生态环境学报 ›› 2025, Vol. 34 ›› Issue (3): 442-450.DOI: 10.16258/j.cnki.1674-5906.2025.03.011
梅耀萍(), 吴本丽, 黄龙, 吴仓仓, 陈静, 陈夏君, 何吉祥*(
)
收稿日期:
2024-09-12
出版日期:
2025-03-18
发布日期:
2025-03-24
通讯作者:
*何吉祥。E-mail: hejixiang813@126.com作者简介:
梅耀萍(1994年生),女,助理研究员,博士,主要从事水产健康养殖研究。E-mail: meiyaoping@stu.ouc.edu.cn
基金资助:
MEI Yaoping(), WU Benli, HUANG Long, WU Cangcang, CHEN Jing, CHEN Xiajun, HE Jixiang*(
)
Received:
2024-09-12
Online:
2025-03-18
Published:
2025-03-24
摘要:
为了多角度分析水生植物利用养殖尾水不同形态氮磷过程,揭示营养元素循环利用规律,优化水产生态养殖模式,通过监测黄花美人蕉(Canna indica var. flava)、芦苇(Phragmites australis)、香蒲(Typha orientalis)和菖蒲(Acorus calamus)对中华鳖(Pelodiscus sinensis)养殖尾水净化过程中不同形态氮(铵态氮NH4+-N、亚硝态氮NO2−-N和硝态氮NO3−-N)和磷(可溶态磷DP、可溶活性态磷SRP、可溶态有机磷DOP和颗粒态磷PP)含量,结合水生植物生物量和元素累积情况,分析其对尾水净化效果和利用机制。黄花美人蕉组对总氮、总磷的去除率最高,分别为27.5%和21.9%;所有处理组对NH4+-N和NO2−-N去除率均达到95.0%以上,对NO3−-N去除率为25.4%-26.9%,黄花美人蕉组对不同形态氮去除率最高;芦苇、黄花美人蕉和香蒲组分别对DP、SRP和PP去除率最高。黄花美人蕉组总氮累积量、地上部分总磷累积量显著高于其他组,菖蒲组地下部分总磷累积量显著高于其他组;氮和磷累积量与总氮、总磷去除率之间具有显著的正相关关系(r=0.763,p=0.000;r=0.443,p=0.011)。总之,黄花美人蕉组净化效果更好,其次是芦苇、菖蒲和香蒲组;水生植物会选择优先利用铵态氮,其次是亚硝态氮和硝态氮,其地上部分与地下部分吸收利用表现出不同的响应规律。
中图分类号:
梅耀萍, 吴本丽, 黄龙, 吴仓仓, 陈静, 陈夏君, 何吉祥. 不同水生植物对水产养殖尾水氮磷去除效果研究[J]. 生态环境学报, 2025, 34(3): 442-450.
MEI Yaoping, WU Benli, HUANG Long, WU Cangcang, CHEN Jing, CHEN Xiajun, HE Jixiang. Purification of Nitrogen and Phosphorus in Aquaculture Wastewater Using Different Aquatic Plants[J]. Ecology and Environment, 2025, 34(3): 442-450.
植物种类 | 黄花美人蕉 Canna indica var. flava | 芦苇 Phragmites australis | 香蒲 Typha orientalis | 菖蒲 Acorus calamus |
---|---|---|---|---|
整体增长量/g | 32.34±2.83B | 11.31±1.41A | 9.85±3.27A | 11.25±0.52A |
整体增长率/% | 32.32±2.73B | 11.34±2.00A | 9.86±3.36A | 11.18±0.45A |
地下部分增长量/g | 3.78±0.18B | 2.85±0.34A | 3.00±0.29A | 5.72±0.96C |
地下部分增长率/% | 24.40±0.99C | 19.15±1.69B | 7.78±0.52A | 17.55±3.65B |
地上部分增长量/g | 28.56±3.01B | 8.46±1.74A | 6.85±2.97A | 5.53±0.44A |
地上部分增长率/% | 33.76±3.39B | 9.99±2.61A | 11.21±5.22A | 8.16±0.88A |
表1 不同植物处理组实验后鲜质量变化
Table 1 The fresh weight change of different plant groups during the experiment
植物种类 | 黄花美人蕉 Canna indica var. flava | 芦苇 Phragmites australis | 香蒲 Typha orientalis | 菖蒲 Acorus calamus |
---|---|---|---|---|
整体增长量/g | 32.34±2.83B | 11.31±1.41A | 9.85±3.27A | 11.25±0.52A |
整体增长率/% | 32.32±2.73B | 11.34±2.00A | 9.86±3.36A | 11.18±0.45A |
地下部分增长量/g | 3.78±0.18B | 2.85±0.34A | 3.00±0.29A | 5.72±0.96C |
地下部分增长率/% | 24.40±0.99C | 19.15±1.69B | 7.78±0.52A | 17.55±3.65B |
地上部分增长量/g | 28.56±3.01B | 8.46±1.74A | 6.85±2.97A | 5.53±0.44A |
地上部分增长率/% | 33.76±3.39B | 9.99±2.61A | 11.21±5.22A | 8.16±0.88A |
植物种类 | 实验前后增量/mg | ||||
---|---|---|---|---|---|
总氮 | 总磷 | ||||
地下部分 | 地上部分 | 地下部分 | 地上部分 | ||
黄花美人蕉 Canna indica var. flava | 31.61± 0.45C | 1435.07± 45.97C | 6.02± 0.09B | 152.70± 6.01C | |
芦苇 Phragmites australis | 13.70± 0.73A | 976.74± 30.81B | 1.96± 0.10A | 78.20± 2.39B | |
香蒲 Typha orientalis | 14.92± 0.66A | 117.88± 1.70A | 1.61± 0.10A | 7.63± 0.37A | |
菖蒲 Acorus calamus | 27.02± 0.43B | 100.02± 1.61A | 7.97± 0.10C | 6.32± 0.00A |
表2 不同植物处理组氮磷增加量及分布
Table 2 The increase and distribution of nitrogen and phosphorus in different plant groups during the experiment
植物种类 | 实验前后增量/mg | ||||
---|---|---|---|---|---|
总氮 | 总磷 | ||||
地下部分 | 地上部分 | 地下部分 | 地上部分 | ||
黄花美人蕉 Canna indica var. flava | 31.61± 0.45C | 1435.07± 45.97C | 6.02± 0.09B | 152.70± 6.01C | |
芦苇 Phragmites australis | 13.70± 0.73A | 976.74± 30.81B | 1.96± 0.10A | 78.20± 2.39B | |
香蒲 Typha orientalis | 14.92± 0.66A | 117.88± 1.70A | 1.61± 0.10A | 7.63± 0.37A | |
菖蒲 Acorus calamus | 27.02± 0.43B | 100.02± 1.61A | 7.97± 0.10C | 6.32± 0.00A |
时间 t/d | 植物种类 | ||||
---|---|---|---|---|---|
空白对照 | 黄花美人蕉 Canna indica var. flava | 芦苇 Phragmites australis | 香蒲 Typha orientalis | 菖蒲 Acorus calamus | |
1 | 0.00±0.00Aa | 0.00±0.00Aa | 0.00±0.00Aa | 0.00±0.00Aa | 0.00±0.00Aa |
3 | 0.20±1.24Aa | 0.69±0.69Aa | 0.36±0.78Aa | 0.93±0.50Aa | 0.70±0.42Aa |
6 | 0.38±0.63Aab | 5.07±1.72Cb | 4.40±1.25BCb | 2.32±1.71ABa | 4.09±0.79BCb |
9 | 0.86±2.36Aab | 8.75±1.29Bc | 8.40±2.00Bc | 7.15±1.61Bb | 9.34±2.36Bc |
12 | 2.29±1.25Aab | 15.29±2.96Dd | 12.77±1.51Cd | 8.86±1.62Bb | 13.61±2.87CDd |
16 | 3.95±4.22Ab | 17.09±0.97Dd | 14.08±1.29BCd | 13.24±2.95Bc | 16.10±2.49CDd |
25 | 13.61±2.31Ac | 24.01±2.24Ce | 22.87±2.54Ce | 17.66±0.74Bd | 22.51±1.88Ce |
32 | 14.05±0.52Ac | 27.52±1.61Df | 23.62±1.21Ce | 20.78±1.29Be | 23.47±0.84Ce |
表3 不同植物处理组实验期间总氮去除率
Table 3 Removal rate of total nitrogen of different plant groups during the experiment %
时间 t/d | 植物种类 | ||||
---|---|---|---|---|---|
空白对照 | 黄花美人蕉 Canna indica var. flava | 芦苇 Phragmites australis | 香蒲 Typha orientalis | 菖蒲 Acorus calamus | |
1 | 0.00±0.00Aa | 0.00±0.00Aa | 0.00±0.00Aa | 0.00±0.00Aa | 0.00±0.00Aa |
3 | 0.20±1.24Aa | 0.69±0.69Aa | 0.36±0.78Aa | 0.93±0.50Aa | 0.70±0.42Aa |
6 | 0.38±0.63Aab | 5.07±1.72Cb | 4.40±1.25BCb | 2.32±1.71ABa | 4.09±0.79BCb |
9 | 0.86±2.36Aab | 8.75±1.29Bc | 8.40±2.00Bc | 7.15±1.61Bb | 9.34±2.36Bc |
12 | 2.29±1.25Aab | 15.29±2.96Dd | 12.77±1.51Cd | 8.86±1.62Bb | 13.61±2.87CDd |
16 | 3.95±4.22Ab | 17.09±0.97Dd | 14.08±1.29BCd | 13.24±2.95Bc | 16.10±2.49CDd |
25 | 13.61±2.31Ac | 24.01±2.24Ce | 22.87±2.54Ce | 17.66±0.74Bd | 22.51±1.88Ce |
32 | 14.05±0.52Ac | 27.52±1.61Df | 23.62±1.21Ce | 20.78±1.29Be | 23.47±0.84Ce |
时间 t/d | 植物种类 | ||||
---|---|---|---|---|---|
空白对照 | 黄花美人蕉 Canna indica var. flava | 芦苇 Phragmites australis | 香蒲 Typha orientalis | 菖蒲 Acorus calamus | |
1 | 0.00±0.00Aa | 0.00±0.00Aa | 0.00±0.00Aa | 0.00±0.00Aa | 0.00±0.00Aa |
3 | 3.19±0.27Aab | 4.28±0.21Ab | 4.47±0.20Ab | 4.81±0.17Ab | 4.34±0.26Ab |
6 | 4.79±2.59Abc | 10.57±3.47Bc | 4.84±2.69Ab | 5.18±2.17Ab | 6.43±3.40Abc |
9 | 6.68±2.38Abc | 12.56±0.78Bcd | 12.12±2.32Bc | 8.65±1.75Ac | 8.15±2.92Ac |
12 | 8.46±3.56Acd | 14.08±2.94Bd | 12.56±2.33Bcd | 12.64±2.13Bd | 9.04±3.42Ac |
16 | 11.84±0.69Ad | 15.18±3.22ABde | 15.52±2.43Bde | 14.16±1.59ABde | 13.72±3.57ABd |
25 | 12.46±1.97Ad | 16.28±1.27Be | 16.92±1.13Bef | 16.62±1.62Be | 16.38±2.55Bde |
32 | 12.75±2.85Ad | 21.85±1.01Cf | 19.96±2.42BCf | 21.03±1.71Cf | 17.66±1.01Be |
表4 不同植物处理组实验期间总磷去除率
Table 4 Removal rate of total phosphorus of different plant groups during the experiment %
时间 t/d | 植物种类 | ||||
---|---|---|---|---|---|
空白对照 | 黄花美人蕉 Canna indica var. flava | 芦苇 Phragmites australis | 香蒲 Typha orientalis | 菖蒲 Acorus calamus | |
1 | 0.00±0.00Aa | 0.00±0.00Aa | 0.00±0.00Aa | 0.00±0.00Aa | 0.00±0.00Aa |
3 | 3.19±0.27Aab | 4.28±0.21Ab | 4.47±0.20Ab | 4.81±0.17Ab | 4.34±0.26Ab |
6 | 4.79±2.59Abc | 10.57±3.47Bc | 4.84±2.69Ab | 5.18±2.17Ab | 6.43±3.40Abc |
9 | 6.68±2.38Abc | 12.56±0.78Bcd | 12.12±2.32Bc | 8.65±1.75Ac | 8.15±2.92Ac |
12 | 8.46±3.56Acd | 14.08±2.94Bd | 12.56±2.33Bcd | 12.64±2.13Bd | 9.04±3.42Ac |
16 | 11.84±0.69Ad | 15.18±3.22ABde | 15.52±2.43Bde | 14.16±1.59ABde | 13.72±3.57ABd |
25 | 12.46±1.97Ad | 16.28±1.27Be | 16.92±1.13Bef | 16.62±1.62Be | 16.38±2.55Bde |
32 | 12.75±2.85Ad | 21.85±1.01Cf | 19.96±2.42BCf | 21.03±1.71Cf | 17.66±1.01Be |
植物种类 | 植物实验后累积的氮磷量/mg | 养殖尾水氮磷总去除率/% | 相关性 | |||||
---|---|---|---|---|---|---|---|---|
氮 | 磷 | 氮 | 磷 | 氮 | 磷 | |||
黄花美人蕉 Canna indica var. flava | 1466.68±45.52C | 158.72±5.91C | 27.52±1.61C | 21.85±1.01B | y=0.0036x+21.43 R2=0.5827 r=0.763,p=0.000 | y=0.0161x+19.07 R2=0.1964 r=0.443,p=0.011 | ||
芦苇 Phragmites australis | 990.44±31.54B | 80.15±2.50B | 23.62±1.21B | 19.96±2.42AB | ||||
香蒲 Typha orientalis | 132.80±2.36A | 9.23±0.47A | 20.78±1.29A | 21.03±1.71B | ||||
菖蒲 Acorus calamus | 127.03±2.03A | 14.28±0.09A | 23.47±0.84B | 17.66±1.01A |
表5 植物实验后累积的氮磷含量与尾水中氮磷总去除率相关性
Table 5 The correlation between the accumulated nitrogen and phosphorus content and the total removal rate of nitrogen and phosphorus in aquaculture wastewater during the experiment
植物种类 | 植物实验后累积的氮磷量/mg | 养殖尾水氮磷总去除率/% | 相关性 | |||||
---|---|---|---|---|---|---|---|---|
氮 | 磷 | 氮 | 磷 | 氮 | 磷 | |||
黄花美人蕉 Canna indica var. flava | 1466.68±45.52C | 158.72±5.91C | 27.52±1.61C | 21.85±1.01B | y=0.0036x+21.43 R2=0.5827 r=0.763,p=0.000 | y=0.0161x+19.07 R2=0.1964 r=0.443,p=0.011 | ||
芦苇 Phragmites australis | 990.44±31.54B | 80.15±2.50B | 23.62±1.21B | 19.96±2.42AB | ||||
香蒲 Typha orientalis | 132.80±2.36A | 9.23±0.47A | 20.78±1.29A | 21.03±1.71B | ||||
菖蒲 Acorus calamus | 127.03±2.03A | 14.28±0.09A | 23.47±0.84B | 17.66±1.01A |
[1] | AHMAD A L, CHIN J Y, MOHD HARUN M H Z, et al., 2022. Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review[J]. Journal of Water Process Engineering, 46: 102553. |
[2] | BROUGHTON R J, MARSDEN I D, HILL J V, et al., 2017. Behavioural, physiological and biochemical responses to aquatic hypoxia in the freshwater crayfish, Paranephrops zealandicus[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 212: 72-80. |
[3] | CAO T, XIE P, LI Z Q, et al., 2008. Physiological stress of high NH4+ concentration in water column on the submersed macrophyte Vallisneria Natans L.[J]. Bulletin of Environmental Contamination and Toxicology, 82(3): 296-299. |
[4] |
CHEN F F, XIAO Y, WU X W, et al., 2020. Replacement of feed by fresh microalgae as a novel technology to alleviate water deterioration in aquaculture[J]. RSC Advances, 10(35): 20794-20800.
DOI PMID |
[5] | GE Y, GU X H, MAO Z G, et al., 2023. How does aquaculture activity affect phytoplankton functional groups in Gaoyou Lake, China[J]. Journal of a)Freshwater Ecology, 38(1): 2159554. |
[6] | HONG M L, CHEN L Q, SUN X J, et al., 2007. Metabolic and immune responses in Chinese mitten-handed crab (Eriocheir sinensis) juveniles exposed to elevated ambient ammonia[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 145(3): 363-369. |
[7] | LI S P, WANG L G, CHEN P Z, 2013. The effects of purifying livestock a)wastewater by different aquatic plants[C]// 2013 International Conference on Materials for Renewable Energy and Environment. Chengdu, China: IEEE: 649-652. |
[8] | LI W, DING H Y, ZHANG F Y, et al., 2016. Effects of water spinach Ipomoea aquatica cultivation on water quality and performance of Chinese soft-shelled turtle Pelodiscus sinensis pond culture[J]. Aquaculture Environment Interactions, 8: 567-574. |
[9] |
LUDEWIG U, NEUHÄUSER B, DYNOWSKI M, 2007. Molecular mechanisms of ammonium transport and accumulation in plants[J]. FEBS Letters, 581(12): 2301-2308.
PMID |
[10] | LUO G Z, 2022. Review of waste phosphorus from aquaculture: Source, removal and recovery[J]. Reviews in Aquaculture, 15(3): 1058-1082. |
[11] | MOHD NIZAM N U, MOHD HANAFIAH M, MOHD NOOR I, et al., 2020. Efficiency of five selected aquatic plants in phytoremediation of aquaculture wastewater[J]. Applied Sciences, 10(8): 2712-2725. |
[12] | PIEDRAHITA R H, 2003. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation[J]. Aquaculture, 226(1-4): 35-44. |
[13] |
REZANIA S, PONRAJ M, TALAIEKHOZANI A, et al., 2015. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater[J]. Journal of Environmental Management, 163: 125-133.
DOI PMID |
[14] | SONG G L, HOU W H, WANG Q H, et al., 2006. Effect of low temperature on eutrophicated waterbody restoration by Spirodela polyrhiza[J]. Bioresource Technology, 97(15): 1865-1869. |
[15] | SUN X Y, LI X P, TANG S, et al., 2022. A review on algal-bacterial symbiosis system for aquaculture tail water treatment[J]. Science of The Total Environment, 847: 157620. |
[16] | THIEN NGUYEN K T, DAO VO C T, NGO A T, et al., 2023. Aquaculture wastewater quality improvement by floating raft of native aquatic plants in an Giang Province, Vietnam[J]. Pertanika Journal of Science and Technology, 31(2): 729-758. |
[17] |
WANG Y H, WANG J F, ZHAO X X, et al., 2016. The inhibition and adaptability of four wetland plant species to high concentration of ammonia wastewater and nitrogen removal efficiency in constructed wetlands[J]. Bioresource Technology, 202: 198-205.
DOI PMID |
[18] | WU X, WU H, YE J Y, 2014. Purification effects of two eco-ditch systems on Chinese soft-shelled turtle greenhouse culture wastewater pollution[J]. Environmental Science and Pollution Research, 21(8): 5610-5618. |
[19] | YANG J J, ZHAO X Y, CHEN Y, et al., 2022. Identification, structural, and expression analyses of spx genes in giant duckweed (Spirodela polyrhiza) reveals its role in response to low phosphorus and nitrogen stresses[J]. Cells, 11(7): 1167-1191. |
[20] | ZHANG H X, HAN J Q, CHEN F Z, et al., 2021. Review on plants selection and application effects in ecological floating beds based on water purification[J]. IOP Conference Series: Earth and Environmental Science, 647: 012186. |
[21] | ZHANG S Y, LIU X J, HAO B B, et al., 2024. Nitrogen removal performance and mechanisms of three aquatic plants for farmland tail water purification[J]. Science of The Total Environment, 917: 170524. |
[22] | ZHAO J, ZOU Y Y, CHEN H X, et al., 2019. Effects of stocking density of Chinese soft‐shelled turtle and interactions between cultivated species on growth performance and the environment in a turtle-rice coculture system[J]. Journal of the World Aquaculture Society, 51(3): 788-803. |
[23] | 陈敏, 刘中柱, 卞祖良, 2002. 高密度水产养殖自控生态型大棚的水质净化技术[J]. 农业工程学报, 18(6): 95-97. |
CHEN M, LIU Z Z, BIAN Z L, 2002. Wastewater purifying technology of intensive aquaculture greenhouse: A case study on an automatically controlled ecological greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 18(6): 95-97. | |
[24] | 陈昱, 时红, 才硕, 等, 2024. 不同水生植物对养猪废水净化效果研究[J]. 安徽农业科学, 52(3): 61-64. |
CHEN Y, SHI H, CAI S, et al., 2024. Research on purification effect of different aquatic plants on swine wastewater[J]. Journal of Anhui Agricultural Sciences, 52(3): 61-64. | |
[25] | 方源, 谢培, 谭林, 等, 2021. 生境对挺水植物生长的影响及其反馈作用机制综述[J]. 生态学杂志, 40(8): 2610-2619. |
FANG Y, XIE P, TAN L, et al., 2021. A review of the influence of habitat on emergent macrophyte growth and its feedback mechanism[J]. Chinese Journal of Ecology, 40(8): 2610-2619.
DOI |
|
[26] | 高冲, 杨肖娥, 向律成, 等, 2008. pH和温度对薏苡植物床去除富营养化水中氮磷的影响[J]. 农业环境科学学报, 27(4): 1495-1500. |
GAO C, YANG X E, XIANG L C, et al., 2008. The effects of pH and temperature on removal of nitrogen and phosphorus from eutrophicated water by Coix Lachryma-jobi. L.[J]. Jpurnal of Agro-Environment Science, 27(4): 1495-1500. | |
[27] | 谷照虎, 赵树鑫, 吴文卫, 等, 2024. 硝酸盐胁迫对美人蕉苗期生理生化特性的影响[J/OL]. 广东农业科学, 1-11 [2024-09-10]. http://kns.cnki.net/kcms/detail/44.1267.S.20231204.1514.002.html. |
GU Z H, ZHAO S X, WU W W, et al., 2024. Effects of nitrate stress on physiological and biochemical characteristics of Canna generalis bailey seedling[J/OL]. Guangdong Agricultural Sciences, 1-11 [2024-09-10]. http://kns.cnki.net/kcms/detail/44.1267.S.20231204.1514.002.html. | |
[28] | 顾珉嘉, 刘佳佳, 张逸飞, 等, 2023. 不同水生植物对生活污水尾水净化能力对比研究[J]. 广东化工, 50(7): 178-180, 202. |
GU M J, LIU J J, ZHANG Y F, et al., 2023 Study on the Mechanism of Deep Purification of Treated Wastewater by Aquatic Plants[J]. Guangdong Chemical Industry, 50(7): 178-180, 202. | |
[29] | 国家环境保护总局科技标准司, 2002. 地表水环境质量标准 (第3版): GB 3838—2002[S]. 北京: 标准出版社: 2. |
Department of Science and Technology Standards of the State Environmental Protection Administration, 2002. Environmental quality standards for surface water (3rd edition): GB 3838—2002[S]. Beijing: China Standard Press: 2. | |
[30] | 郭忠宝, 王柏明, 阴晴朗, 等, 2019. 浮床种植空心菜对罗非鱼养殖池塘水质的净化效果[J]. 南方农业学报, 50(6): 1378-1384. |
GUO Z B, WANG B M, YIN Q L, et al., 2019. Purification effects of floating bed cultivation of water spinach on tilapia aquaculture pond water quality[J]. Journal of Southern Agriculture, 50(6): 1378-1384. | |
[31] | 黄鑫, 谭佩阳, 侯志勇, 等, 2024. 不同碳源添加量对地表流人工湿地污水脱氮效果影响[J/OL]. 水处理技术, 1-6. [2024-11-27]. http://kns.cnki.net/kcms/detail/33.1127.P.20241121.1516.008.html. |
HUANG X, TAN P Y, HOU Z Y, et al., 2024. Effect of different carbon source additives on nitrogen removal efficiency of surface flow artificial wetland wastewater[J/OL]. Technology of Water Treatment, 1-6. [2024-11-27]. http://kns.cnki.net/kcms/detail/33.1127.P.20241121.1516.008.html. | |
[32] |
毛栽华, 张晔, 李虎, 等, 2021. 莲藕面积对藕鳖共生田浮游植物群落结构的影响[J]. 中国农学通报, 37(6): 68-74.
DOI |
MAO Z H, ZHANG Y, LI H, et al., 2021. Lotus area in integrated lotus-chinese soft-shelled turtle culture: The effect on community structure of phytoplankton[J]. Chinese Agricultural Science Bulletin, 37(6): 68-74.
DOI |
|
[33] | 宁紫旋, 王广豪, 彭宁彦, 等, 2023. 三种不同生活型水生植物对低污染水体水质的影响[J]. 南昌大学学报(理科版), 47(5): 473-481. |
NING Z X, WANG G H, PENG N Y, et al., 2023. Effects of three aquatic plants with different life forms on quality of mild eutrophic water[J]. Journal of Nanchang University (Natural Science), 47(5): 473-481. | |
[34] | 钱忠龙, 章明奎, 吴建军, 等, 2007. 浙北农地排水中磷素的空间变异研究[J]. 安徽农学通报, 13(7): 58, 29. |
QIAN Z L, ZHANG M K, WU J J, et al., 2007. Study on spatial variability of phosphorus in farmland drainage in northern Zhejiang[J]. Anhui Agricultural Science Bulletin, 13(7): 58, 29. | |
[35] | 万合锋, 武玉祥, 秦华军, 等, 2018. 浮萍科植物水环境修复及其资源化利用综述[J]. 江苏农业科学, 46(2): 6-10. |
WAN H F, WU Y X, QING H J, et al., 2018. Review on water environment restoration and resource utilization of duckweed plants[J]. Jiangsu Agriculture Science, 46(2): 6-10. | |
[36] | 魏理, 鲜玲, 吴胜兵, 等, 2024. 沉水植物无机氮利用策略研究进展[J/OL]. 植物科学学报, 1-19 [2024-09-09]. http://kns.cnki.net/kcms/detail/42.1817.Q.20240304.1632.002.html. |
WEI L, XIAN L, WU S B, et al., 2024. Utilization strategies of inorganic nitrogen in submerged macrophytes[J]. Plant Science Journal, 1-19 [2024-09-09]. http://kns.cnki.net/kcms/detail/42.1817.Q.20240304.1632.002.html. | |
[37] | 吴红, 李成忠, 于飞, 等, 2024. 基于浮岛设计的6种水生植物净化能力研究[J]. 湖北大学学报(自然科学版), 47(3): 1-9. |
WU H, LI C Z, YU F, et al., 2024. The purification ability of 6 species of aquatic plants based on floating island design[J]. Journal of Hubei University (Natural Science), 47(3): 1-9. | |
[38] | 吴湘, 叶金云, 杨肖娥, 等, 2011. 生态浮岛植物在富营养化养殖水体中去磷途径的初步分析[J]. 水产学报, 35(6): 905-910. |
WU X, YE J Y, YANG X E, et al., 2011. Ways of phosphorus removal from eutrophic aquaculture water by ecological floating culture plants[J]. Journal of Fisheries of China, 35(6): 905-910. | |
[39] | 吴湘, 叶金云, 吴昊, 等, 2012. 生态沟渠对中华鳖温室养殖排放水体的净化效果[J]. 水土保持学报, 26(4): 231-234. |
WU X, YE J Y, WU H, et al., 2012. Purifying effect of eco-ditch on effluent from greenhouse-culture of Chinese soft-shelled turtle (Pelodiscus sinensis)[J]. Journal of Soil and Conservation, 26(4): 231-234. | |
[40] | 吴怡, 邓天龙, 徐青, 等, 2010. 水环境中磷的赋存形态及其分析方法研究进展[J]. 岩矿测试, 29(5): 557-564. |
WU Y, DENG T L, XU Q, et al., 2010. Research progress on speciation analysis of phosphorus in aquatic environment[J]. Rock and Mineral Analysis, 29(5): 557-564. | |
[41] | 夏梦华, 刘铭羽, 叶磊, 等, 2024. 三种湿地植物在高负荷养猪废水脱氮过程中的根际效应[J]. 农业环境科学学报, 43(4): 896-905. |
XIA M H, LIU M Y, YE L, et al., 2024. Rhizosphere effect of three types of macrophytes during nitrogen removal process of highloaded swine wastewater[J]. Journal of Agro-Environment Science, 43(4): 896-905. | |
[42] | 夏桐桐, 吴永波, 蒲可逸, 等, 2024. 3种水生植物对尾水的净化效果及生理特征变化[J/OL]. 南京林业大学学报(自然科学版), 1-8. [2024-09-09]. http://kns.cnki.net/kcms/detail/32.1161.S.20240203.1258.002.html. |
XIA T T, WU Y B, PU K Y, et al., 2024. Purification effect and physiological characteristics changes of three aquatic plants on tail water[J/OL]. Journal of Nanjing Forestry University (Natural Sciences Edition), 1-8. [2024-09-09]. http://kns.cnki.net/kcms/detail/32.1161.S.20240203.1258.002.html. | |
[43] | 杨帆, 焉志远, 韩辉, 等, 2024. 水生植物在水体污染修复中应用研究进展[J]. 国土与自然资源研究 (2): 73-74. |
YANG F, YAN Z Y, HAN H, et al., 2024. Research advances on application of aquatic plants in bioremediation of polluted water[J]. Territory & Natural Resources Study (2): 73-74. | |
[44] | 杨锦, 2022. 甘蓝型油菜磷利用相关基因网络构建及关键候选基因筛选[D]. 重庆: 西南大学: 5-7. |
YANG J, 2022. Construction of the gene network of phosphorus utilization pathway in Brassica napus L. and screening key candidate genes in it[D]. Chongqing: Southwest University: 5-7. | |
[45] | 杨林, 伍斌, 赖发英, 等, 2011. 7种典型挺水植物净化生活污水中氮磷的研究[J]. 江西农业大学学报, 33(3): 616-621. |
YANG L, WU B, LAI F Y, et al., 2011. Studies on seven typical emerging plants absorbing nitrogen and phosphorus in constructed wetlands[J]. Acta Agriculturae Universitatis Jiangxiensis, 33(3): 616-621. | |
[46] | 袁桂香, 吴爱平, 葛大兵, 等, 2011. 不同水深梯度对4种挺水植物生长繁殖的影响[J]. 环境科学学报, 31(12): 2690-2697. |
YUAN G X, WU A P, GE D B, et al., 2011. Effects of water depth on the growth of four emergent macrophytes[J]. Acta Scientiae Circumstantiae, 31(12): 2690-2697. | |
[47] | 张家洋, 陈丽丽, 李慧, 2013. 水生植物对富营养化水体除磷去氮的研究概述[J]. 西北师范大学学报(自然科学版), 49(1): 115-120. |
ZHANG J Y, CHEN L L, LI H, et al., 2013. The summary of hydrophytes on removal of nitrogen and phosphorus in eutrophic water[J]. Journal of Northwest Normal University (Natural Science), 49(1): 115-120. | |
[48] | 张巍, 许静, 李晓东, 等, 2014. 稳定塘处理污水的机理研究及应用研究进展[J]. 生态环境学报, 23(8): 1396-1401. |
ZHANG W, XU J, LI X D, et al., 2014. Mechanism, application status and research progress of stabilization pond for treatment of wastewater[J]. Ecology and Environmental Sciences, 23(8): 1396-1401. | |
[49] | 赵华, 徐芳森, 石磊, 等, 2006. 植物根系形态对低磷胁迫应答的研究进展[J]. 植物学通报, 23(4): 409-417. |
ZHAO H, XU F S, SHI L, et al., 2006. Advance in plant root morphology adaptability to phosphorous deficiency stress[J]. Chinese Bulletin of Botany, 23(4): 409-417. |
[1] | 陈小弯, 田华川, 常军军, 陈礼强, 舒兴权, 冯秀祥. 杞麓湖中河河口表流湿地净化河道污染水的效果及其微生物群落特征[J]. 生态环境学报, 2022, 31(9): 1865-1875. |
[2] | 李锋民, 陈琳, 姜晓华, 李晨光, 赵莎莎, 种云霄, 胡洪营, 高帅强. 水质净化与生态修复的水生植物优选指标体系构建[J]. 生态环境学报, 2021, 30(12): 2411-2422. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||