[1] |
AN J L, ZHU B, WANG H L, et al., 2014. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China[J]. Atmospheric Environment, 97: 206-214.
|
[2] |
ATKINSON R, 2000. Atmospheric chemistry of VOCs and NOx[J]. Atmospheric Environment, 34(12-14): 2063-2101.
|
[3] |
ATKINSON R, AREY J, 2003. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 103(12): 4605-4638.
PMID
|
[4] |
CARTER W P L, 2010. Development of the SAPRC-07 chemical mechanism[J]. Atmospheric Environment, 44(40): 5324-5335.
|
[5] |
GROSJEAN D, 1992. In situ organic aerosol formation during a smog episode: Estimated production and chemical functionality[J]. Atmospheric Environment. Part A. General Topics, 26(6): 953-963.
|
[6] |
GROSJEAN D, SEINFELD J H, 1989. Parameterization of the formation potential of secondary organic aerosols[J]. Atmospheric Environment (1967), 23(8): 1733-1747.
|
[7] |
GUO H, SO L K, SIMPSON J I, et al., 2007. C1-C8 volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processing and source apportionment[J]. Atmospheric Environment, 41(7): 1456-1472.
|
[8] |
HUANG X F, WANG C, ZHU B, et al., 2019. Exploration of sources of OVOCs in various atmospheres in southern China[J]. Environmental Pollution, 249: 831-842.
|
[9] |
HUI L R, LIU X G, TAN Q W, et al., 2019. VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China[J]. Science of the Total Environment, 650(Part 2): 2624-2639.
|
[10] |
LI J, LI H Y, HE Q S, et al., 2020b. Characteristics, sources and regional inter-transport of ambient volatile organic compounds in a city located downwind of several large coke production bases in China[J]. Atmospheric Environment, 233: 117573.
|
[11] |
LI X B, YUAN B, WANG S, et al., 2022. Variations and sources of volatile organic compounds (VOCs) in urban region: insights from measurements on a tall tower[J]. Atmospheric Chemistry and Physics, 22(16): 10567-10587.
|
[12] |
LI Y D, YIN S S, YU S J, et al., 2020a. Characteristics, source apportionment and health risks of ambient VOCs during high ozone period at an urban site in central plain, China[J]. Chemosphere, 250: 126283.
|
[13] |
LIU X F, LI X Y, TAN X, et al., 2022. Distribution characteristics, source apportionment, and chemical reactivity of volatile organic compounds in two adjacent areas in Shanxi, North China[J]. Atmospheric Environment, 290: 119374.
|
[14] |
LIU Y, SHAO M, FU L L, et al., 2008. Source profiles of volatile organic compounds (VOCs) measured in China: Part I[J]. Atmospheric Environment, 42(25): 6247-6260.
|
[15] |
LIU Y F, YIN S J, ZHANG S Q, et al., 2024. Drivers and impacts of decreasing concentrations of atmospheric volatile organic compounds (VOCs) in Beijing during 2016-2020[J]. Science of the Total Environment, 906: 167847.
|
[16] |
PEKEY B, YILMAZ H, 2011. The use of passive sampling to monitor spatial trends of volatile organic compounds (VOCs) at an industrial city of Turkey[J]. Microchemical Journal, 97(2): 213-219.
|
[17] |
QIN Y, WALK T, GARY R, et al., 2007. C2-C10 nonmethane hydrocarbons measured in Dallas, USA—Seasonal trends and diurnal characteristics[J]. Atmospheric Environment, 41(28): 6018-6032.
|
[18] |
QU H, WANG Y H, ZHANG R X, et al., 2021. Chemical production of oxygenated volatile organic compounds strongly enhances boundary-layer oxidation chemistry and ozone production[J]. Environmental Science & Technology, 55(20): 13718-13727.
|
[19] |
REN X, WEN Y P, HE Q S, et al., 2021. Higher contribution of coking sources to ozone formation potential from volatile organic compounds in summer in Taiyuan, China[J]. Atmospheric Pollution Research, 12(6): 101083.
|
[20] |
SADEGHI B, POUVAEI A, CHOI Y, et al., 2022. Influence of seasonal variability on source characteristics of VOCs at Houston industrial area[J]. Atmospheric Environment, 277: 119077.
|
[21] |
SUN J, WANG Y S, WU F K, et al., 2018. Vertical characteristics of VOCs in the lower troposphere over the North China Plain during pollution periods[J]. Environmental Pollution, 236: 907-915.
DOI
PMID
|
[22] |
WANG Y, CUI Y, HE Q S, et al., 2023. Significant impact of VOCs emission from coking and coal/biomass combustion on O3 and SOA formation in Taiyuan, China[J]. Atmospheric Pollution Research, 14(2): 101671.
|
[23] |
WU Y J, FAN X L, LIU Y, et al., 2023. Source apportionment of VOCs based on photochemical loss in summer at a suburban site in Beijing[J]. Atmospheric Environment, 293: 119459.
|
[24] |
YAO D, TANG G Q, WANG Y H, et al., 2021. Significant contribution of spring northwest transport to volatile organic compounds in Beijing[J]. Journal of Environmental Sciences, 104: 169-181.
DOI
PMID
|
[25] |
ZHANG X F, YIN Y Y, WEN J H, et al., 2019. Characteristics, reactivity and source apportionment of ambient volatile organic compounds (VOCs) in a typical tourist city[J]. Atmospheric Environment, 215: 116898.
|
[26] |
曹姗姗, 2020. 大连市城区夏季环境空气VOCs污染特征及来源分析[J]. 环境保护科学, 46(4): 113-116.
|
|
CAO S S, 2020. Analysis of the characteristics and sources of VOCs pollution of urban area of Dalian in summer[J]. Environmental Protection Science, 46(4): 113-116.
|
[27] |
高亢, 章慧, 刘梦迪, 等, 2020. 芜湖市大气挥发性有机物污染特征、大气反应活性及源解析[J]. 环境科学, 41(11): 4885-4894.
|
|
GAO K, ZHANG H, LIU M D, et al., 2020. Characteristics, atmospheric reactivity, and source apportionment of ambient volatile organic compounds in Wuhu[J]. Environmental Science, 41(11): 4885-4894.
|
[28] |
关璐, 苏枞枞, 库盈盈, 等, 2023. 沈阳工业区夏季VOCs组成特征及其对二次污染形成的贡献[J]. 环境科学, 44(7): 3779-3787.
|
|
GUAN L, SU C C, KU Y Y, et al., 2023. Composition characteristics of volatile organic compounds and associated contribution to secondary pollution in Shenyang industrial area in summer[J]. Environmental Science, 44(7): 3779-3787.
|
[29] |
景盛翱, 高雅琴, 沈建东, 等, 2020. 杭州市城区挥发性有机物污染特征及反应活性[J]. 环境科学, 41(12): 5306-5315.
|
|
JING S A, GAO Y Q, SHEN J D, et al., 2020. Characteristics and reactivity of ambient VOCs in urban Hangzhou, China[J]. Environmental Science, 41(12): 5306-5315.
|
[30] |
李如梅, 闫雨龙, 王成, 等, 2021. 太原市城区夏季VOCs来源及其对O3生成的贡献[J]. 中国环境科学, 41(6): 2515-2525.
|
|
LI R M, YAN Y L, WANG C, et al., 2021. Source apportionment of VOCs and its contribution to O3 production during summertime in urban area of Taiyuan[J]. China Environmental Science, 41(6): 2515-2525.
|
[31] |
梁思远, 王帅, 高松, 等, 2021. 北京市城区挥发性有机物污染特征及其对臭氧影响分析[J]. 中国环境监测, 37(6): 21-30.
|
|
LIANG S Y, WANG S, GAO S, et al., 2021. Characteristics of volatile organic compounds and its impact on O3 formation in Beijing urban area[J]. Environmental Monitoring in China, 37(6): 21-30.
|
[32] |
林旭, 2016. 南京北郊VOCs变化特征及其对二次有机气溶胶和臭氧的贡献研究[D]. 南京: 南京信息工程大学.
|
|
LIN X, 2016. The characteristics, potential contribution of secondary organic aerosols and ozone of VOCs in the northern suburb of Nanjing[D]. Nanjing: Nanjing University of Information Science and Technology.
|
[33] |
司雷霆, 王浩, 李洋, 等, 2019. 太原市夏季大气VOCs污染特征及臭氧生成潜势[J]. 中国环境科学, 39(9): 3655-3662.
|
|
SI L T, WANG H, LI Y, et al., 2019. Pollution characteristics and ozone formation potential of ambient VOCs in summer in Taiyuan[J]. China Environmental Science, 39(9): 3655-3662.
|
[34] |
宋鑫, 袁斌, 王思行, 等, 2023. 珠三角典型工业区挥发性有机物 (VOCs) 组成特征: 含氧挥发性有机物的重要性[J]. 环境科学, 44(3): 1336-1345.
|
|
SONG X, YUAN B, WANG S X, et al., 2023. Compositional characteristics of volatile organic compounds in typical industrial areas of the pearl river delta: Importance of oxygenated volatile organic compounds[J]. Environmental Science, 44(3): 1336-1345.
|
[35] |
王甫华, 吴曼曼, 乔佳, 等, 2019. 新型挥发性有机物吸附浓缩在线监测系统的研制[J]. 质谱学报, 40(2): 177-188.
DOI
|
|
WANG F H, WU M M, QIAO J, et al., 2019. Development of new online monitoring system of adsorption and concentration for atmospheric volatile organic compounds[J]. Journal of Chinese Mass Spectrometry Society, 40(2): 177-188.
|
[36] |
王茜, 2024. 上海城郊夏季VOCs变化特征及其对O3污染的贡献分析[J]. 环境科学, 45(8): 4440-4447.
|
|
WANG Q, 2024. Characteristics and influence of atmospheric VOCs in ozone formation potential in suburb of Shanghai during summer[J]. Environmental Science, 45(8): 4440-4447.
|
[37] |
温彦平, 闫雨龙, 李丽娟, 等, 2016. 太原市夏季挥发性有机物污染特征及来源分析[J]. 太原理工大学学报, 47(3): 331-336.
|
|
WEN Y P, YAN Y L, LI L J, et al., 2016. Pollution characteristic and source analysis of volatile organic compounds in summer in Taiyuan[J]. Journal of Taiyuan University of Technology, 47(3): 331-336.
|
[38] |
徐晨曦, 陈军辉, 姜涛, 等, 2020. 成都市区夏季大气挥发性有机物污染特征及来源解析[J]. 环境科学, 41(12): 5316-5324.
|
|
XU C X, CHEN J H, JIANG T, et al., 2020. Characteristics and sources of atmospheric volatile organic compounds pollution in summer in Chengdu[J]. Environment Science, 41(12): 5316-5324.
|
[39] |
张蕊, 孙雪松, 王裕, 等, 2023. 北京市城区夏季大气VOCs变化特征及臭氧生成潜势[J]. 环境科学, 44(4): 1954-1961.
|
|
ZHANG R, SUN X S, WANG Y, et al., 2023. Variation characteristics and ozone formation potential of ambient VOCs in urban Beijing in summer[J]. Environment Science, 44(4): 1954-1961.
|
[40] |
张子金, 林煜棋, 张煜娴, 等, 2021. 南京毒性挥发性有机化合物夏冬季源解析及健康风险评估[J]. 环境科学, 42(12): 5673-5686.
|
|
ZHANG Z J, LIN Y C, ZHANG Y X, et al., 2021. Source analysis and health risk assessment of toxic volatile organic compounds in Nanjing in summer and winter[J]. Environmental Science, 42(12): 5673-5686.
|