生态环境学报 ›› 2025, Vol. 34 ›› Issue (7): 1064-1078.DOI: 10.16258/j.cnki.1674-5906.2025.07.007
收稿日期:
2025-02-14
出版日期:
2025-07-18
发布日期:
2025-07-11
通讯作者:
*通讯作者。
作者简介:
赵曦(1982年生),男,高级工程师,硕士,研究方向为新污染物生态环境风险评价与治理,固体废物和土壤环境污染防治。E-mail: zhaoxi5257@sina.com
基金资助:
Received:
2025-02-14
Online:
2025-07-18
Published:
2025-07-11
摘要:
超短链全氟和多氟烷基化合物(USC-PFASs)是链长为1-3个全氟碳原子的PFASs,相比长链和短链PFASs具有更高的持久性和迁移性,可通过在环境中不断积累进而对生态环境和人体健康产生潜在风险。全面分析USC-PFASs的环境特性、全球水平、来源及风险,对这类新污染物的防治和风险管控具有重要意义。通过对文献的统计分析,识别出7种重点关注的USC-PFASs。这些USC-PFASs易挥发、易溶或微溶于水并具高持久性和高迁移性。目前,全球水体中检出7种USC-PFASs,土壤和底泥中检出6种USC-PFASs,生物体中检出5种USC-PFASs,大气中检出4种USC-PFASs。三氟乙酸(TFA)、全氟丙酸(PFPrA)和双(三氟甲烷)磺酰亚胺(NTf2)普遍存在于水体、土壤、底泥、大气和生物体中,三氟甲烷磺酸(TFMS)存在于水体、土壤、底泥、大气中,全氟乙烷磺酸(PFEtS)和全氟丙烷磺酸(PFPrS)主要存在于水体和生物体中,而六氟异丙醇(HFIP)仅在地表水、土壤和大气中被检出。USC-PFASs存在至少11种潜在来源,包括含氟灭火剂使用点、氟化工厂、电子工厂、污水处理厂、垃圾处理设施、电子废物拆解场和废锂离子电池处理厂等7种点源,以及大气氢氟碳化合物(HFCs)和含氢氯氟烃(HCFCs)降解、环境中含氟药品和农药转化、聚合物PFASs释放、前体PFASs转化等4种面源。近年来,NTf2频繁出现在各类环境介质中,可能与废锂离子电池回收和处理有关。风险评估结果显示,在饮水摄入PFPrA、NTf2和呼吸吸入PFPrA的非致癌风险值最大值分别为1.7×10−4、3.7×10−4和4.2×10−3,低于全氟辛酸(PFOA)但是高于全氟丁酸(PFBA)。建议对USC-PFASs按高持久性污染物管控方法进行管理,加强毒理学和环境行为研究,引导企业避免无效替代,并鼓励企业采用有效治理措施。
中图分类号:
赵曦, 韦斯. 超短链PFASs类新污染物的环境特性、全球水平、来源及风险[J]. 生态环境学报, 2025, 34(7): 1064-1078.
ZHAO Xi, WEI Si. Environmental Characteristics, Global levels, Sources and Risk of Emerging Pollutants Ultra-Short-Chain Poly- and Perfluorinated Substances[J]. Ecology and Environmental Sciences, 2025, 34(7): 1064-1078.
序号 | 化合物 | 英文名 | 分子结构 | 英文 缩写 | CAS号 | 相对 分子 质量 | 25 ℃时 溶解度/ (mg·L−1) | 沸点/ ℃ | 20 ℃时 蒸汽压/ kPa | 酸度系数 pKa | 辛醇-水分配系数对数值 lgKOW |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 三氟乙酸 | Trifluoroacetic acid | | TFA | 76-05-1 | 114.023 | 1×106 | 72.4 | 11 | 0.3 | 0.91 |
2 | 全氟丙酸 | Perfluoropropanoic acid | | PFPrA | 422-64-0 | 164.031 | 2.21×103 | 96-97 | 2.59 | 1.37 | 1.61 |
3 | 三氟甲烷磺酸 | Trifluoromethane sulfonic acid | | TFMS | 1493-13-6 | 150.077 | 3.67×104 | 162 | 0.013 | −15 | 1.15 |
4 | 全氟乙烷磺酸 | Perfluoroethane sulfonic acid | | PFEtS | 354-88-1 | 200.085 | 5.41×103 | 178 | - | −3.31 | 1.23 |
5 | 全氟丙烷磺酸 | Perfluoropropane sulfonic acid | | PFPrS | 423-41-6 | 250.092 | 820 | 196 | - | −3.31 | 1.93 |
6 | 双(三氟甲烷)磺酰亚胺 | Bis(trifluoromethylsulfonyl)imide | | bis-FMeSI (NTf2) | 82113-65-3 | 281.150 | 8×105 | 90-91 | - | −10.42 | 2.07 |
7 | 六氟异丙醇 | 1,1,1,3,3,3−Hexafluoropropan−2−ol | | HFIP | 920-66-1 | 168.040 | 1×106 | 59 | 1.6 | 9.3 | - |
表1 超短链PFASs的理化性质
Table 1 Physicochemical properties of ultra-short-chain PFASs
序号 | 化合物 | 英文名 | 分子结构 | 英文 缩写 | CAS号 | 相对 分子 质量 | 25 ℃时 溶解度/ (mg·L−1) | 沸点/ ℃ | 20 ℃时 蒸汽压/ kPa | 酸度系数 pKa | 辛醇-水分配系数对数值 lgKOW |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 三氟乙酸 | Trifluoroacetic acid | | TFA | 76-05-1 | 114.023 | 1×106 | 72.4 | 11 | 0.3 | 0.91 |
2 | 全氟丙酸 | Perfluoropropanoic acid | | PFPrA | 422-64-0 | 164.031 | 2.21×103 | 96-97 | 2.59 | 1.37 | 1.61 |
3 | 三氟甲烷磺酸 | Trifluoromethane sulfonic acid | | TFMS | 1493-13-6 | 150.077 | 3.67×104 | 162 | 0.013 | −15 | 1.15 |
4 | 全氟乙烷磺酸 | Perfluoroethane sulfonic acid | | PFEtS | 354-88-1 | 200.085 | 5.41×103 | 178 | - | −3.31 | 1.23 |
5 | 全氟丙烷磺酸 | Perfluoropropane sulfonic acid | | PFPrS | 423-41-6 | 250.092 | 820 | 196 | - | −3.31 | 1.93 |
6 | 双(三氟甲烷)磺酰亚胺 | Bis(trifluoromethylsulfonyl)imide | | bis-FMeSI (NTf2) | 82113-65-3 | 281.150 | 8×105 | 90-91 | - | −10.42 | 2.07 |
7 | 六氟异丙醇 | 1,1,1,3,3,3−Hexafluoropropan−2−ol | | HFIP | 920-66-1 | 168.040 | 1×106 | 59 | 1.6 | 9.3 | - |
环境特性 | 级别 | 判定标准 |
---|---|---|
持久性 | 持久性(P) | t1/2, 水≥40 d或t1/2, 沉积物≥120 d 或t1/2, 土壤≥120 d |
高持久性(vP) | t1/2,水≥60 d或t1/2,沉积物≥180 d 或t1/2, 土壤≥180 d | |
迁移性 | 迁移性(M) | lgKOC<3.0 |
高迁移性(vM) | lgKOC<2.0 | |
生物累积性 | 生物累积性(B) | BCF≥2000 |
高生物累积性(vB) | BCF≥5000 | |
毒性 | 毒性(T) | NOEC或EC10<0.01 mg·L−1 |
或具致癌、致畸或生殖毒性(CMR) | ||
或属内分泌干扰物(EDCs) |
表2 持久性、生物累积性、迁移性和毒性判定标准
Table 2 Decision criteria of persistence, bioaccumulation, mobility and toxicity
环境特性 | 级别 | 判定标准 |
---|---|---|
持久性 | 持久性(P) | t1/2, 水≥40 d或t1/2, 沉积物≥120 d 或t1/2, 土壤≥120 d |
高持久性(vP) | t1/2,水≥60 d或t1/2,沉积物≥180 d 或t1/2, 土壤≥180 d | |
迁移性 | 迁移性(M) | lgKOC<3.0 |
高迁移性(vM) | lgKOC<2.0 | |
生物累积性 | 生物累积性(B) | BCF≥2000 |
高生物累积性(vB) | BCF≥5000 | |
毒性 | 毒性(T) | NOEC或EC10<0.01 mg·L−1 |
或具致癌、致畸或生殖毒性(CMR) | ||
或属内分泌干扰物(EDCs) |
序号 | 新污染物名称 | 本研究判定 | 德国联邦 环境局判定 | 欧盟化学品管理局判定 | 参考文献判定 (Neuwald et al., | ||||
---|---|---|---|---|---|---|---|---|---|
持久性 | 迁移性 | 生物富集性 | 毒性 | 整体特性 | |||||
1 | TFA | vP | vM | 无 | - | vPvM | vPvM | vPvM | vPvM |
2 | PFPrA | vP | vM | 无 | - | vPvM | 未判定 | 未判定 | vPvM |
3 | TFMS | vP | vM | 无 | - | vPvM | vPvM | vPvM | vPvM |
4 | PFEtS | vP | vM | 无 | - | vPvM | 未判定 | 未判定 | vPvM |
5 | PFPrS | vP | vM | 无 | - | vPvM | 未判定 | 未判定 | vPvM |
6 | NTf2 | vP | vM | 无 | - | vPvM | 未判定 | 未判定 | vPvM |
7 | HFIP | vP | vM | 无 | - | vPvM | 未判定 | 未判定 | vPvM |
表3 USC-PFASs的持久性、生物累积性、迁移性和毒性判定
Table 3 Decision of persistence, bioaccumulation, mobility and toxicity for USC-PFASs
序号 | 新污染物名称 | 本研究判定 | 德国联邦 环境局判定 | 欧盟化学品管理局判定 | 参考文献判定 (Neuwald et al., | ||||
---|---|---|---|---|---|---|---|---|---|
持久性 | 迁移性 | 生物富集性 | 毒性 | 整体特性 | |||||
1 | TFA | vP | vM | 无 | - | vPvM | vPvM | vPvM | vPvM |
2 | PFPrA | vP | vM | 无 | - | vPvM | 未判定 | 未判定 | vPvM |
3 | TFMS | vP | vM | 无 | - | vPvM | vPvM | vPvM | vPvM |
4 | PFEtS | vP | vM | 无 | - | vPvM | 未判定 | 未判定 | vPvM |
5 | PFPrS | vP | vM | 无 | - | vPvM | 未判定 | 未判定 | vPvM |
6 | NTf2 | vP | vM | 无 | - | vPvM | 未判定 | 未判定 | vPvM |
7 | HFIP | vP | vM | 无 | - | vPvM | 未判定 | 未判定 | vPvM |
环境 | 地点 | 采样年份 | 三氟乙酸 (TFA) | 全氟丙酸(PFPrA) | 三氟甲烷 磺酸 (TFMS) | 全氟乙烷 磺酸(PFEtS) | 全氟丙烷磺酸(PFPrS) | 双(三氟甲烷)磺酰亚胺(NTf2) | 六氟 异丙醇(HFIP) | 文献 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
降雨/雪中质量浓度/ (ng·L−1) | 日本 | 2007 | 65 | 9.5 | - | <0.5 | <0.1 | - | - | Taniyasu et al., | ||||||||
加拿大 | 2012 | 19-261 | 19-23 | - | - | 53-213 | - | - | Yeung et al., | |||||||||
德国 | 2018-2019 | ND-38000(210) | - | - | - | - | - | - | Freeling et al., | |||||||||
北极地区 | 2019 | 5.6-190(27) | 0.21-1.2(0.75) | 0.15-3.0(1.1) | ND-2.8(ND) | <0.009 | - | - | Björnsdotter et al., | |||||||||
美国 | 2022 | - | - | - | - | - | 6.88 | - | Guelfo et al., | |||||||||
海水中 质量浓度/ (ng·L−1) | 地中海 | 2005 | 0.5-50 | - | - | - | - | - | - | Scott et al., | ||||||||
中国南海 | 2020 | - | - | - | - | - | 1.5 | - | Wang et al., | |||||||||
地表水中质量浓度/ (ng·L−1) | 加拿大 | 2012 | ND-11 | ND-110 | - | - | ND-13 | - | - | Yeung et al., | ||||||||
欧洲5国 | 2016 | - | - | ND-1377(44) | - | - | - | - | Montes et al., | |||||||||
欧洲3国 | 2016 | - | - | 6-1000(10) | - | - | - | - | Schulze et al., | |||||||||
德国 | 2017 | 20-17000(500) | >56 | - | - | - | - | - | Janda et al., | |||||||||
瑞典 | 2017-2018 | <34-120 (<34) | <5.1-26(8.9) | 3.9-24 (9.5) | 0.6-2.5(1.4) | <0.009-2.3(0.25) | - | - | Björnsdotter et al., | |||||||||
西班牙 | 2019 | 71-262(113) | 3.2-5.4(3.3) | 5.1-52(12.2) | Montes et al., | |||||||||||||
德国 | 2020 | 300-6000(1150) | ND-34(13.7) | ND-2112.5(8.5) | ND | ND-0.4(ND) | ND | ND-400(ND) | Neuwald et al., | |||||||||
美国 | 2020-2021 | - | - | - | - | 1-24(4) | - | - | Camacho et al., | |||||||||
澳大利亚 | 2021 | - | ND-0.19(ND) | ND-0.39(ND) | ND-0.30(ND) | 0.01-1.87(0.04) | ND-0.35(0.05) | - | Gorji et al., | |||||||||
美国 | 2021 | 21.3-2790(180) | ND-5250(ND) | - | - | - | - | - | Cahill, | |||||||||
荷兰 | 2021 | 82.44-641.34(135.15) | 0.12-2.18(0.12) | - | ND | 0.03-0.13(0.07) | - | - | Sadia et al., | |||||||||
中国 | 2021-2022 | - | 2.26-24.45(5.55) | - | - | - | 5.32-234.1(21.72) | - | Fu et al., | |||||||||
美国 | 2022 | - | - | - | - | - | ND-2437 | - | Guelfo et al., | |||||||||
美国 | 2023 | 328-356 | ND | ND-5 | - | ND | - | - | Jacob et al., | |||||||||
地下水中质量浓度/ (ng·L−1) | 欧洲5国 | 2016 | - | - | ND-6325(135) | - | - | - | - | Montes et al., | ||||||||
德国 | 2017 | 20-2300(650) | 56-150(103) | - | - | - | - | - | Janda et al., | |||||||||
德国 | 2020 | ND-10700(800) | ND-179(ND) | 0.5-5.4(4.0) | ND | ND-1.3(ND) | ND | ND | Neuwald et al., | |||||||||
澳大利亚 | 2021 | - | 0.01-0.03(0.02) | ND | 0.01-0.14(0.02) | 0.22-9.07(2.32) | ND | - | Gorji et al., | |||||||||
荷兰 | 2021 | 87.77-520.93(352.49) | 0.12-11.13(1.41) | - | ND | 0.03-0.07(0.03) | - | - | Sadia et al., | |||||||||
美国 | 2023 | 38-1570(210) | ND | ND | - | ND-150(75) | - | - | Jacob et al., | |||||||||
饮用水和瓶装水中质量浓度/ (ng·L−1) | 亚太5国 | 2006-2008 | - | - | - | ND-3(0.5) | ND-0.2(ND) | - | - | Mak et al., | ||||||||
欧洲5国 | 2016 | - | - | ND-325(52) | - | - | - | - | Montes et al., | |||||||||
德国 | 2017 | 100-11000(400) | 11 | - | - | - | - | - | Janda et al., | |||||||||
西班牙 | 2019 | 66-79(77) | - | 5.2-7.9(7.0) | - | - | - | - | Montes et al., | |||||||||
中国太湖 | 2019 | ND-8.96(1.09) | ND-36.1(10.2) | ND-61.3(6.28) | ND-0.083(0.042) | ND-11.7(0.067) | - | - | Jiao et al., | |||||||||
德国 | 2020 | 400-12400(850) | ND-179(ND) | 1.1-862.6(29.1) | ND | ND-0.3(0.1) | ND-1.9(ND) | ND-400(ND) | Neuwald et al., | |||||||||
美国 | 2020 | ND-210(79) | ND-19(6.9) | - | - | ND-0.40(0.10) | - | - | Zheng et al., | |||||||||
美国 | 2021 | - | 0.45-6.52(0.92) | - | - | 0.18 | - | - | Chow et al., | |||||||||
饮用水和瓶装水中质量浓度/ (ng·L−1) | 中国上海 | 2021 | 1350-8030(1915) | 12.0-50.6(16.7) | 52.5-277.1(98.9) | - | - | 0.04-0.64 | - | Jiao et al., | ||||||||
荷兰 | 2021 | 33.56-1104.6(359.86) | 0.12-65.55(16.74) | - | ND | 0.03-0.3(0.09) | - | - | Sadia et al., | |||||||||
澳大利亚 | 2021 | - | ND | ND | ND | ND-0.04(0.02) | ND | - | Gorji et al., | |||||||||
中国 | 2022 | 16.12-665.47(135) | 0.42-12.42(1.89) | - | - | - | - | - | Dong et al., | |||||||||
美国 | 2022 | - | 2.5-140(71.5) | - | - | 3.6-31(17.3) | - | - | Pelch et al., | |||||||||
比利时 | 2023 | - | - | <0.03-5.6(1.5) | <0.3 | <0.5-0.6(<0.5) | - | - | Cappelli et al., | |||||||||
美国 | 2023 | 114-169(124) | - | - | - | - | - | - | Jacob et al., | |||||||||
土壤中 质量分数/ (ng·g−1) | 加拿大 | 2020 | - | ND-4 | - | - | ND-4 | - | - | Liu et al., | ||||||||
巴基斯坦 | 2022 | 0.52-216(19.2) | 0.01-25.2(3.21) | - | - | - | ND-90.4(0.23) | 0.14-854(484) | Baqar et al., | |||||||||
美国 | 2022 | - | - | - | - | - | ND-2300 | - | Guelfo et al., | |||||||||
中国 | 2022-2023 | - | - | ND-7.17(ND) | - | - | - | - | Qi et al., | |||||||||
底泥中 质量分数/ (ng·g−1) | 中国 | 2007 | 44.9-127 (54) | 1.61-3.28(2.95) | - | - | - | - | - | Li et al., | ||||||||
美国 | 2022 | - | - | - | - | - | ND-1771.2 | - | Guelfo et al., | |||||||||
大气中 质量浓度/ (ng·m−3) | 中国 | 2016 | 19-170 (33) | 20-41(24.5) | - | - | - | - | - | Chen et al., | ||||||||
中国 | 2016 | 1.44-2.98(2.33) | 0.06-0.26(0.18) | - | - | - | - | - | Tian et al., | |||||||||
美国 | 2023 | - | - | - | - | - | - | 1.5-15 | James et al., | |||||||||
粉尘中 质量分数/ (ng·g−1) | 中国 | 2013 | - | 0.77-120(19) | - | - | - | - | - | Yao et al., | ||||||||
中国 | 2017 | 1.5-1136 (93) | 1.4-406(42.5) | - | - | - | - | - | Wang et al., | |||||||||
美国 | 2020 | 220-1400 | 26-200 | - | - | 53 | - | - | Zheng et al., | |||||||||
中国 | 2021 | - | - | - | - | - | ND-9.8(0.45) | - | Zhang et al., | |||||||||
植物中 质量分数/ (ng·g−1) | 中国 | 2016-2017 | 11.8-767(211.5) | 1.44-51.6(3.7) | - | - | - | - | - | Lan et al., | ||||||||
德国 | 2020 | 24.6-1060(225) | - | - | - | - | - | - | Freeling et al., | |||||||||
动物中 质量分数/ (ng·g−1) | 挪威 | 2017-2018 | - | - | - | - | 0.2-0.05 | - | - | Herzke et al., | ||||||||
德国 | 2015- 2020 | 0.12-53 (10) | 0.11-9.9(0.97) | - | - | - | - | - | Guckert et al., | |||||||||
德国 | 2019-2020 | 0.26-25(4.3) | 1-2.8 | - | - | - | - | - | Rupp et al., | |||||||||
美国 | 2022 | - | 0.39-1.6(1.15) | - | - | - | - | - | Capozzi et al., | |||||||||
人血清中 质量浓度/ (ng·mL−1) | 中国 | 2017 | 5.36-17.98(8.365) | 0.24-0.82(0.46) | - | - | - | - | - | Duan et al., | ||||||||
美国 | 2018 | - | - | - | - | 0.09-0.39(0.18) | - | - | McDonough et al., | |||||||||
美国 | 2020 | ND-77(6) | 0.14-2.9(1) | - | - | ND-0.013(ND) | - | - | Zheng et al., | |||||||||
中国 | 2022 | 0.01-2.48(0.23) | 0.002-4.53(0.27) | - | - | - | - | - | Jia et al., | |||||||||
人尿液中 质量浓度/ (ng·mL−1) | 美国 | 2020 | ND-290 (ND) | ND-6.8(0.051) | - | - | ND-0.85(ND) | - | - | Zheng et al., | ||||||||
饮料中 质量浓度/ (ng·mL−1) | 德国 (啤酒) | 2020 | ND-51000(6100) | - | - | - | - | - | - | Scheurer et al., | ||||||||
德国 (茶叶) | 2020 | (2400) | - | - | - | - | - | - | Scheurer et al., |
表4 USC-PFASs的环境水平
Table 4 Levels of USC-PFASs in various environments and biological matrices
环境 | 地点 | 采样年份 | 三氟乙酸 (TFA) | 全氟丙酸(PFPrA) | 三氟甲烷 磺酸 (TFMS) | 全氟乙烷 磺酸(PFEtS) | 全氟丙烷磺酸(PFPrS) | 双(三氟甲烷)磺酰亚胺(NTf2) | 六氟 异丙醇(HFIP) | 文献 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
降雨/雪中质量浓度/ (ng·L−1) | 日本 | 2007 | 65 | 9.5 | - | <0.5 | <0.1 | - | - | Taniyasu et al., | ||||||||
加拿大 | 2012 | 19-261 | 19-23 | - | - | 53-213 | - | - | Yeung et al., | |||||||||
德国 | 2018-2019 | ND-38000(210) | - | - | - | - | - | - | Freeling et al., | |||||||||
北极地区 | 2019 | 5.6-190(27) | 0.21-1.2(0.75) | 0.15-3.0(1.1) | ND-2.8(ND) | <0.009 | - | - | Björnsdotter et al., | |||||||||
美国 | 2022 | - | - | - | - | - | 6.88 | - | Guelfo et al., | |||||||||
海水中 质量浓度/ (ng·L−1) | 地中海 | 2005 | 0.5-50 | - | - | - | - | - | - | Scott et al., | ||||||||
中国南海 | 2020 | - | - | - | - | - | 1.5 | - | Wang et al., | |||||||||
地表水中质量浓度/ (ng·L−1) | 加拿大 | 2012 | ND-11 | ND-110 | - | - | ND-13 | - | - | Yeung et al., | ||||||||
欧洲5国 | 2016 | - | - | ND-1377(44) | - | - | - | - | Montes et al., | |||||||||
欧洲3国 | 2016 | - | - | 6-1000(10) | - | - | - | - | Schulze et al., | |||||||||
德国 | 2017 | 20-17000(500) | >56 | - | - | - | - | - | Janda et al., | |||||||||
瑞典 | 2017-2018 | <34-120 (<34) | <5.1-26(8.9) | 3.9-24 (9.5) | 0.6-2.5(1.4) | <0.009-2.3(0.25) | - | - | Björnsdotter et al., | |||||||||
西班牙 | 2019 | 71-262(113) | 3.2-5.4(3.3) | 5.1-52(12.2) | Montes et al., | |||||||||||||
德国 | 2020 | 300-6000(1150) | ND-34(13.7) | ND-2112.5(8.5) | ND | ND-0.4(ND) | ND | ND-400(ND) | Neuwald et al., | |||||||||
美国 | 2020-2021 | - | - | - | - | 1-24(4) | - | - | Camacho et al., | |||||||||
澳大利亚 | 2021 | - | ND-0.19(ND) | ND-0.39(ND) | ND-0.30(ND) | 0.01-1.87(0.04) | ND-0.35(0.05) | - | Gorji et al., | |||||||||
美国 | 2021 | 21.3-2790(180) | ND-5250(ND) | - | - | - | - | - | Cahill, | |||||||||
荷兰 | 2021 | 82.44-641.34(135.15) | 0.12-2.18(0.12) | - | ND | 0.03-0.13(0.07) | - | - | Sadia et al., | |||||||||
中国 | 2021-2022 | - | 2.26-24.45(5.55) | - | - | - | 5.32-234.1(21.72) | - | Fu et al., | |||||||||
美国 | 2022 | - | - | - | - | - | ND-2437 | - | Guelfo et al., | |||||||||
美国 | 2023 | 328-356 | ND | ND-5 | - | ND | - | - | Jacob et al., | |||||||||
地下水中质量浓度/ (ng·L−1) | 欧洲5国 | 2016 | - | - | ND-6325(135) | - | - | - | - | Montes et al., | ||||||||
德国 | 2017 | 20-2300(650) | 56-150(103) | - | - | - | - | - | Janda et al., | |||||||||
德国 | 2020 | ND-10700(800) | ND-179(ND) | 0.5-5.4(4.0) | ND | ND-1.3(ND) | ND | ND | Neuwald et al., | |||||||||
澳大利亚 | 2021 | - | 0.01-0.03(0.02) | ND | 0.01-0.14(0.02) | 0.22-9.07(2.32) | ND | - | Gorji et al., | |||||||||
荷兰 | 2021 | 87.77-520.93(352.49) | 0.12-11.13(1.41) | - | ND | 0.03-0.07(0.03) | - | - | Sadia et al., | |||||||||
美国 | 2023 | 38-1570(210) | ND | ND | - | ND-150(75) | - | - | Jacob et al., | |||||||||
饮用水和瓶装水中质量浓度/ (ng·L−1) | 亚太5国 | 2006-2008 | - | - | - | ND-3(0.5) | ND-0.2(ND) | - | - | Mak et al., | ||||||||
欧洲5国 | 2016 | - | - | ND-325(52) | - | - | - | - | Montes et al., | |||||||||
德国 | 2017 | 100-11000(400) | 11 | - | - | - | - | - | Janda et al., | |||||||||
西班牙 | 2019 | 66-79(77) | - | 5.2-7.9(7.0) | - | - | - | - | Montes et al., | |||||||||
中国太湖 | 2019 | ND-8.96(1.09) | ND-36.1(10.2) | ND-61.3(6.28) | ND-0.083(0.042) | ND-11.7(0.067) | - | - | Jiao et al., | |||||||||
德国 | 2020 | 400-12400(850) | ND-179(ND) | 1.1-862.6(29.1) | ND | ND-0.3(0.1) | ND-1.9(ND) | ND-400(ND) | Neuwald et al., | |||||||||
美国 | 2020 | ND-210(79) | ND-19(6.9) | - | - | ND-0.40(0.10) | - | - | Zheng et al., | |||||||||
美国 | 2021 | - | 0.45-6.52(0.92) | - | - | 0.18 | - | - | Chow et al., | |||||||||
饮用水和瓶装水中质量浓度/ (ng·L−1) | 中国上海 | 2021 | 1350-8030(1915) | 12.0-50.6(16.7) | 52.5-277.1(98.9) | - | - | 0.04-0.64 | - | Jiao et al., | ||||||||
荷兰 | 2021 | 33.56-1104.6(359.86) | 0.12-65.55(16.74) | - | ND | 0.03-0.3(0.09) | - | - | Sadia et al., | |||||||||
澳大利亚 | 2021 | - | ND | ND | ND | ND-0.04(0.02) | ND | - | Gorji et al., | |||||||||
中国 | 2022 | 16.12-665.47(135) | 0.42-12.42(1.89) | - | - | - | - | - | Dong et al., | |||||||||
美国 | 2022 | - | 2.5-140(71.5) | - | - | 3.6-31(17.3) | - | - | Pelch et al., | |||||||||
比利时 | 2023 | - | - | <0.03-5.6(1.5) | <0.3 | <0.5-0.6(<0.5) | - | - | Cappelli et al., | |||||||||
美国 | 2023 | 114-169(124) | - | - | - | - | - | - | Jacob et al., | |||||||||
土壤中 质量分数/ (ng·g−1) | 加拿大 | 2020 | - | ND-4 | - | - | ND-4 | - | - | Liu et al., | ||||||||
巴基斯坦 | 2022 | 0.52-216(19.2) | 0.01-25.2(3.21) | - | - | - | ND-90.4(0.23) | 0.14-854(484) | Baqar et al., | |||||||||
美国 | 2022 | - | - | - | - | - | ND-2300 | - | Guelfo et al., | |||||||||
中国 | 2022-2023 | - | - | ND-7.17(ND) | - | - | - | - | Qi et al., | |||||||||
底泥中 质量分数/ (ng·g−1) | 中国 | 2007 | 44.9-127 (54) | 1.61-3.28(2.95) | - | - | - | - | - | Li et al., | ||||||||
美国 | 2022 | - | - | - | - | - | ND-1771.2 | - | Guelfo et al., | |||||||||
大气中 质量浓度/ (ng·m−3) | 中国 | 2016 | 19-170 (33) | 20-41(24.5) | - | - | - | - | - | Chen et al., | ||||||||
中国 | 2016 | 1.44-2.98(2.33) | 0.06-0.26(0.18) | - | - | - | - | - | Tian et al., | |||||||||
美国 | 2023 | - | - | - | - | - | - | 1.5-15 | James et al., | |||||||||
粉尘中 质量分数/ (ng·g−1) | 中国 | 2013 | - | 0.77-120(19) | - | - | - | - | - | Yao et al., | ||||||||
中国 | 2017 | 1.5-1136 (93) | 1.4-406(42.5) | - | - | - | - | - | Wang et al., | |||||||||
美国 | 2020 | 220-1400 | 26-200 | - | - | 53 | - | - | Zheng et al., | |||||||||
中国 | 2021 | - | - | - | - | - | ND-9.8(0.45) | - | Zhang et al., | |||||||||
植物中 质量分数/ (ng·g−1) | 中国 | 2016-2017 | 11.8-767(211.5) | 1.44-51.6(3.7) | - | - | - | - | - | Lan et al., | ||||||||
德国 | 2020 | 24.6-1060(225) | - | - | - | - | - | - | Freeling et al., | |||||||||
动物中 质量分数/ (ng·g−1) | 挪威 | 2017-2018 | - | - | - | - | 0.2-0.05 | - | - | Herzke et al., | ||||||||
德国 | 2015- 2020 | 0.12-53 (10) | 0.11-9.9(0.97) | - | - | - | - | - | Guckert et al., | |||||||||
德国 | 2019-2020 | 0.26-25(4.3) | 1-2.8 | - | - | - | - | - | Rupp et al., | |||||||||
美国 | 2022 | - | 0.39-1.6(1.15) | - | - | - | - | - | Capozzi et al., | |||||||||
人血清中 质量浓度/ (ng·mL−1) | 中国 | 2017 | 5.36-17.98(8.365) | 0.24-0.82(0.46) | - | - | - | - | - | Duan et al., | ||||||||
美国 | 2018 | - | - | - | - | 0.09-0.39(0.18) | - | - | McDonough et al., | |||||||||
美国 | 2020 | ND-77(6) | 0.14-2.9(1) | - | - | ND-0.013(ND) | - | - | Zheng et al., | |||||||||
中国 | 2022 | 0.01-2.48(0.23) | 0.002-4.53(0.27) | - | - | - | - | - | Jia et al., | |||||||||
人尿液中 质量浓度/ (ng·mL−1) | 美国 | 2020 | ND-290 (ND) | ND-6.8(0.051) | - | - | ND-0.85(ND) | - | - | Zheng et al., | ||||||||
饮料中 质量浓度/ (ng·mL−1) | 德国 (啤酒) | 2020 | ND-51000(6100) | - | - | - | - | - | - | Scheurer et al., | ||||||||
德国 (茶叶) | 2020 | (2400) | - | - | - | - | - | - | Scheurer et al., |
来源 分类 | 潜在来源 | 三氟乙酸(TFA) | 全氟丙酸(PFPrA) | 三氟甲烷磺酸(TFMS) | 全氟乙烷磺酸(PFEtS) | 全氟丙烷磺酸(PFPrS) | 双(三氟甲烷)磺酰亚胺(NTf2) | 六氟异丙醇(HFIP) |
---|---|---|---|---|---|---|---|---|
点源 | 含氟灭火剂使用点 | ++ | ++ | ++ | ++ | +++ | - | - |
氟化工厂 | + | + | + | + | + | - | - | |
电子工厂 | ++ | ++ | + | + | + | + | + | |
污水处理厂 | + | + | + | + | + | + | - | |
垃圾处理设施 | ++ | ++ | + | + | + | + | + | |
电子废物拆解场 | ++ | + | + | - | - | +++ | +++ | |
废锂离子电池处理厂 | + | - | +++ | - | - | +++ | +++ | |
面源 | 大气HFCs和HCFCs降解 | ++ | + | - | - | - | - | - |
含氟药品和农药降解 | +++ | + | - | - | - | - | - | |
聚合物PFASs释放 | + | + | - | - | - | - | - | |
PFASs前体物质转化 | + | + | - | - | - | - | - |
表5 USC-PFASs的环境来源
Table 5 Sources of USC-PFASs in environment
来源 分类 | 潜在来源 | 三氟乙酸(TFA) | 全氟丙酸(PFPrA) | 三氟甲烷磺酸(TFMS) | 全氟乙烷磺酸(PFEtS) | 全氟丙烷磺酸(PFPrS) | 双(三氟甲烷)磺酰亚胺(NTf2) | 六氟异丙醇(HFIP) |
---|---|---|---|---|---|---|---|---|
点源 | 含氟灭火剂使用点 | ++ | ++ | ++ | ++ | +++ | - | - |
氟化工厂 | + | + | + | + | + | - | - | |
电子工厂 | ++ | ++ | + | + | + | + | + | |
污水处理厂 | + | + | + | + | + | + | - | |
垃圾处理设施 | ++ | ++ | + | + | + | + | + | |
电子废物拆解场 | ++ | + | + | - | - | +++ | +++ | |
废锂离子电池处理厂 | + | - | +++ | - | - | +++ | +++ | |
面源 | 大气HFCs和HCFCs降解 | ++ | + | - | - | - | - | - |
含氟药品和农药降解 | +++ | + | - | - | - | - | - | |
聚合物PFASs释放 | + | + | - | - | - | - | - | |
PFASs前体物质转化 | + | + | - | - | - | - | - |
点源 | 地点 | 三氟乙酸(TFA) | 全氟丙酸(PFPrA) | 三氟甲烷磺酸(TFMS) | 全氟乙烷磺酸(PFEtS) | 全氟丙烷磺酸(PFPrS) | 参考文献 |
---|---|---|---|---|---|---|---|
AFFF污染水体 | 美国 | - | - | - | 11-7500 | 19-6.3×104 | Barzen-Hanson et al., |
瑞典 | 14000 | 53000 | 950 | 1700 | 15000 | Björnsdotter et al., | |
美国 | 3.8×107±4×106 | 3.3×107±1×107 | 5.6×107±5×106 | 3.9×107±5×106 | 6.9×107±1×106 | Jacob et al., | |
美国 | 1.2×104-4.6×104 | 1700-3×104 | - | 880-2.5×104 | 1500-4.2×106 | Zhang et al., | |
电子工业废水 | 美国 | 1571-15280 | 237-4184 | 121-175 | 0.4-33 | ND-9 | Jacob et al., |
污水处理厂出水 | 中国11城市 | - | 1.1-40.7 | - | - | - | Zhang et al., |
上海 | - | 13.5-15.3 | - | - | - | Zhang et al., | |
格林兰岛 | ND | 7.32-47.15 | - | ND | 0.20-0.67 | Aro et al., | |
冰岛 | ND->10 | 17.55-34.16 | - | ND-0.62 | 0.75-5.90 | Aro et al., | |
法罗群岛 | >10 | ND-2.95 | - | ND-0.73 | 0.68-1.83 | Aro et al., | |
挪威 | >10 | 3.40-3.93 | - | ND | ND | Aro et al., | |
丹麦 | >10 | ND | - | ND | ND-0.26 | Aro et al., | |
瑞典 | >10 | 5.91-7.03 | - | 0.73-1.28 | ND-0.57 | Aro et al., | |
芬兰 | >10 | ND-2.33 | - | ND-0.16 | ND-0.16 | Aro et al., | |
美国 | - | 5.9-10.8 | - | - | - | Kim et al., | |
新西兰 | - | 12.5 | - | - | - | Lenka et al., | |
美国 | 117-141 | ND-10 | 12-14 | - | ND | Jacob et al., |
表6 多种点源USC-PFASs的质量浓度
Table 6 Concentrations of USC-PFASs in several point sources ng·L?1
点源 | 地点 | 三氟乙酸(TFA) | 全氟丙酸(PFPrA) | 三氟甲烷磺酸(TFMS) | 全氟乙烷磺酸(PFEtS) | 全氟丙烷磺酸(PFPrS) | 参考文献 |
---|---|---|---|---|---|---|---|
AFFF污染水体 | 美国 | - | - | - | 11-7500 | 19-6.3×104 | Barzen-Hanson et al., |
瑞典 | 14000 | 53000 | 950 | 1700 | 15000 | Björnsdotter et al., | |
美国 | 3.8×107±4×106 | 3.3×107±1×107 | 5.6×107±5×106 | 3.9×107±5×106 | 6.9×107±1×106 | Jacob et al., | |
美国 | 1.2×104-4.6×104 | 1700-3×104 | - | 880-2.5×104 | 1500-4.2×106 | Zhang et al., | |
电子工业废水 | 美国 | 1571-15280 | 237-4184 | 121-175 | 0.4-33 | ND-9 | Jacob et al., |
污水处理厂出水 | 中国11城市 | - | 1.1-40.7 | - | - | - | Zhang et al., |
上海 | - | 13.5-15.3 | - | - | - | Zhang et al., | |
格林兰岛 | ND | 7.32-47.15 | - | ND | 0.20-0.67 | Aro et al., | |
冰岛 | ND->10 | 17.55-34.16 | - | ND-0.62 | 0.75-5.90 | Aro et al., | |
法罗群岛 | >10 | ND-2.95 | - | ND-0.73 | 0.68-1.83 | Aro et al., | |
挪威 | >10 | 3.40-3.93 | - | ND | ND | Aro et al., | |
丹麦 | >10 | ND | - | ND | ND-0.26 | Aro et al., | |
瑞典 | >10 | 5.91-7.03 | - | 0.73-1.28 | ND-0.57 | Aro et al., | |
芬兰 | >10 | ND-2.33 | - | ND-0.16 | ND-0.16 | Aro et al., | |
美国 | - | 5.9-10.8 | - | - | - | Kim et al., | |
新西兰 | - | 12.5 | - | - | - | Lenka et al., | |
美国 | 117-141 | ND-10 | 12-14 | - | ND | Jacob et al., |
设施 | 三氟乙酸(TFA) | 全氟丙酸 (PFPrA) | 双(三氟甲烷)磺酰亚胺(NTf2) |
---|---|---|---|
垃圾填埋场渗滤液 | ND-4.0 | 15-33 | 195-825 |
垃圾焚烧厂渗滤液 | 16-31 | 3.0-3.5 | - |
垃圾中转站渗滤液 | 44-57 | 13.4-23.4 | - |
表7 垃圾渗滤液中USC-PFASs的质量浓度
Table 7 Concentrations of USC-PFASs in leachate μg·L?1
设施 | 三氟乙酸(TFA) | 全氟丙酸 (PFPrA) | 双(三氟甲烷)磺酰亚胺(NTf2) |
---|---|---|---|
垃圾填埋场渗滤液 | ND-4.0 | 15-33 | 195-825 |
垃圾焚烧厂渗滤液 | 16-31 | 3.0-3.5 | - |
垃圾中转站渗滤液 | 44-57 | 13.4-23.4 | - |
聚合物 | 三氟乙酸(TFA) | 全氟丙酸(PFPrA) |
---|---|---|
FEP | 121±96 | - |
PFA | 34.6±11.6 | 16.0±15.4 |
食品包装含氟聚合物 | - | 1.28-9.11 |
含氟土工布 | - | ND-10840 |
表8 聚合物PFASs的USC-PFASs释放量
Table 8 USC-PFASs released by fluoropolymers ng·g?1
聚合物 | 三氟乙酸(TFA) | 全氟丙酸(PFPrA) |
---|---|---|
FEP | 121±96 | - |
PFA | 34.6±11.6 | 16.0±15.4 |
食品包装含氟聚合物 | - | 1.28-9.11 |
含氟土工布 | - | ND-10840 |
新污 染物 | 饮用水中质量浓度/ (ng·L−1) | 大气中质量浓度/ (ng·m−3) | 非致癌参考剂量/ (mg·kg−1·d−1) | 饮水摄入 非致癌风险(Horal) | 呼吸吸入 非致癌风险(Hinh) |
---|---|---|---|---|---|
PFPrA | 0.92-16.5(6.9) | 20-41(24.5) | 5×10−4 | 9.4×10−6-1.7×10−4(7.1×10−5) | 2.1×10−3-4.2×10−3(2.5×10−3) |
NTf2 | 0.05-21.72(10.89) | - | 3×10−4 | 8.5×10−7-3.7×10−4(1.9×10−4) | - |
PFBA | 1.23-12.97(3.65) | 0.61-5.2(1.3) | 1×10−3 | 6.3×10−6-6.7×10−5(1.9×10−5) | 3.1×10−5-2.7×10−4(6.7×10−5) |
PFOA | 0.23-15.8(1.28) | 0.27-6.4(0.685) | 2×10−8 | 0.059-4.1(0.33) | 0.39-16.4(1.8) |
表9 大气和地表水源PFASs非致癌风险
Table 9 Non-carcinogenic risk values of PFASs in atmosphere and surface water sources
新污 染物 | 饮用水中质量浓度/ (ng·L−1) | 大气中质量浓度/ (ng·m−3) | 非致癌参考剂量/ (mg·kg−1·d−1) | 饮水摄入 非致癌风险(Horal) | 呼吸吸入 非致癌风险(Hinh) |
---|---|---|---|---|---|
PFPrA | 0.92-16.5(6.9) | 20-41(24.5) | 5×10−4 | 9.4×10−6-1.7×10−4(7.1×10−5) | 2.1×10−3-4.2×10−3(2.5×10−3) |
NTf2 | 0.05-21.72(10.89) | - | 3×10−4 | 8.5×10−7-3.7×10−4(1.9×10−4) | - |
PFBA | 1.23-12.97(3.65) | 0.61-5.2(1.3) | 1×10−3 | 6.3×10−6-6.7×10−5(1.9×10−5) | 3.1×10−5-2.7×10−4(6.7×10−5) |
PFOA | 0.23-15.8(1.28) | 0.27-6.4(0.685) | 2×10−8 | 0.059-4.1(0.33) | 0.39-16.4(1.8) |
[1] | ARO R, ERIKSSON U, KÄRRMAN A, et al., 2021. Fluorine mass balance analysis of effluent and sludge from nordic countries[J]. ACS ES&T Water, 1(9): 2087-2096. |
[2] | ATEIA M, MAROLI A, THARAYIL N, et al., 2019. The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review[J]. Chemosphere: 866-882. |
[3] | BAQAR M, ZHAO M S, SALEEM R, et al., 2024. Identiffcation of emerging per- and polyffuoroalkyl substances (PFAS) in e‑waste recycling practices and new precursors for triffuoroacetic acid[J]. Environmental Science & Technology, 58(36): 16153-16163. |
[4] | BARZEN-HANSON K A, FIELD J A, 2015. Discovery and implications of C2 and C3 perfluoroalkyl sulfonates in aqueous film-forming foams and groundwater[J]. Environmental Science & Technology Letters, 2(4): 95-99. |
[5] | BERENDS A G, BOUTONNET J C, DE ROOIJ C G, et al., 1999. Toxicity of trifluoroacetate to aquatic organisms[J]. Environmental Toxicology and Chemistry, 18(5): 1053-1059. |
[6] | BJÖRNSDOTTER M K, HARTZ W F, KALLENBORN R, et al., 2021. Levels and seasonal trends of C1-C4 perfluoroalkyl acids and the discovery of trifluoromethane sulfonic acid in surface snow in the Arctic[J]. Environmental Science & Technology, 55(23): 15853-15861. |
[7] | BJÖRNSDOTTER M K, YEUNG L W Y, KÄRRMAN A, et al., 2019. Ultra-short-chain perfluoroalkyl acids including trifluoromethane sulfonic acid in water connected to known and suspected point sources in Sweden[J]. Environmental Science & Technology, 53(19): 11093-11101. |
[8] |
BJÖRNSDOTTER M K, YEUNG L W Y, KÄRRMAN A, et al., 2020. Challenges in the analytical determination of ultra-short-chain perfluoroalkyl acids and implications for environmental and human health[J]. Analytical and Bioanalytical Chemistry, 412(20): 4785-4796.
DOI PMID |
[9] | BJÖRNSDOTTER M K, YEUNG L W Y, KÄRRMAN A, et al., 2022. Mass balance of perfluoroalkyl acids, including trifluoroacetic acid, in a freshwater lake[J]. Environmental Science & Technology, 56(1): 251-259. |
[10] | BOWDEN D J, CLEGG S L, BRIMBLECOMBE P, 1996. The Henry’s law constant of trifluoroacetic acid and its partitioning into liquid water in the atmosphere[J]. Chemosphere, 32(2): 405-420. |
[11] | BRENDEL S, FETTER É, STAUDE C, et al., 2018. Short‑chain perfluoroalkyl acids: Environmental concerns and a regulatory strategy under REACH[J]. Environmental Sciences Europe, 30(1): 9. |
[12] |
BUCK R C, FRANKLIN J, BERGER U, et al., 2011. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 7(4): 513-541.
DOI PMID |
[13] |
BURKHOLDER J B, COX R A, RAVISHANKARA A R, 2015. Atmospheric degradation of ozone depleting substances, their substitutes, and related species[J]. Chemical Reviews, 115(10): 3704-59.
DOI PMID |
[14] | CAHILL T M, 2022. Increases in trifluoroacetate concentrations in surface waters over two decades[J]. Environmental Science & Technology, 56(13): 9428-9434. |
[15] | CAMACHO C G, ANTONISON A, OLDNETTLE A, et al., 2024. Statewide surveillance and mapping of PFAS in Florida surface water[J]. ACS ES&T Water, 4(10): 4343-4355. |
[16] | CAPOZZI S L, XIA C J, SHUWAL M, et al., 2023. From watersheds to dinner plates: Evaluating PFAS exposure through fish consumption in Southeast Michigan[J]. Chemosphere, 345: 140454. |
[17] | CAPPELLI F, BAMAI Y A, VAN HOEY K, et al., 2024. Occurrence of short- and ultra-short chain PFAS in drinking water from Flanders (Belgium) and implications for human exposure[J]. Environmental Research, 260: 119753. |
[18] | CHEN H, YAO Y M, ZHAO Z, et al., 2018. Multimedia distribution and transfer of per- and polyfluoroalkyl substances (PFASs) surrounding two fluorochemical manufacturing facilities in Fuxin, China[J]. Environmental Science & Technology, 52(15): 8263-8271. |
[19] | CHOW S J, OJEDA N, JACANGELO J G, et al., 2021. Detection of ultrashort-chain and other per- and polyfluoroalkyl substances (PFAS) in U.S. bottled water[J]. Water Research, 201: 117292. |
[20] | COUSINS I T, DEWITT J C, GLUGE J, et al., 2020. The high persistence of PFAS is sufficient for their management as a chemical class[J]. Environmental Science: Processes & Impacts, 22(12): 2307-2312. |
[21] | COUSINS I T, NG C A, WANG Z Y, et al., 2019. Why is high persistence alone a major cause of concern?[J]. Environmental Science: Processes & Impacts, 21(5): 781-792. |
[22] | DAVID L M, BARTH M, HÖGLUND-ISAKSSON L, et al., 2021. Trifluoroacetic acid deposition from emissions of HFO-1234yf in India, China, and the Middle East[J]. Atmospheric Chemistry and Physics, 21: 14833-14849. |
[23] |
DONG B Q, WU J, ZHUANG Y R, et al., 2023. Trace analysis method based on UPLC-MS/MS for the determination of (c2-c18) per-and polyfluoroalkyl substances and its application to tap water and bottled water[J]. Analytical Chemistry, 95(2): 695-702.
DOI PMID |
[24] | DUAN Y S, SUN H W, YAO Y M, et al, 2020. Distribution of novel and legacy per-/polyfluoroalkyl substances in serum and its associations with two glycemic biomarkers among Chinese adult men and women with normal blood glucose levels[J]. Environment International, 134: 105295. |
[25] |
ELLIS D A, HANSON M L, SIBLEY P K, et al., 2001. The fate and persistence of trifluoroacetic and chloroacetic acids in pond waters[J]. Chemosphere, 42(3): 309-318.
PMID |
[26] | European Union, 2020. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption (recast)[EB/OL]. [2020-12-23]. http://data.europa.eu/eli/dir/2020/2184/oj. |
[27] | FREELING F, BEHRINGER D, Heydel F, et al., 2020. Trifluoroacetate in precipitation: Deriving a benchmark data set[J]. Environmental Science & Technology, 54(18): 11210-11219. |
[28] | FREELING F, SCHEURER M, KOSCHORRECK J, et al., 2022. Levels and temporal trends of trifluoroacetate (TFA) in archived plants: evidence for increasing emissions of gaseous TFA precursors over the last decades[J]. Environmental Science & Technology Letters, 9(5): 400-405. |
[29] | FU Y, JI Y Y, TIAN Y W, et al., 2024. Unveiling priority emerging PFAS in Taihu Lake using integrated nontarget screening, target analysis, and risk characterization[J]. Environmental Science & Technology, 58(42): 18980-18991. |
[30] | GORJI S G, MACKIE R, PRASAD P, et al., 2024. Occurrence of ultrashort-chain PFASs in Australian environmental water samples[J]. Environmental Science & Technology, 11(12): 1362-1369. |
[31] | GUCKERT M, RUPP J, NURENBERG G, et al., 2023. Differences in the internal PFAS patterns of herbivores, omnivores and carnivores - lessons learned from target screening and the total oxidizable precursor assay[J]. Science of the Total Environment, 875: 162361. |
[32] |
GUELFO, FERGUSON, BECK J, et al., 2024. Lithium-ion battery components are at the nexus of sustainable energy and environmental release of per- and polyfluoroalkyl substances[J]. Nature Communications, 15(1): 5548.
DOI PMID |
[33] | HAMMEL E, WEBSTER T F, GURNEY R, et al., 2022. Implications of PFAS definitions using fluorinated pharmaceuticals[J]. iScience, 25(4): 104020. |
[34] | HERZKE D, NIKIFOROV V, YEUNG L W Y, et al., 2023. Targeted PFAS analyses and extractable organofluorine - enhancing our understanding of the presence of unknown PFAS in Norwegian wildlife[J]. Environment International, 171: 107640. |
[35] | JACKSON D A, YOUNG C J, HURLEY M D, et al., 2011. Atmospheric degradation of perfluoro-2-methyl-3-pentanone: Photolysis, hydrolysis and hydration[J]. Environmental Science & Technology, 45(19): 8030-8036. |
[36] | JACOB P, HELBLING D E, 2023. Rapid and simultaneous quantification of short- and ultrashort-chain perfluoroalkyl substances in water and wastewater[J]. ACS ES&T Water, 3(1): 118-128. |
[37] | JAMES M M, JOHN H O, 2024. Measuring short-chain per-and polyfluoroalkyl substances in Central New Jersey air using chemical ionization mass spectrometry[J]. Journal of the Air & Waste Management Association, 74(8): 531-539. |
[38] | JANDA J, NÖDLER K, BRAUCH H J, et al., 2018. Robust trace analysis of polar (C2-C8) perfluorinated carboxylic acids by liquid chromatography-tandem mass spectrometry: Method development and application to surface water, groundwater and drinking water[J]. Environmental Science and Pollution Research, 26(8): 7326-7336. |
[39] | JIA J W, DUAN L H, DONG B Q, et al., 2023. Perfluoroalkyl and polyfluoroalkyl substances in cord serum of newborns and their potential factors[J]. Chemosphere, 313: 137525. |
[40] | JIAO E M, LARSSON P, WANG Q, et al., 2023. Further insight into extractable (organo) fluorine mass balance analysis of tap water from Shanghai, China[J]. Environmental Science & Technology, 57(38): 14330-14339. |
[41] | JIAO E M, ZHU Z L, YIN D Q, et al., 2022. A pilot study on extractable organofluorine and per- and polyfluoroalkyl substances (PFAS) in water from drinking water treatment plants around Taihu Lake, China: What is missed by target PFAS analysis?[J]. Environmental Science: Processes & Impacts, 24(7): 1060-1070. |
[42] | JORDAN A, FRANK H, 2020. Trifluoroacetate in the environment. evidence for sources other than HFC/HCFCs[J]. Environmental Science & Technology, 33(4): 522-527. |
[43] | JOUDAN S, GAUTHIER J, MABURY S A, et al., 2024. Aqueous leaching of ultrashort-chain pfas from (fluoro)polymers: Targeted and nontargeted analysis[J]. Environmental Science & Technology, 11(3): 237-242. |
[44] | KIM J H, XIN X Y, MAMO B T, et al., 2022. Occurrence and fate of ultrashort-chain and other per- and polyfluoroalkyl substances (PFAS) in wastewater treatment plants[J]. ACS ES&T Water, 2(8): 1380-1390. |
[45] |
KIM N Y, ELBERT J, SHCHUKINA E, et al., 2024. Integrating redox-electrodialysis and electrosorption for the removal of ultra-short- to long-chain PFAS[J]. Nature Communications, 15: 8321.
DOI PMID |
[46] | LAN Z H, YAO Y M, XU J Y, et al., 2020. Novel and legacy per- and polyfluoroalkyl substances (PFASs) in a farmland environment: Soil distribution and biomonitoring with plant leaves and locusts[J]. Environmental Pollution, 263(Part A): 114487. |
[47] | LENKA S P, KAH M, PADHYE L P, 2022. Occurrence and fate of poly-and perfluoroalkyl substances (PFAS) in urban waters of New Zealand[J]. Journal of Hazardous Materials, 428: 128257. |
[48] | LI F, ZHANG C J, QU Y, et al., 2010. Quantitative characterization of short- and long-chain perfluorinated acids in solid matrices in Shanghai, China[J]. Science of the Total Environment, 408(3): 617-623. |
[49] | LIU M, MUNOZ G, VO DUY S, et al., 2022. Per- and polyfluoroalkyl substances in contaminated soil and groundwater at airports: A Canadian case study[J]. Environmental Science & Technology, 56(2): 885-895. |
[50] | MAK Y L, TANIYASU S, YEUNG L W Y, et al., 2009. Perfluorinated compounds in tap water from China and several other countries[J]. Environmental Science & Technology, 43(13): 4824-4829. |
[51] | MCDONOUGH C A, CHOYKE S, BARTON K E, et al., 2021. Unsaturated PFOS and other PFASs in human serum and drinking water from an AFFF-Impacted community[J]. Environmental Science & Technology, 55(12): 8139-8148. |
[52] | MIKHAEL E, BOUAZZA A, GATES W P, et al., 2024. Are geotextiles silent contributors of ultrashort chain PFASs to the environment?[J]. Environmental Science & Technology, 58(20): 8867-8877. |
[53] | MONTES R, AGUIRRE J, VIDAL X, et al., 2017. Screening for polar chemicals in water by trifunctional mixed-mode liquid chromatography- high resolution mass spectrometry[J]. Environmental Science & Technology, 51(11): 6250-6259. |
[54] | MONTES R, RODIL R, PLACER L, et al., 2020. Applicability of mixed-mode chromatography for the simultaneous analysis of C1-C18 perfluoroalkylated substances[J]. Analytical and Bioanalytical Chemistry, 412: 4849-4856. |
[55] | NEUWALD I J, HÜBNER D, WIEGAND H L, et al., 2022. Ultra-short- chain PFASs in the sources of german drinking water: Prevalent, overlooked, difficult to remove, and unregulated[J]. Environmental Science & Technology, 56(10): 6380-6390. |
[56] | PELCH K E, MCKNIGHT T, READE A, 2023. 70 analyte PFAS test method highlights need for expanded testing of PFAS in drinking water[J]. Science of the Total Environment, 876: 162978. |
[57] | Pesticide Action Network, 2024. TFA in Water[R]. Brussels: Pesticide Action Network Europe. |
[58] | PICKARD H M, CRISCITIELLO A S, PERSAUD D, et al., 2020. Ice core record of persistent short‐chain fluorinated alkyl acids: Evidence of the impact from global environmental regulations[J]. Geophysical Research Letters, 47(10): e2020GL087535. |
[59] | QI Z H, CAO Y T, LI D, et al., 2024. Nontarget analysis of legacy and emerging PFAS in a lithium-ion power battery recycling park and their possible toxicity measured using high-throughput phenotype screening[J]. Environmental Science & Technology, 58(32): 14530-14540. |
[60] | RAYNE S, FOREST K, 2010. Theoretical studies on the pK(a) values of perfluoroalkyl carboxylic acids[J]. Journal of Molecular Structure, 949(1-3): 60-69. |
[61] | RÜDEL H, KÖRNER W, LETZEL T, et al., 2020. Persistent, mobile and toxic substances in the environment: A spotlight on current research and regulatory activities[J]. Environmental Sciences Europe, 32(1): 1-11. |
[62] | RUPP J, GUCKERT M, BERGER U, et al., 2023. Comprehensive target analysis and TOP assay of per- and polyfluoroalkyl substances (PFAS) in wild boar livers indicate contamination hot-spots in the environment[J]. Science of the Total Environment, 871: 162028. |
[63] |
RUSSELL M H, HOOGEWEG G, WEBSTER E M, et al., 2012. TFA from HFO-1234yf: Accumulation and aquatic risk in terminal water bodies[J]. Environmental Toxicology and Chemistry, 31(9): 1957-1965.
DOI PMID |
[64] | SADIA M, NOLLEN I, HELMUS R, et al., 2023. Occurrence, fate, and related health risks of PFAS in raw and produced drinking water[J]. Environmental Science & Technology, 57(8): 3062-3074. |
[65] | SCHEURER M, NÖDLER K, 2021. Ultrashort-chain perfluoroalkyl substance trifluoroacetate (TFA) in beer and tea - an unintended aqueous extraction[J]. Food Chemistry, 351: 129304. |
[66] |
SCHULZE S, ZAHN D, MONTES R, et al., 2019. Occurrence of emerging persistent and mobile organic contaminants in European water samples[J]. Water Research, 153: 80-90.
DOI PMID |
[67] | SCHWARTZ-NARBONNE H, XIA C, SHALIN A, et al., 2023. Per- and polyffuoroalkyl substances in Canadian fast foodpackaging[J]. Environmental Science & Technology, 10(4): 343-349. |
[68] | SCOTT B F, MACDONALD R W, KANNAN K, et al., 2005a. Trifluoroacetate profiles in the Arctic, Atlantic, and Pacific Oceans[J]. Environmental Science & Technology, 39(17): 6555-6560. |
[69] | SCOTT B F, SPENCER C, MARTIN J, et al., 2005b. Comparison of haloacetic acids in the environment of the Northern and Southern Hemispheres[J]. Environmental Science & Technology, 39(22): 8664-8670. |
[70] | SOLOMON K R, VELDERS G J M, WILSON S R, et al., 2016. Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: Relevance to substances regulated under the Montreal and Kyoto Protocols[J]. Journal of Toxicology and Environmental Health, Part B, 19(7): 289-304. |
[71] |
TANIYASU S, KANNAN K, YEUNG L W Y, et al., 2008. Analysis of trifluoroacetic acid and other short-chain perfluorinated acids (C2-C4) in precipitation by liquid chromatography-tandem mass spectrometry: comparison to patterns of long-chain perfluorinated acids (C5-C18)[J]. Analytica Chimica Acta, 619(2): 221-230.
DOI PMID |
[72] | TIAN Y, YAO Y M, CHANG S, et al., 2018. Occurrence and phase distribution of neutral and ionizable per- and polyfluoroalkyl substances (PFASs) in the atmosphere and plant leaves around landfills: A case study in Tianjin, China[J]. Environmental Science & Technology, 52(3): 1301-1310. |
[73] |
TRANG B, LI Y, XUE X S, et al., 2022. Low-temperature mineralization of perfluorocarboxylic acids[J]. Science, 377(6608): 839-845.
DOI PMID |
[74] | WANG B, YAO Y M, CHEN H, et al., 2020. Per- and polyfluoroalkyl substances and the contribution of unknown precursors and short-chain (C2-C3) perfluoroalkyl carboxylic acids at solid waste disposal facilities[J]. Science of the Total Environment, 705: 135832. |
[75] | WANG B, YAO Y, WANG Y, et al., 2022. Per- and polyfluoroalkyl substances in outdoor and indoor dust from Mainland China: contributions of unknown precursors and implications for human exposure[J]. Environmental Science & Technology, 56(10): 6036-6045. |
[76] | WANG Q, RUAN Y F, JIN L J, et al., 2023. Legacy and emerging per- and polyffuoroalkyl substances in a subtropical marine food web: Suspect screening, isomer proffle, and identiffcation of analytical interference[J]. Environmental Science & Technology, 57(22): 8355-8364. |
[77] | WANG Z Y, BUSER A M, COUSINS I T, et al., 2021. A new OECD definition for per- and polyfluoroalkyl substances[J]. Environmental Science & Technology, 55(23): 15575-15578. |
[78] | WANG Z Y, DEWITT J C, HIGGINS C P, et al., 2017. A never-ending story of per- and polyfluoroalkyl substances (PFASs)?[J]. Environmental Science & Technology, 51(5): 2508-2518. |
[79] | WU J, MARTIN J W, ZHAI Z H, et al., 2014. Airborne trifluoroacetic acid and its fraction from the degradation of HFC-134a in Beijing, China[J]. Environmental Science & Technology, 48(7): 3675-3681. |
[80] | XIA C J, DIAMOND M L, PEASLEE G F, et al., 2022. Per- and polyffuoroalkyl substances in North American schooluniforms[J]. Environmental Science & Technology, 56(19): 13845-13857. |
[81] | XIE G Y, CUI J N, ZHAI Z H, et al., 2020. Distribution characteristics of trifluoroacetic acid in the environments surrounding fluorochemical production plants in Ji’nan, China[J]. Environmental Science and Pollution Research, 27: 983-991. |
[82] | YAN H, COUSINS I T, ZHANG C J, et al., 2015. Perfluoroalkyl acids inmunicipal landfill leachates from China: occurrence, fate during leachate treatment and potential impact on groundwater[J]. Science of the Total Environment, 524-525: 23-31. |
[83] | YAO Y M, SUN H W, GAN Z W, et al., 2016. Nationwide distribution of per- and polyfluoroalkyl substances in outdoor dust in mainland China from eastern to western areas[J]. Environmental Science & Technology, 50(7): 3676-3685. |
[84] | YEUNG L W Y, STADEY C, MABURY S A, 2017. Simultaneous analysis of perfluoroalkyl and polyfluoroalkyl substances including ultrashort- chain C2 and C3 compounds in rainand river water samples by ultra performance convergence chromatography[J]. Journal of Chromatography A, 1522: 78-85. |
[85] | ZHANG C H, HAO S L, GONDA N, et al., 2024. Quantification of long-chain, short-chain, and ultrashort-chain liquid chromatography- amenable PFASs in water: Evaluation of approaches and tradeoffs for AFFF-impacted water[J]. Journal of Hazardous Materials, 466: 133591. |
[86] | ZHANG C J, YAN H, LI F, et al., 2013b. Occurrence and fate of perfluorinated acids in two wastewater treatment plants in Shanghai, China[J]. Environmental Science and Pollution Research, 22(3): 1804-1811. |
[87] | ZHANG L, LIU X T, HUANG W, et al., 2024. A pilot study of bis-perfluoroalkyl sulfonimides in dust from e‑waste and urban regions[J]. Environmental Science & Technology Letters, 11(12): 1384-1390. |
[88] | ZHANG W, ZHANG Y T, TANIYASU S, et al., 2013a. Distribution and fate of perfluoroalkyl substances in municipal wastewater treatment plants in economically developed areas of China[J]. Environmental Pollution, 176: 10-17. |
[89] | ZHAO H T, YANG L P, YANG X J, et al., 2022. Behaviors of 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) in wheat seedlings: bioaccumulation, biotransformation and ecotoxicity[J]. Ecotoxicology and Environmental Safety, 238: 113585. |
[90] | ZHAO L C, CHENG Z P, ZHU H K, et al., 2023. Electronic-waste- associated pollution of per- and polyffuoroalkyl substances: Environmental occurrence and human exposure[J]. Journal of Hazardous Materials, 451: 131204. |
[91] | ZHAO S Y, LIANG T K, ZHU T Y, et al., 2019. Fate of 6:2 fluorotelomer sulfonic acid in pumpkin (Cucurbita maxima L.) based on hydroponic culture: uptake, translocation and biotransformation[J]. Environmental Pollution, 252(Part A): 804-812. |
[92] | ZHENG G M, EICK S M, SALAMOVA A, 2023. Elevated levels of ultrashort- and short-chain perfluoroalkyl acids in US homes and people[J]. Environmental Science & Technology, 57: 15782-15793. |
[93] | ZHI Y, LU X W, MUNOZ G, et al., 2024. Environmental occurrence and biotic concentrations of ultrashort-chain perffuoroalkyl acids: Overlooked global organoffuorine contaminants[J]. Environmental Science & Technology, 58(49): 21393-21410. |
[94] |
ZHOU Y Q, WANG C F, DONG H K, et al., 2024. Escalating global pollution of trifluoroacetic acid[J]. Science Bulletin, 69(16): 2483-2486.
DOI PMID |
[95] | 陈森, 王新皓, 徐翊宸, 等, 2023. 市政污水处理系统中不同工艺段多氟/全氟烷基化合物 (PFASs) 的赋存、转化和去除[J]. 环境化学, 42(7): 2228-2241. |
CHEN S, WANG X H, XU Y C, et al., 2023. Review on the occurrence, transformation and removal of per- and polyfluoroalkyl substances (PFASs) in different process segments of sewage wastewater treatment systems[J]. Environmental Chemistry, 42(7): 2228-2241. | |
[96] | 方广君, 李菲菲, 陈吕军, 等, 2024. 化工园区全氟新污染物废水治理现状与对策展望[J/OL]. 环境工程, https://link.cnki.net/urlid/11.2097.x.20241120.1002.005. |
FANG G J, LI F F, CHEN L J, et al., 2024. Perfluorinated compounds in chemical industrial parks: Current wastewater treatment technologies and perspective management strategies[J/OL]. Environmental Engineering, https://link.cnki.net/urlid/11.2097.x.20241120.1002.005. | |
[97] | 黄柳青, 王雯冉, 张浴曈, 等, 2024. 地表水中全氟及多氟烷基化合物 (PFASs) 的污染现状研究进展[J]. 环境化学, 43(3): 693-710. |
HUANG L Q, WANG W R, ZHANG Y T, et al., 2024. Research progress on the pollution status of per-and polyfluoroalkyl substances (PFASs) in surface water: A review[J]. Environmental Chemistry, 43(3): 693-710. | |
[98] | 黄兴瑶, 刘雪梅, 钱深华, 等, 2022. 垃圾填埋渗滤液全(多)氟化合物赋存与去除研究进展[J]. 环境化学, 41(6): 2001-2013. |
HUANG X Y, LIU X M, QIAN S H, et al., 2022. Research progress on the occurrence and removal of per- and polyfluoroalkyl substances (PFASs) in landfill leachates[J]. Environmental Chemistry, 41(6): 2001-2013. | |
[99] | 廖晨宇, 钱力波, 黄美薇, 等, 2022. 全氟己基乙基磺酰衍生物 (6:2 FTSA) 和 (6:2 FTAB) 在环境中降解的研究进展[J]. 有机氟工业 (3): 38-45. |
LIAO C Y, QIAN L B, HUANG M W, et al., 2022. Degradation of perfluorohexyl ethyl sulfonyl derivatives (6:2 FTSA) and (6:2 FTAB) in the environment[J]. Organo-Fluorine Industry (3): 38-45. | |
[100] | 生态环境部, 2022. 重点管控新污染物清单 (2023年版)[EB/OL]. [2022-12-29]. https://www.mee.gov.cn/gzk/gz/202212/t20221230_1009192.shtml. |
Ministry of ecology and environment, 2022. Key control list of new pollutants 2023[EB/OL]. [2022-12-29]. https://www.mee.gov.cn/gzk/gz/202212/t20221230_1009192.shtml. | |
[101] |
王亚韡, 张秋瑞, 于南洋, 等, 2024. 新污染物[J]. 化学进展, 36(11): 1607-1784.
DOI |
WANG Y W, ZHANG Q R, YU NY, et al., 2024. Emerging pollutants[J]. Progress in Chemistry, 36(11): 1607-1784.
DOI |
[1] | 周依湘, 唐斌, 付成忠, 许榕钦, 周东静, 王俊丽, 郑晶. 北江中下游水源地双酚类化合物和溴代阻燃剂的污染特征及风险评估[J]. 生态环境学报, 2025, 34(7): 1007-1019. |
[2] | 田蜜, 廖日权, 张健, 董凤凤, 唐建辉. 钦州湾全氟/多氟烷基化合物的污染特征及生态风险评估[J]. 生态环境学报, 2025, 34(7): 1020-1028. |
[3] | 李程, 程志鹏, 刘育金, 姚义鸣, 李春雷. 全(多)氟烷基化合物生态风险及其管控政策研究[J]. 生态环境学报, 2024, 33(6): 980-996. |
[4] | 何艺, 秦欣欣, 张翔, 孙楠, 杨雅淋, 连军锋. 微塑料断面分布的不均一性——以赣江水域赣州段为例[J]. 生态环境学报, 2024, 33(4): 626-632. |
[5] | 蒋皓, 吴启堂. 石油烃污染敏感场地健康风险筛选误差的概率方法分析[J]. 生态环境学报, 2024, 33(4): 645-654. |
[6] | 朱永乐, 汤家喜, 谭婷, 李玉, 向彪. 氟化工园区周边玉米中全氟/多氟化合物的污染特征[J]. 生态环境学报, 2023, 32(5): 1001-1006. |
[7] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[8] | 李姝亭, 胡冠九, 罗小三. 大气环境中全(多)氟烷基化合物(PFASs)的来源、分布及健康风险研究进展[J]. 生态环境学报, 2023, 32(12): 2103-2114. |
[9] | 刘宁, 孔宇, 任春廷, 潘超, 李晓娜, 王震宇. 废碳粉中新污染物的环境健康风险与资源化利用[J]. 生态环境学报, 2023, 32(12): 2128-2140. |
[10] | 李文菁, 黄月群, 黄亮亮, 李向通, 苏琼源, 孙扬言. 北部湾海洋鱼类微塑料污染特征及其风险评估[J]. 生态环境学报, 2023, 32(11): 1913-1921. |
[11] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[12] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
[13] | 张楷悦, 刘增辉, 王颜昊, 王敬宽, 崔德杰, 柳新伟. 黄河三角洲自然保护区土壤PAHs的风险评估和空间特征[J]. 生态环境学报, 2022, 31(11): 2198-2205. |
[14] | 解旭东, 侯智昊, 李楠, 岳翠霞, 李雅, 杨方社. 中国胡焕庸线下方四区域沉积物和土壤中抗生素污染特征及生态风险评价[J]. 生态环境学报, 2021, 30(5): 1023-1033. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||