生态环境学报 ›› 2021, Vol. 30 ›› Issue (6): 1121-1128.DOI: 10.16258/j.cnki.1674-5906.2021.06.002
廖迎春1,2(), 段洪浪1,2, 施星星1, 孟庆银3, 刘文飞1,2, 沈芳芳1,2, 樊后保1,2,*(
), 朱涛1
收稿日期:
2021-02-27
出版日期:
2021-06-18
发布日期:
2021-09-10
通讯作者:
* 樊后保(1965年生),男,教授,博士,主要从事森林生态研究。E-mail: hbfan@nit.edu.cn作者简介:
廖迎春(1977年生),女,副教授,博士,主要从事森林生态研究。E-mail: liaoyingc@163.com
基金资助:
LIAO Yingchun1,2(), DUAN Honglang1,2, SHI Xingxing1, MENG Qingyin3, LIU Wenfei1,2, SHEN Fangfang1,2, FAN Houbao1,2,*(
), ZHU Tao1
Received:
2021-02-27
Online:
2021-06-18
Published:
2021-09-10
摘要:
为明确杉木(Cunninghamia lanceolata)人工林生长状况与根系生物量的关系,进一步认知植物对环境的适应,为人工林管理提供科学依据,以福建沙县12—14年生杉木人工林为对象,选择林分生物量差异显著的3种林分(分别为高生物量CH、中生物量CM和低生物量CL),采用根钻法对根系和土壤进行取样,测定0—10、10—20、20—40 cm土层土壤C含量、土壤N含量、土壤C?N,杉木不同组分根系[吸收根(1—2级)、运输细根(3—5级)、粗根(5级以上)以及灌草根]生物量密度,并分析了不同组分根系生物量与杉木人工林林分生物量的关系。结果表明,(1)土壤C、N含量在各土层均表现为CH>CL(P<0.05)。土壤C?N在0—10 cm和10—20 cm土层无显著差异,但在20—40 cm土层表现为CL>CM>CH(P<0.05);(2)杉木根系主要分布在浅层土壤,各林分0—20 cm土层杉木吸收根,运输细根和粗根分别占0—40 cm土层的84.2%—85.9%、84.6%—85.2%和78.6%—80.0%。尽管吸收根生物量密度仅占总根生物量密度的5.0%—8.7%,但在不同林分间差异显著,在0—10 cm和10—20 cm土层表现为CH>CL(P<0.05)。灌草根生物量密度较低,各林分和土层间均无显著差异;(3)不同林分0—40 cm土层吸收根生物量差异显著,且与林分生物量呈正相关关系(P<0.05)。该研究结果表明土壤C、N含量的差异可能是造成根系生物量和林分生物量存在差异的主要原因,土壤C、N含量高的林分,杉木吸收根生物量和林分生物量均较高。在不同组分的根系中,杉木吸收根对外界环境变化最为敏感,养分条件好的林分和土层,吸收根的生物量也更高。
中图分类号:
廖迎春, 段洪浪, 施星星, 孟庆银, 刘文飞, 沈芳芳, 樊后保, 朱涛. 杉木(Cunninghamia lanceolate)人工林生长状况与根系生物量相关性研究[J]. 生态环境学报, 2021, 30(6): 1121-1128.
LIAO Yingchun, DUAN Honglang, SHI Xingxing, MENG Qingyin, LIU Wenfei, SHEN Fangfang, FAN Houbao, ZHU Tao. The Relationship between the Stand Growth and Root Biomass of Cunninghamia lanceolate Plantations[J]. Ecology and Environment, 2021, 30(6): 1121-1128.
造林时间 Planting time | 造林密度 D/(trees∙hm-2) | 平均胸径 DBH/cm | 林分生物量 B/(t∙hm-2) | 林分 Plantation |
---|---|---|---|---|
2008 | 3086 | 15.8±3.0a | 192.4±21.8a | CH |
2007 | 3086 | 14.5±2.7b | 151.4±12.1b | CM |
2006 | 3086 | 12.1±2.3c | 94.5±21.9c | CL |
表1 供试林地的基本概况
Table 1 Characteristics of the sampling sites
造林时间 Planting time | 造林密度 D/(trees∙hm-2) | 平均胸径 DBH/cm | 林分生物量 B/(t∙hm-2) | 林分 Plantation |
---|---|---|---|---|
2008 | 3086 | 15.8±3.0a | 192.4±21.8a | CH |
2007 | 3086 | 14.5±2.7b | 151.4±12.1b | CM |
2006 | 3086 | 12.1±2.3c | 94.5±21.9c | CL |
图1 土壤C,N,C?N 图中数据为平均值+标准差;n=3;小写字母不同表示相同土层不同林分在P<0.05水平上差异显著;大写字母不同表示相同林分不同土层在P<0.05水平上差异显著
Fig. 1 Soil C, soil N and soil C?N The error bars represent mean+1SD; n=3; Different lowercase letters indicate the difference between plantations of the same soil layers at P<0.05; Different uppercase letters indicate the difference between soil layers of the same plantation at P<0.05
根系类别 Root group | 林分 Plantation | 土层 Soil layer | ||
---|---|---|---|---|
0-10 cm | 10-20 cm | 20-40 cm | ||
吸收根 Absorbing roots | CH | 0.32±0.04Aa | 0.29±0.03Aa | 0.10±0.04Ba |
CM | 0.27±0.04Aab | 0.28±0.03Aab | 0.09±0.03Ba | |
CL | 0.25±0.02Ab | 0.23±0.02Ab | 0.09±0.01Ba | |
运输细根 Transporting fine roots | CH | 0.79±0.04Aa | 0.88±0.26Aa | 0.29±0.03Ba |
CM | 0.74±0.03Aab | 0.87±0.08Aa | 0.29±0.07Ba | |
CL | 0.71±0.04Ab | 0.83±0.05Aa | 0.28±0.09Ba | |
粗根 Coarse roots | CH | 2.54±0.23Aa | 2.58±0.22Aa | 1.39±0.15Ba |
CM | 2.61±0.09Aa | 2.52±0.04Aa | 1.33±0.14Ba | |
CL | 2.58±0.35Aa | 2.49±0.26Aa | 1.27±0.35Ba | |
灌草根 Herb roots | CH | 0.05±0.01Aa | 0.06±0.01Aa | 0.06±0.04Aa |
CM | 0.06±0.03Aa | 0.07±0.02Aa | 0.06±0.02Aa | |
CL | 0.04±0.01Aa | 0.06±0.02Aa | 0.07±0.05Aa |
表2 根系生物量密度
Table 2 Root biomass density mg∙cm-3
根系类别 Root group | 林分 Plantation | 土层 Soil layer | ||
---|---|---|---|---|
0-10 cm | 10-20 cm | 20-40 cm | ||
吸收根 Absorbing roots | CH | 0.32±0.04Aa | 0.29±0.03Aa | 0.10±0.04Ba |
CM | 0.27±0.04Aab | 0.28±0.03Aab | 0.09±0.03Ba | |
CL | 0.25±0.02Ab | 0.23±0.02Ab | 0.09±0.01Ba | |
运输细根 Transporting fine roots | CH | 0.79±0.04Aa | 0.88±0.26Aa | 0.29±0.03Ba |
CM | 0.74±0.03Aab | 0.87±0.08Aa | 0.29±0.07Ba | |
CL | 0.71±0.04Ab | 0.83±0.05Aa | 0.28±0.09Ba | |
粗根 Coarse roots | CH | 2.54±0.23Aa | 2.58±0.22Aa | 1.39±0.15Ba |
CM | 2.61±0.09Aa | 2.52±0.04Aa | 1.33±0.14Ba | |
CL | 2.58±0.35Aa | 2.49±0.26Aa | 1.27±0.35Ba | |
灌草根 Herb roots | CH | 0.05±0.01Aa | 0.06±0.01Aa | 0.06±0.04Aa |
CM | 0.06±0.03Aa | 0.07±0.02Aa | 0.06±0.02Aa | |
CL | 0.04±0.01Aa | 0.06±0.02Aa | 0.07±0.05Aa |
图3 根系生物量(B ′) 图中数据为平均值+标准差;n=3;同组不同小写字母表示林分间在P<0.05水平上差异显著
Fig. 3 Root biomass The error bars represent mean+1SD; n=3; different lowercase letters indicate significant differences between plantations at P<0.05
[1] |
ANTONINKA A, WOLF J E, BOWKER M, et al., 2009. Linking above- and belowground responses to global change at community and ecosystem scales[J]. Global Change Biology, 15(4): 914-929.
DOI URL |
[2] |
BLUME-WERRY G, LINDÉN E, ANDRESEN L et al., 2017. Proportion of fine roots, but not plant biomass allocation belowground, increases with elevation in arctic tundra[J]. Journal of Vegetation Science, 29(2): 226-235.
DOI URL |
[3] | BROUWER R, 1963. Some aspects of the equilibrium between overground and underground plant parts. In: The growth of cereals and grasses[M]. Wageningen: Jaarbboek IBS: 31-39. |
[4] |
CLEMENSSON-LINDELL A, PERSSON H, 1992. Effects of freezing on rhizosphere and root nutrient content using two soil sampling methods[J]. Plant and Soil, 139: 39-45.
DOI URL |
[5] |
COMAS L H, BECHER S R, CRUZ V, et al., 2013. Root traits contributing to plant productivity under drought[J]. Frontiers in Plant Science, DOI: 10.3389/fpls.2013.00442.
DOI |
[6] |
CORMIER N, TWILLEY R R, EWEL K C, et al., 2015. Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia[J]. Hydrobiologia, 750(1): 69-87.
DOI URL |
[7] |
EISSENSTAT D M, 1992. Costs and benefits of constructing roots of small diameter[J]. Journal of Plant Nutrition, 15(6): 763-782.
DOI URL |
[8] |
EISSENSTAT D M, KUCHARSKI J M, ZADWORNY M, et al., 2015. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest[J]. New Phytologist, DOI: 10.1111/nph.13451.
DOI |
[9] |
FINÉR L, LAINE J, 1998. Root dynamics at drained peatland sites of different fertility in southern Finland[J]. Plant and Soil, 201: 27-36.
DOI URL |
[10] |
FINÉR L, HELMISAARI H-S, LÕHMUS K, et al., 2007. Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.)[J]. Plant Biosystems, 141(3): 394-405.
DOI URL |
[11] | FITTER A H, 1985. Functional significance of root morphology and root system architecture. In: Fitter A H, Atkinson D, Read D J, Usher M B (eds) Ecological interactions in soil [M]. Oxford: Blackwell Scientific Publication: 37-42. |
[12] |
FRESCHET G T, SWART E M, CORNELISSEN J H, 2015. Integrated plant phenotypic responses to contrasting above- and below-ground resources: Key roles of specific leaf area and root mass fraction[J]. New Phytologist, 206(4): 1247-1260.
DOI URL |
[13] | GAMBETTA G A, FEI J, ROST T L, et al., 2013. Water uptake along the length of grapevine fine roots: developmental anatomy, tissue-specific aquaporin expression, and pathways of water transport[J]. Ecophysiology and Sustainability, 163(3): 1254-1265. |
[14] |
GUO D L, MITCHELL R J, HENDRICKS J J, 2004. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest[J]. Oecologia, 140: 450-457.
DOI URL |
[15] |
GUO D, XIA M, WEI X, et al., 2008. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytologist, 180(3): 673-683.
DOI URL |
[16] |
HELMISAARI H S, DEROME J, NÖJD P, et al., 2007. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands[J]. Tree Physiology, 27(10): 1493-1504.
DOI URL |
[17] |
HENDRICK R L, PREGITZER K S, 1993. Patterns of fine root mortality in two sugar maple forests[J]. Nature, 361(6407): 59-61.
DOI URL |
[18] |
LIAO Y C, MCCORMACK M L, FAN H B, et al., 2014. Relation of fine root distribution to soil C in a Cunninghamia lanceolata plantation in subtropical China[J]. Plant and Soil, 381(1-2): 225-234.
DOI URL |
[19] |
LIU C, XIANG W H, LEI P F, et al., 2014. Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient[J]. Plant and Soil, 376(1-2): 445-459.
DOI URL |
[20] |
MCCORMACK M L, ADAMS T X, SMITHWICK E A H, et al., 2012. Predicting fine root lifespan from plant functional traits in temperate trees[J]. New Phytologist, 195: 823-831.
DOI URL |
[21] |
MCCORMACK M L, KAPROTH M A, CAVENDER-BARES J, et al., 2020. Climate and phylogenetic history structure morphological and architectural trait variation among fine-root orders[J]. New Phytologist, 228(6): 1824-1834.
DOI URL |
[22] |
O'HEHIR J F, NAMBIAR E K S, 2010. Productivity of three successive rotations of P. radiata plantations in South Australia over a century[J]. Forest Ecology and Management, 259(10): 1857-1869.
DOI URL |
[23] |
OSTONEN I, HELMISAARI H S, BORKEN W, et al., 2011. Fine root foraging strategies in Norway spruce forests across a European climate gradient[J]. Global Change Biology, 17(12): 3620-3632.
DOI URL |
[24] |
PREGITZER K S, KUBISKE M E, YU C K, et al., 1997. Relationships among root branch order, carbon, and nitrogen in four temperate species[J]. Oecologia, 111(3): 302-308.
DOI URL |
[25] |
PREGITZER K S, DEFOREST J L, BURTON A J, et al., 2002. Fine root architecture of nine North American trees[J]. Ecological Monographs, 72(2): 293-309.
DOI URL |
[26] |
PREGITZER K S, 2008. Tree root architecture-form and function[J]. New Phytologist, 180: 562-564.
DOI URL |
[27] | RIVERO R M, KOJIMA M, GEPSTEIN A, et al., 2007. Delayed leaf senescence induces extreme drought tolerance in a flowering plant[J]. Proceedings of the National Academy of Sciences of the United States of America, 104(49): 19631-19636. |
[28] |
SCHACHTMAN D P, GOODGER J Q D, 2008. Chemical root to shoot signaling under drought[J]. Trends in Plant Science, 13(6): 281-287.
DOI URL |
[29] |
SPRUNGER C D, OATES L G, JACKSON R D, et al., 2017. Plant community composition influences fine root production and biomass allocation in perennial bioenergy cropping systems of the upper Midwest, USA[J]. Biomass and Bioenergy, 105: 248-258.
DOI URL |
[30] |
VICCA S, LUYSSAERT S, PEÑUELAS J, et al., 2012. Fertile forests produce biomass more efficiently[J]. Ecology Letter, 15(6): 520-526.
DOI URL |
[31] |
VOGT K A, VOGT D J, PALMIOTTO P A, et al., 1996. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species[J]. Plant and Soil, 187(2): 159-219.
DOI URL |
[32] |
XIA M X, GUO D L, PREGITZER K S, 2010. Ephemeral root modules in Fraxinus mandshurica[J]. New Phytologist, 188(4): 1065-1074.
DOI URL |
[33] |
YUAN Z Y, CHEN H, 2010. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses[J]. Critical Reviews in Plant Sciences, 29(4): 204-221.
DOI URL |
[34] |
ZADWORNY M, MCCORMACK M L, MUCHA J, et al., 2016. Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient[J]. New Phytologist, 212(2): 389-399.
DOI URL |
[35] |
ZHOU Z C, SHANGGUAN Z P, 2007. Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr.forest of the Loess Plateau of China[J]. Plant and Soil, 291(1-2): 119-129.
DOI URL |
[36] | 蔡瑛莹, 熊德成, 李茵茵, 等, 2018. 土壤增温和氮沉降对杉木幼树细根生物量的影响[J]. 亚热带资源与环境学报, 13(1): 36-44. |
CAI Y Y, XIONG D C, LI Y Y, et al., 2018. Effects of soil warming and nitrogen deposition on fine root biomass of Cunninghamia lanceolata saplings[J]. Journal of Subtropical Resources and Environment, 13(1): 36-44. | |
[37] | 陈光水, 杨玉盛, 何宗明, 等, 2004. 福建柏和杉木人工林细根季节动态和生产力的比较[J]. 林业科学, 40(4): 15-21. |
CHEN G S, YANG Y S, HE Z M, et al., 2004. Comparison on fine root production,distribution and turnover between plantations of Fokienia hodginsii and Cunninghamia lanceolata[J]. Scientia Silvae Sinicae, 40(4): 15-21. | |
[38] | 陈龙池, 汪思龙, 陈楚莹, 2004. 杉木人工林衰退机理探讨[J]. 应用生态学报, 15(10): 1953-1957. |
CHEN L C, WANG S L, CHEN C Y, 2004. Degradation mechanism of Chinese fir plantation[J]. Chinese Journal Applied Ecology, 15(10): 1953-1957. | |
[39] | 陈劲松, 苏智先, 2001. 缙云山马尾松种群生物量生殖配置研究[J]. 植物生态学报, 25(6): 704-708. |
CHEN J S, SU Z X, 2001. Reproductive Allocation of Biomass in Pinus Massoniana at Mt. JinYun[J]. Acta Phytoecologica Sinica, 25(6): 704-708. | |
[40] | 程云环, 韩有志, 王庆成, 等, 2005. 落叶松人工林细根动态与土壤资源有效性关系研究[J]. 植物生态学报, 29(3): 403-410. |
CHEN Y H, HAN Y Z, WANG Q C, et al., 2005. Seasonal dynamics of fine root biomass, root length density, specific root length and soil resource availability in a Larixgmelinis Plantation[J]. Acta Phytoecologica Sinica, 29(3): 403-410. | |
[41] | 方精云, 刘国华, 徐嵩龄, 1996. 我国森林植被的生物量和净生产量[J]. 生态学报, 16(5): 497-508. |
FANG J Y, LIU G H, XU S L, 1996. Biomass and net production of forest vegetation in China[J]. Acta Ecologica Sinica, 16(5): 497-508. | |
[42] | 黄林, 王峰, 周立江, 等, 2012. 不同森林类型根系分布与土壤性质的关系[J]. 生态学报, 32(19): 6110-6119. |
HUANG L, WANG F, ZHOU L J, et al., 2012. Root distribution in the different forest types and their relationship to soil properties[J]. Acta Ecologica Sinica, 32(19):6110-6119.
DOI URL |
|
[43] | 纪娇娇, 张秋芳, 杨智杰, 等, 2020. 模拟氮沉降对中亚热带杉木幼树根系生物量的影响[J]. 生态学报, 40(17): 6118-6125. |
JI J J, ZHANG Q F, YANG Z J, et al., 2020. Effects of simulated nitrogen deposition on root biomass of subtropical Chinese fir saplings[J]. Acta Ecologica Sinica, 40(17): 6118-6125. | |
[44] | 江洪, 白莹莹, 饶应福, 等, 2016. 新围垦盐土地三种人工林群落细根生物量及其影响因素分析[J]. 植物学报, 51(3): 343-352. |
JIANG H, BAI Y Y, RAO Y F, 2016. Fine root biomass and morphological characteristics in three different artificial forest communities in newly reclaimed saline soil[J]. Bulletin of Botany, 51(3): 343-352. | |
[45] | 孔令仑, 黄志群, 何宗明, 等, 2017. 不同林龄杉木人工林的水分利用效率与叶片养分浓度[J]. 应用生态学报, 28(4): 1069-1076. |
KONG L L, HUANG Z Q, HE Z M, et al., 2017. Variations of water use efficiency and foliar nutrient concentrations in Cunninghamia lanceolata plantations at different ages[J]. Chinese Journal of Applied Ecology, 28(4): 1069-1076. | |
[46] | 匡冬姣, 雷丕锋, 2015. 不同林龄杉木人工林细根生物量及分布特征[J]. 中南林业科技大学学报, 35(6): 70-74, 79. |
KUANG D J, LEI P F, 2015. Fine root biomass and vertical distribution of Chinese fir plantations (Cunninghamia lanceolata) at different stand ages[J]. Journal of Central South University of Forestry & Technology, 35(6): 70-74, 79. | |
[47] | 刘福德, 姜岳忠, 王华田, 等, 2005. 杨树人工林连作效应的研究[J]. 水土保持学报, 19(2): 102-105. |
LIU F D, JIANG Y Z, WANG H T, et al., 2005. Effect of continuous cropping on Poplar plantation[J]. Journal of Soil and Water Conservation, 19(2): 102-105. | |
[48] | 刘琪璟, 孟盛旺, 周华, 等, 2017. 中国立木材积表[M]. 北京: 中国林业出版社. |
LIU Q J, MENG S W, ZHOU H, et al., 2017. Tree volume tables of China[M]. Beijing: China Forestry Publishing House. | |
[49] | 孙长忠, 沈国舫, 2001. 我国人工林生产力问题的研究II——影响我国人工林生产力的人为因素与社会因素探讨[J]. 林业科学, 37(4): 26-34. |
SUN C Z, SHEN G F, 2001. Study on the Problems of Forest Plantation Productivity of China Ⅱ. — to Probe into the Social and Other Non-nature Factors Debasing the Plantation Productivity[J]. Scientia Silvae Sinicae, 37(4): 26-34. | |
[50] | 王福根, 卫星杓, 赵国春, 等, 2020. 无患子细根形态及垂直分布特征对配方施肥措施的响应[J]. 南京林业大学学报(自然科学版), https://kns.cnki.net/kcms/detail/32.1161.s.20200915.0849.002.html. |
WANG F G, WEI X B, ZHAO G C, et al., 2020. Effect of morphology and vertical distribution of fine root for Sapindus mukorossi based on formula fertilization[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), https://kns.cnki.net/kcms/detail/32.1161.s.20200915.0849.002.html. | |
[51] | 王建林, 钟志明, 王忠红, 等, 2014. 青藏高原高寒草原生态系统土壤碳氮比的分布特征[J]. 生态学报, 34(22): 6678-6691. |
WANG J L, ZHONG Z M, WANG Z H, et al., 2014. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinhai- Tibetan Plateau[J]. Acta Ecologica Sinica, 34(22): 6678-6691. | |
[52] | 谢建文, 2020. 不同造林密度下杉木人工林的生物量与分配特征[J]. 亚热带农业研究, 16(2): 84-88. |
XIE J W, 2020. Biomass and its distribution characteristics of Cunninghamia lanceolata plantations with different afforestation densities[J]. Subtropical Agriculture Research, 16(2): 84-88. | |
[53] | 徐伟强, 周璋, 李意德, 等, 2016. 植被因子和土壤氮对南亚热带常绿阔叶次生林细根生物量的影响[J]. 生态环境学报, 25(2): 183-188. |
XU W Q, ZHOU Z, LI Y D, et al., 2016. Effects of stand vegetation factors and soil nitrogen on fine root biomass in evergreen broad-leaved secondary forests in lower subtropical China[J]. Ecology and Environmental Sciences, 25(2): 183-188. | |
[54] | 张雷, 项文化, 田大伦, 等, 2009. 第2代杉木林土壤有机碳、全氮对细根分布及形态特征的影响[J]. 中南林业科技大学学报, 29(3): 11-15. |
ZHANG L, XIANG W H, TIAN D L, et al., 2009. Effects of soil nutrients on fine-root biomass, root surface-area and specific root length of Chinese fir plantation in Huitong, Hunan Province[J]. Journal of Central South University of Forestry & Technology, 29(3): 11-15. |
[1] | 王雪梅, 杨雪峰, 赵枫, 安柏耸, 黄晓宇. 基于机器学习算法的干旱区绿洲地上生物量估算[J]. 生态环境学报, 2023, 32(6): 1007-1015. |
[2] | 陈科屹, 林田苗, 王建军, 何友均, 张立文. 天保工程20年对黑龙江大兴安岭国有林区森林碳库的影响[J]. 生态环境学报, 2023, 32(6): 1016-1025. |
[3] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[4] | 潘昱伶, 璩向宁, 李琴, 王磊, 王筱平, 谭鹏, 崔庚, 安雨, 佟守正. 黄河宁夏段典型滩涂湿地土壤理化因子空间分布特征及其对微地形的响应[J]. 生态环境学报, 2023, 32(4): 668-677. |
[5] | 杨耀东, 陈玉梅, 涂鹏飞, 曾清如. 经济作物轮作模式下镉污染农田修复潜力[J]. 生态环境学报, 2023, 32(3): 627-634. |
[6] | 宋志斌, 周佳诚, 谭路, 唐涛. 高原河流着生藻类群落沿海拔梯度的变化特征--以西藏黑曲、雪曲为例[J]. 生态环境学报, 2023, 32(2): 274-282. |
[7] | 张贝儿, 吴建强, 王敏, 熊丽君, 谭娟, 沈城, 黄波涛, 黄沈发. 耕地生态保育工程的土壤健康度评价方法初探[J]. 生态环境学报, 2023, 32(2): 388-396. |
[8] | 李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55. |
[9] | 黄伟佳, 刘春, 刘岳, 黄斌, 李定强, 袁再健. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报, 2023, 32(1): 80-89. |
[10] | 陈科屹, 王建军, 何友均, 张立文. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估[J]. 生态环境学报, 2022, 31(9): 1725-1734. |
[11] | 刘桢迪, 宋艳宇, 王宪伟, 谭稳稳, 张豪, 高晋丽, 高思齐, 杜宇. 冻土区泥炭地植物生长及碳氮特征对模拟增温的响应[J]. 生态环境学报, 2022, 31(9): 1765-1772. |
[12] | 崔乔, 李宗省, 张百娟, 赵越, 南富森. 冻融作用对土壤可溶性碳氮和微生物量碳氮含量影响的荟萃分析[J]. 生态环境学报, 2022, 31(8): 1700-1712. |
[13] | 王磊, 温远光, 周晓果, 朱宏光, 孙冬婧. 尾巨桉与红锥混交对林下植被和土壤性质的影响[J]. 生态环境学报, 2022, 31(7): 1340-1349. |
[14] | 夏恩龙, 农珺清, 魏松坡, 刘希珍, 刘广路. 毛竹向阔叶林扩展过程中土壤养分变化特征[J]. 生态环境学报, 2022, 31(6): 1110-1117. |
[15] | 喻阳华, 吴银菇, 宋燕平, 李一彤. 不同林龄顶坛花椒林地土壤微生物浓度与生物量化学计量特征[J]. 生态环境学报, 2022, 31(6): 1160-1168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||