[1] |
ALI J, LI Y, WANG X J, et al., 2020. Climate-zone-dependent effect mechanism of humic acid and fulvic acid extracted from river sediments on aggregation behavior of graphene oxide[J]. Science of the Total Environment, 721: 137682.
|
[2] |
ALI J, WANG X J, SHANG E X, et al., 2023. Promotion effect of ultraviolet light on graphene oxide aggregation in the presence of different climatic zone's humic and fulvic acid[J]. Water Research, 242: 120261.
|
[3] |
CHEN K L, ELIMELECH M, 2006. Aggregation and deposition kinetics of fullerene (C60) nanoparticles[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 22(26): 10994-11001.
|
[4] |
CHEN K L, ELIMELECH M, 2009. Relating Colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties[J]. Environmental Science & Technology, 43(19): 7270-7276.
|
[5] |
CHOWDHURY I, DUCH M C, MANSUKHANI N D, et al., 2013. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment[J]. Environmental Science & Technology, 47(12): 6288-6296.
|
[6] |
CHOWDHURY I, DUCH M C, MANSUKHANI N D, et al., 2014. Interactions of graphene oxide nanomaterials with natural organic matter and metal oxide surfaces[J]. Environmental Science & Technology, 48(16): 9382-9390.
|
[7] |
DING G H, ZHANG N N, WANG C C, et al., 2018. Effect of the size on the aggregation and sedimentation of graphene oxide in seawaters with different salinities[J]. Journal of Nanoparticle Research, 20: 1-10.
|
[8] |
GALLI M, SÁRINGER S, SZILÁGYI I, et al., 2020. A simple method to determine critical coagulation concentration from electrophoretic mobility[J]. Colloids and Interfaces, 4(2): 20.
|
[9] |
GAO Y, REN X M, TAN X L, et al., 2017. Insights into key factors controlling GO stability in natural surface waters[J]. Journal of Hazardous Materials, 335: 56-65.
DOI
PMID
|
[10] |
GAO Y, ZENG X, ZHANG W, et al., 2022. The aggregation behaviour and mechanism of commercial graphene oxide in surface aquatic environments[J]. Science of the Total Environment, 806(Part 4): 150942.
|
[11] |
GUDARZI M M, 2016. Colloidal stability of graphene oxide: Aggregation in two dimensions[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 32(20): 5058-5068.
|
[12] |
HU X G, ZHOU Q X, 2013. Health and ecosystem risks of graphene[J]. Chemical Reviews, 113(5): 3815-3835.
DOI
PMID
|
[13] |
JIANG Y, RALIYA R, FORTNER J D, et al., 2016. Graphene oxides in water: Correlating morphology and surface chemistry with aggregation behavior[J]. Environmental Science & Technology, 50(13): 6964-6973.
|
[14] |
JIANG Y, RALIYA R, LIAO P, et al., 2017. Graphene oxides in water: assessing stability as a function of material and natural organic matter properties[J]. Environmental Science: Nano, 4(7): 1484-1493.
|
[15] |
MUKHERJEE B, WEAVER J W, 2010. Aggregation and charge behavior of metallic and nonmetallic nanoparticles in the presence of competing similarly-charged inorganic ions[J]. Environmental Science & Technology, 44(9): 3332-3338.
|
[16] |
OUYANG S H, LI K W, ZHOU Q X, et al., 2019. Widely distributed nanocolloids in water regulate the fate and risk of graphene oxide[J]. Water Research, 165(10): 114987.
|
[17] |
QI Y, XIA T J, LI Y, et al., 2016. Colloidal stability of reduced graphene oxide materials prepared using different reducing agents[J]. Environmental Science: Nano, 3(5): 1062-1071.
|
[18] |
QI Y Y, CHEN W S, LIU F F, et al., 2019. Aggregation morphology is a key factor determining protein adsorption on graphene oxide and reduced graphene oxide nanomaterials[J]. Environmental Science: Nano, 6(5): 1303-1309.
|
[19] |
REN X M, LI J X, TAN X L, et al., 2014. Impact of Al2O3 on the aggregation and deposition of graphene oxide[J]. Environmental Science & Technology, 48(10): 5493-5500.
|
[20] |
REN X M, LI J, CHEN C L, et al., 2018. Graphene analogues in aquatic environments and porous media: dispersion, aggregation, deposition and transformation[J]. Environmental Science: Nano, 5(6): 1298-1340.
|
[21] |
TANG H, ZHAO Y, YANG X N, et al., 2017. New insight into the aggregation of graphene oxide using molecular dynamics simulations and extended derjaguin-landau-verwey-overbeek theory[J]. Environmental Science & Technology, 51(17): 9674-9682.
|
[22] |
WANG X L, SHU L, WANG Y Q, et al., 2011. Sorption of peat humic acids to multi-walled carbon nanotubes[J]. Environmental Science & Technology, 45(21): 9276-9283.
|
[23] |
WANG X Y, ZHANG H G, WANG X, et al., 2023. Electroconductive RGO-MXene membranes with wettability-regulated channels: Improved water permeability and electro-enhanced rejection performance[J]. Frontiers of Environmental Science & Engineering, 17(1): 1.
|
[24] |
WU L, LIU L, GAO B, et al., 2013. Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 29(49): 15174-15181.
|
[25] |
YANG K J, CHEN B L, ZHU X Y, et al., 2016. Aggregation, adsorption, and morphological transformation of graphene oxide in aqueous solutions containing different metal cations[J]. Environmental Science & Technology, 50(20): 11066-11075.
|
[26] |
ZHAO J, DAI Y H, WANG Z Y, et al., 2018. Toxicity of GO to freshwater algae in the presence of Al2O3 particles with different morphologies: importance of heteroaggregation[J]. Environmental Science & Technology, 52(22): 13448-13456.
|
[27] |
李兵, 李航, 朱华玲, 等, 2013. 不同pH条件下黄壤胶体凝聚的动态光散射研究[J]. 土壤学报, 50(1): 89-95.
|
|
LI B, LI H, ZHU H L, et al., 2013. Dynamic light scattering of aggregation of colloids in yellow earth different in pH[J]. Acta Pedologica Sinica, 50(1): 89-95.
|
[28] |
李丹怡, 黄显婷, 李继超, 等, 2024. 氧化石墨烯及其复合材料去除水体抗生素的研究进展[J]. 生态环境学报, 33(1): 144-155.
DOI
|
|
LI D Y, HUANG X T, LI J C, et al., 2024. Advances in the removal of antibiotics from water by graphene oxide and its composites[J]. Ecology and Environmental Sciences, 33(1): 144-155.
|
[29] |
吕小慧, 陈白杨, 朱小山, 2016. 氧化石墨烯的水环境行为及其生物毒性[J]. 中国环境科学, 36(11): 3348-3359.
|
|
LÜ X H, CHEN B Y, ZHU X S, 2016. Fate and toxicity of graphene oxide in aquatic environment[J]. China Environmental Science, 36(11): 3348-3359.
|
[30] |
张春华, 黄廷林, 方开凯, 等, 2016. 同温混合初期主库区沉积物间隙水DOM的光谱特征——以周村水库为例[J]. 中国环境科学, 36(10): 3048-3055.
|
|
ZHANG C H, HUANG Y L, FANG K K, et al., 2016. Spectral characteristics of DOM in sediment interstitial water of the main reservoir area during the initial stage of isothermal mixing: A case study of Zhoucun Reservoir[J]. China Environmental Science, 36(10): 3048-3055.
|