |
[7] | 马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900. |
[8] | 陶玲, 黄磊, 周怡蕾, 李中兴, 任珺. 污泥-凹凸棒石共热解生物炭对矿区土壤重金属生物有效性和环境风险的影响[J]. 生态环境学报, 2022, 31(8): 1637-1646. |
[9] | 李莹, 张洲, 杨高明, 祖艳群, 李博, 陈建军. 湿地植物根系泌氧能力和根表铁膜与根系吸收重金属的关系[J]. 生态环境学报, 2022, 31(8): 1657-1666. |
[10] | 罗松英, 李秋霞, 邱锦坤, 邓素炎, 李一锋, 陈碧珊. 南三岛土壤-红树植物系统中重金属形态特征及迁移转化规律[J]. 生态环境学报, 2022, 31(7): 1409-1416. |
[11] | 王晨茜, 张琼锐, 张若琪, 孙学超, 徐颂军. 广东省珠江流域景观格局对水质净化服务的影响[J]. 生态环境学报, 2022, 31(7): 1425-1433. |
[12] | 刘宁, 刘洋, 续京平, 宋慧平, 冯政君, 程芳琴. 丛枝菌根真菌对人工湿地植物生长及水质净化的影响研究[J]. 生态环境学报, 2022, 31(7): 1434-1441. |
[13] | 董乐恒, 王旭刚, 陈曼佳, 王子豪, 孙丽蓉, 石兆勇, 吴琪琪. 光照和避光条件下石灰性水稻土Fe氧化还原与Cu活性关系研究[J]. 生态环境学报, 2022, 31(7): 1448-1455. |
[14] | 彭红丽, 谭海霞, 王颖, 魏建梅, 冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价[J]. 生态环境学报, 2022, 31(6): 1235-1243. |
[15] | 黄敏, 赵晓峰, 梁荣祥, 王鹏忠, 戴安然, 何晓曼. 3种螯合剂对Cd、Cu复合污染土壤淋洗修复的对比研究[J]. 生态环境学报, 2022, 31(6): 1244-1252. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||