生态环境学报 ›› 2025, Vol. 34 ›› Issue (7): 1029-1041.DOI: 10.16258/j.cnki.1674-5906.2025.07.004
肖咏茵1,2(), 王帆1,2, 李灿桦1,2, 汪超1,2, 王万军1,2,*(
)
收稿日期:
2025-02-05
出版日期:
2025-07-18
发布日期:
2025-07-11
通讯作者:
*E-mail: 作者简介:
肖咏茵(1998年生),女,硕士研究生,研究方向为水体耐药基因。E-mail: a448930285@163.com
基金资助:
XIAO Yongyin1,2(), WANG Fan1,2, LI Canhua1,2, WANG Chao1,2, WANG Wanjun1,2,*(
)
Received:
2025-02-05
Online:
2025-07-18
Published:
2025-07-11
摘要:
可生物降解微塑料(Biodegradable microplastics,BMPs)已被证实是促进水生环境中抗生素抗性基因(Antibiotic resistance genes,ARGs)传播的重要载体,加剧了环境健康风险。然而,不同类型BMPs生物膜上富集的ARGs健康风险的定量评估尚不明晰。通过构建中宇宙实验体系,结合宏基因组学分析,探究了聚乳酸(Polylactic acid,PLA)、聚羟基脂肪酸酯(Polyhydroxyalkanoates,PHA)和聚己二酸对苯二甲酸丁二醇酯(Poly (butyleneadipate-co-terephthalate),PBAT)3种BMPs生物膜上ARGs及其病原宿主的富集特征和生物驱动因素,并定量评估相关健康风险。结果表明,经28 d孵育后3种BMPs表面均形成明显的生物膜,且PLA生物膜的生物量和胞外聚合物含量最高。BMPs生物膜上ARGs的相对丰度是周围水体的1.97-2.29倍,PLA生物膜上ARGs的相对丰度最高(3.91×104 TPM)。氢噬胞菌属(Hydrogenophaga)的细菌成员是所有BMPs生物膜上ARGs的主要病原宿主。代谢功能和关键基因分析表明,PLA生物膜上的微生物通过调控双组分系统、ABC转运蛋白和群体感应促进了ARGs的富集。健康风险评估显示,BMPs生物膜上ARGs健康风险是周围水体的3.24-4.27倍,且PLA生物膜上ARGs的健康风险最高。研究结果为理解BMPs介导的抗生素耐药性传播提供了重要参考数据,同时为制定水环境微塑料污染防控策略奠定了科学基础。
中图分类号:
肖咏茵, 王帆, 李灿桦, 汪超, 王万军. 淡水中可生物降解微塑料生物膜上耐药基因的富集特征及其健康风险[J]. 生态环境学报, 2025, 34(7): 1029-1041.
XIAO Yongyin, WANG Fan, LI Canhua, WANG Chao, WANG Wanjun. Enrichment Characteristics and Health Risks of Antibiotic Resistance Genes in Biofilms on Biodegradable Microplastics in Freshwater[J]. Ecology and Environmental Sciences, 2025, 34(7): 1029-1041.
图3 BMPs生物膜胞外聚合物中蛋白质和多糖含量 图中不同小写字母(a、b、c)表示不同处理组间存在显著差异(p<0.05);若两组有相同字母(如a和ab),则组间差异不显著;若无相同字母(如a和b),则组间差异显著
Figure 3 Protein and polysaccharide contents in extracellular polymers in BMPs biofilms
图5 BMPs生物膜及周围水体中微生物携带ARGs的种类和相对丰度分析 PM为每百万转录本数(Transcripts Per Million),以定量ARGs相对丰度;LDA为线性判别分析(Linear Discriminant Analysis),以用于评估不同组别间微生物或功能特征的差异显著性
Figure 5 Analysis of types and relative abundance of ARGs carried by microorganisms in BMPs biofilms and surrounding water
图6 BMPs生物膜及周围水体中ARGs病原宿主 TPM为每百万转录本数(Transcripts Per Million),以定量MAGs相对丰度
Figure 6 Analysis of ARGs host pathogens in BMPs biofilms and surrounding water
图7 BMPs生物膜及周围水体中差异显著的前10种代谢功能 *表示各代谢功能之间存在显著差异(p<0.05)
Figure 7 The top 10 metabolic functions with significant differences in BMPs biofilms and surrounding water
图8 BMPs生物膜及周围水体中调控抗生素耐药性的功能基因 SOS为细菌DNA损伤诱导反应;ROS为氧化活性物种(Reactive Oxygen Species)
Figure 8 Functional genes regulating antibiotic resistance in BMPs biofilms and surrounding water
[1] | CAO Z H, KIM C H, LI Z H, et al., 2024. Comparing environmental fate and ecotoxicity of conventional and biodegradable plastics: A critical review[J]. Science of the Total Environment, 951: 175735. |
[2] | CHEN X C, WANG L J, ZHOU J L, et al., 2017. Exiguobacterium sp. A1b/GX59 isolated from a patient with community-acquired pneumonia and bacteremia: Genomic characterization and literature review[J]. BMC Infectious Diseases, 17: 508. |
[3] | CHEN Y F, YAN Z H, ZHOU Y X, et al., 2024. Dynamic evolution of antibiotic resistance genes in plastisphere in the vertical profile of urban rivers[J]. Water Research, 249: 120946. |
[4] | DE GAETANO G V, LENTINI G, FAMA A, et al., 2023. Antimicrobial resistance: Two-component regulatory systems and multidrug efflux pumps[J]. Antibiotics, 12(6): 965. |
[5] |
DEFOIRDT T, BRACKMAN G, COENYE T, 2013. Quorum sensing inhibitors: How strong is the evidence?[J]. Trends in Microbiology, 21(12): 619-624.
DOI PMID |
[6] | DILKES-HOFFMAN L S, LANT P A, LAYCOCK B, et al., 2019. The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study[J]. Marine Pollution Bulletin, 142: 15-24. |
[7] | ERNI-CASSOLA G, DOLF R, BURKHARDT-HOLM P, 2024. Microplastics in the water column of the Rhine River near Basel: 22 Months of sampling[J]. Environmental Science & Technology, 58(12): 5491-5499. |
[8] | FEICHTINGER S, LAZAR A A, LUEBBE M A, et al., 2023. Case report: Isolation of Hydrogenophaga from septic blood culture following near-death drowning in lakewater[J]. Access Microbiology, 5(9): 000533. |
[9] | FELZ S, KLEIKAMP H, ZLOPASA J, et al., 2020. Impact of metal ions on structural EPS hydrogels from aerobic granular sludge[J]. Biofilm, 2: 100011. |
[10] | FENG M B, YE C S, ZHANG S Q, et al., 2022. Bisphenols promote the conjugative transfer of antibiotic resistance genes without damaging cell membrane[J]. Environmental Chemistry Letters, 20(3): 1553-1560. |
[11] | GAO F Z, HE L Y, LIU Y S, et al., 2024b. Integrating global microbiome data into antibiotic resistance assessment in large rivers[J]. Water Research, 250: 121030. |
[12] | GAO J, WANG L W, WU W M, et al., 2024a. Microplastic generation from field-collected plastic gauze: Unveiling the aging processes[J]. Journal of Hazardous Materials, 467: 133615. |
[13] | GUO X P, SUN X L, CHEN Y R, et al., 2020. Antibiotic resistance genes in biofilms on plastic wastes in an estuarine environment[J]. Science of the Total Environment, 745: 140916. |
[14] | HAN Y, ZHOU Z C, ZHU L, et al., 2019. The impact and mechanism of quaternary ammonium compounds on the transmission of antibiotic resistance genes[J]. Environmental Science and Pollution Research, 26(27): 28352-28360. |
[15] | IM S W, HWANG I J, KIM W J, et al., 2024. Enhancing methane production potential of biodegradable plastics by hydrothermal pretreatment[J]. Environmental Technology & Innovation, 34: 103599. |
[16] | JAHAN I, CHOWDHURY G, BAQUERO A O, et al., 2024. Microplastics pollution in the Surma River, Bangladesh: A rising hazard to upstream water quality and aquatic life[J]. Journal of Environmental Management, 360: 121117. |
[17] | JIA X B, ZHAO K, ZHAO J, et al., 2023. Degradation of poly(butylene adipate-co-terephthalate) films by Thermobifida fusca FXJ-1 isolated from compost[J]. Journal of Hazardous Materials, 441: 129958. |
[18] | JIANG C X, ZHAO Z L, ZHU D, et al., 2024. Rare resistome rather than core resistome exhibited higher diversity and risk along the Yangtze River[J]. Water Research, 249: 120911. |
[19] | KEYNAN Y, WEBER G, SPRECHER H, 2007. Molecular identification of Exiguobacterium acetylicum as the aetiological agent of bacteraemia[J]. Journal of Medical Microbiology, 56(4): 563-564. |
[20] | KHOURI N G, BAHU J O, BLANCOLLAMERO C, et al., 2024. Polylactic acid (PLA): Properties, synthesis, and biomedical applications: A review of the literature[J]. Journal of Molecular Structure, 1309: 138243. |
[21] |
KIM M, PARK J, KANG M, et al., 2021. Gain and loss of antibiotic resistant genes in multidrug resistant bacteria: One Health perspective[J]. Journal of Microbiology, 59(6): 535-545.
DOI PMID |
[22] | KONG F X, XU X, XUE Y G, et al., 2021. Investigation of the adsorption of sulfamethoxazole by degradable microplastics artificially aged by chemical oxidation[J]. Archives of Environmental Contamination and Toxicology, 81(1): 155-165. |
[23] | LEE J, CHA I T, LEE K E, et al., 2024. Complete genome sequence and potential pathogenic assessment of Flavobacterium plurextorum RSG-18 isolated from the gut of Schlegel's black rockfish, Sebastes schlegelii[J]. Environmental Microbiology Reports, 16(1): e13226. |
[24] | LIANG H X, DE HAAN W P, CERDA-DOMENECH M, et al., 2023. Detection of faecal bacteria and antibiotic resistance genes in biofilms attached to plastics from human-impacted coastal areas[J]. Environmental Pollution, 319: 120983. |
[25] | LIANG H B, HUANG J, TAO Y, et al., 2024. Investigating the antibiotic resistance genes and their potential risks in the megacity water environment: A case study of Shenzhen Bay Basin, China[J]. Journal of Hazardous Materials, 465: 133536. |
[26] |
LOBELLE D, CUNLIFFE M, 2011. Early microbial biofilm formation on marine plastic debris[J]. Marine Pollution Bulletin, 62(1): 197-200.
DOI PMID |
[27] | LUO G Y, LIANG B, CUI H L, et al., 2023b. Determining the contribution of micro/nanoplastics to antimicrobial resistance: Challenges and perspectives[J]. Environmental Science & Technology, 57(33): 12137-12152. |
[28] | LUO T Y, DAI X H, WEI W, et al., 2023a. Microplastics enhance the prevalence of antibiotic resistance genes in anaerobic sludge digestion by enriching antibiotic-resistant bacteria in surface biofilm and facilitating the vertical and horizontal gene transfer[J]. Environmental Science & Technology, 57(39): 14611-14621. |
[29] |
MACLEOD M, ARP H P H, TEKMAN M B, et al., 2021. The global threat from plastic pollution[J]. Science, 373(6550): 61-65.
DOI PMID |
[30] |
OMURA T, ISOBE N, MIURA T, et al., 2024. Microbial decomposition of biodegradable plastics on the deep-sea floor[J]. Nature Communications, 15(1): 568.
DOI PMID |
[31] | PANDIT S, FAZILATI M, GASKA K, et al., 2020. The exo-polysaccharide component of extracellular matrix is essential for the viscoelastic properties of Bacillus subtilis biofilms[J]. International Journal of Molecular Sciences, 21(18): 6755. |
[32] | QI A, REN Y W, WANG X G, 2017. New advances in the biodegradation of poly(lactic) acid[J]. International Biodeterioration & Biodegradation, 117: 215-223. |
[33] | QIANG L Y, CHENG J P, MIRZOYAN S, et al., 2021. Characterization of microplastic-associated biofilm development along a freshwater-estuarine gradient[J]. Environmental Science & Technology, 55(24): 16402-16412. |
[34] | REDDY V M, MAWATARI Y, YUKA Y, et al., 2016. Production of poly-3-hydroxybutyrate (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) from synthetic wastewater using Hydrogenophaga palleronii[J]. Bioresource Technology, 215: 155-162. |
[35] | REN Y N, HU J, YANG M, et al., 2019. Biodegradation behavior of poly (lactic acid) (PLA), poly (butylene adipate-co-terephthalate) (PBAT), and their blends under digested sludge conditions[J]. Journal of Polymers and the Environment, 27(12): 2784-2792. |
[36] | ROSENBOOM J G, LANGER R, TRAVERSO G, 2022. Bioplastics for a circular economy[J]. Nature Reviews Materials, 7(2): 117-137. |
[37] |
SHARMA V K, JOHNSON N, CIZMAS L, et al., 2016. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes[J]. Chemosphere, 150: 702-714.
DOI PMID |
[38] | SHRUTI V C, KUTRALAM-MUNIASAMY G, PEREZ-GUEVARA F, 2024. Microplastisphere antibiotic resistance genes: A bird’s-eye view on the plastic-specific diversity and enrichment[J]. Science of the Total Environment, 912: 169316. |
[39] | SONG R P, SUN Y Z, LI X F, et al., 2022. Biodegradable microplastics induced the dissemination of antibiotic resistance genes and virulence factors in soil: A metagenomic perspective[J]. Science of the Total Environment, 828: 154596. |
[40] | SUN R K, LI T, QIU S J, et al., 2023. Occurrence of antibiotic resistance genes carried by plastic waste from mangrove wetlands of the South China Sea[J]. Science of the Total Environment, 864: 161111. |
[41] | WANG B H, MA B, ZHANG Y N, et al., 2024c. Global diversity, coexistence and consequences of resistome in inland waters[J]. Water Research, 253: 121253. |
[42] | WANG F, HU Z X, WANG W J, et al., 2024a. Selective enrichment of high-risk antibiotic resistance genes and priority pathogens in freshwater plastisphere: Unique role of biodegradable microplastics[J]. Journal of Hazardous Materials, 480: 135901. |
[43] | WANG H X, XU K W, WANG J, et al., 2023. Microplastic biofilm: An important microniche that may accelerate the spread of antibiotic resistance genes via natural transformation[J]. Journal of Hazardous Materials, 459: 132085. |
[44] | WANG H, ZHU T T, WANG J, et al., 2025. Microplastic pollution in Pearl River networks: Characteristic, potential sources, and migration pathways[J]. Water Research, 276: 123261. |
[45] | WANG J, PENG C, DAI Y X, et al., 2022. Slower antibiotics degradation and higher resistance genes enrichment in plastisphere[J]. Water Research, 222: 118920. |
[46] | WANG X N, LI J H, PAN X L, 2024b. How micro-/nano-plastics influence the horizontal transfer of antibiotic resistance genes: A review[J]. Science of the Total Environment, 944: 173881. |
[47] | WANG Y X, LIU X H, HUANG C D, et al., 2024d. Antibiotic resistance genes and virulence factors in the plastisphere in wastewater treatment plant effluent: Health risk quantification and driving mechanism interpretation[J]. Water Research, 271: 122896. |
[48] | WILSON D N, 2016. The ABC of ribosome-related antibiotic resistance[J]. mBio, 7(3): e00598-16. |
[49] | WISE A L, LAFRENTZ B R, KELLY A M, et al., 2024. Coinfection of channel catfish (Ictalurus punctatus) with virulent Aeromonas hydrophila and Flavobacterium covae exacerbates mortality[J]. Journal of Fish Diseases, https://doi.org/10.1111/jfd.13912. |
[50] | WU X J, PAN J, LI M, et al., 2019. Selective enrichment of bacterial pathogens by microplastic biofilm[J]. Water Research, 165: 114979. |
[51] | WU X N, FENG J C, CHEN X, et al., 2025. Effects of different types of microplastics on cold seep microbial diversity and function[J]. Environmental Science & Technology, 59(2): 1322-1333. |
[52] | XIA W L, RAO Q Y, LIU J R, et al., 2024. Occurrence and characteristics of microplastics across the watershed of the world’s third-largest river[J]. Journal of Hazardous Materials, 480: 135998. |
[53] | XIANG Y P, JIA M Y, XU R, et al., 2024. Carbamazepine facilitated horizontal transfer of antibiotic resistance genes by enhancing microbial communication and aggregation[J]. Bioresource Technology, 391(Part A): 129983. |
[54] | YAN P H, ZHUANG S Z, LI M J, et al., 2024. Combined environmental pressure induces unique assembly patterns of micro-plastisphere biofilm microbial communities in constructed wetlands[J]. Water Research, 260: 121958. |
[55] | YANG K, CHEN Q L, CHEN M L, et al., 2020. Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization[J]. Environmental Science & Technology, 54(18): 11322-11332. |
[56] | ZETTLER E R, MINCER T J, AMARAL-ZETTLER L A, 2013. Life in the “plastisphere”: Microbial communities on plastic marine debris[J]. Environmental Science & Technology, 47(13): 7137-7146. |
[57] |
ZHANG A N, GASTON J M, DAI C L, et al., 2021. An omics-based framework for assessing the health risk of antimicrobial resistance genes[J]. Nature Communications, 12(1): 4765.
DOI PMID |
[58] | ZHANG S Q, YUAN H Z, MA X, et al., 2025. Carbon cycle of polyhydroxyalkanoates (CCP): Biosynthesis and biodegradation[J]. Environmental Research, 269: 120904. |
[59] | ZHANG Y H, MA Q P, SU B M, et al., 2018. A study on the role that quorum sensing play in antibiotic-resistant plasmid conjugative transfer in Escherichia coli[J]. Ecotoxicology, 27(2): 209-216. |
[60] |
ZHANG Z Y, ZHANG Q, WANG T Z, et al., 2022. Assessment of global health risk of antibiotic resistance genes[J]. Nature Communications, 13(1): 1553.
DOI PMID |
[61] | ZHAO R X, YU K, ZHANG J Y, et al., 2020a. Deciphering the mobility and bacterial hosts of antibiotic resistance genes under antibiotic selection pressure by metagenomic assembly and binning approaches[J]. Water Research, 186: 116318. |
[62] | ZHAO X H, YU Z X, DING T, 2020b. Quorum-sensing regulation of antimicrobial resistance in bacteria[J]. Microorganisms, 8(3): 425. |
[63] | ZHOU Q, ZHANG J, ZHANG M, et al., 2022. Persistent versus transient, and conventional plastic versus biodegradable plastic? — Two key questions about microplastic-water exchange of antibiotic resistance genes[J]. Water Research, 222: 118899. |
[64] | 顾昊宇, 薛银刚, 胡敏, 等, 2024. 污水不同类型微塑料生物膜特征及其对磷元素转化的影响[J]. 环境科学学报, 44(6): 113-122. |
GU H Y, XUE Y G, HU M, et al., 2024. Characteristics of different types of microplastics biofilms in sewage and their effects on phosphorus conversion[J]. Acta Scientiae Circumstantiae, 44(6): 113-122. | |
[65] |
何文宣, 李垒, 孙思宇, 等, 2023. 北运河水体、沉积物和鱼类中微塑料的分布特征研究[J]. 生态环境学报, 32(11): 1901-1912.
DOI |
HE W X, LI L, SUN S Y, et al., 2023. Distribution characteristics of microplastics in water, sediment and fish in Beiyun River[J]. Ecology and Environmental Sciences, 32(11): 1901-1912. | |
[66] |
李海燕, 杨小琴, 简美鹏, 等, 2023. 城市水体中微塑料的来源、赋存及其生态风险研究进展[J]. 生态环境学报, 32(2): 407-420.
DOI |
LI H Y, YANG X Q, JIAN M P, et al., 2023. A critical review on the sources, occurrences and ecological risk of microplastics in urban waters[J]. Ecology and Environmental Sciences, 32(2): 407-420. | |
[67] |
秦坤, 王志康, 王章鸿, 等, 2022. 木质素-聚乙烯共热解生物炭对Cd(II)的吸附性能[J]. 生态环境学报, 31(2): 344-353.
DOI |
QIN K, WANG Z K, WANG Z H, et al., 2022. Cd(II) adsorption capability of the biochar derived from co-pyrolysis of lignin and polyethylene[J]. Ecology and Environmental Sciences, 31(2): 344-353. | |
[68] |
赵海英, 刘致远, 袁梦仙, 等, 2023. 纳米银对玉米幼苗傅里叶红外光谱特性的影响[J]. 生态环境学报, 32(7): 1285-1292.
DOI |
ZHAO H Y, LIU Z Y, YUAN M X, et al., 2023. Effects of silver nanoparticles on FTIR spectroscopic characterization of maize seedlings[J]. Ecology and Environmental Sciences, 32(7): 1285-1292. |
[1] | 王龙飞, 张皎皎, 王子怡, 陈玉东, 李轶. 生物膜技术在河湖生态修复中的创新与实践[J]. 生态环境学报, 2025, 34(4): 653-664. |
[2] | 林健晖, 李萍萍, 刘敏, 邓希, 康子歆, 杨涛, 展舒悦, 曾映旭. 不同生物膜附着微塑料对文蛤鳃的毒性效应[J]. 生态环境学报, 2024, 33(1): 111-118. |
[3] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[4] | 李姝亭, 胡冠九, 罗小三. 大气环境中全(多)氟烷基化合物(PFASs)的来源、分布及健康风险研究进展[J]. 生态环境学报, 2023, 32(12): 2103-2114. |
[5] | 李双双, 蔡铭灿, 汪庆, 齐丽英, 魏贺红, 王纯. 淡水环境中微塑料与生物膜的相互作用及其生态效应研究进展[J]. 生态环境学报, 2023, 32(11): 2041-2049. |
[6] | 童银栋, 黄兰兰, 杨宁, 张奕妍, 李子芃, 邵波. 全球水体微囊藻毒素分布特征及其潜在环境风险分析[J]. 生态环境学报, 2023, 32(1): 129-138. |
[7] | 石文静, 周翰鹏, 孙涛, 黄金涛, 杨文焕, 李卫平. 矿区周边土壤重金属污染优先控制因子及健康风险评价研究[J]. 生态环境学报, 2022, 31(8): 1616-1628. |
[8] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[9] | 陈碧珊, 郑康慧, 王璟, 叶林海, 宋军霞. 雷州半岛土壤-农作物汞元素含量特征与健康风险分析[J]. 生态环境学报, 2022, 31(3): 572-582. |
[10] | 王海鹤, 孙媛媛, 张帅, 徐小蓉, 商成梅, 黎春想. 贵阳市集中式饮用水源地重金属污染特征及健康风险评价[J]. 生态环境学报, 2022, 31(10): 2039-2047. |
[11] | 陈景辉, 郭毅, 杨博, 屈撑囤. 省会城市土壤重金属污染水平与健康风险评价[J]. 生态环境学报, 2022, 31(10): 2058-2069. |
[12] | 任丽江, 张妍, 张鑫, 山泽萱, 张成前. 渭河流域关中段地表水重金属的污染特征与健康风险评价[J]. 生态环境学报, 2022, 31(1): 131-141. |
[13] | 刘柱光, 方樟, 丁小凡. 燃煤电厂贮灰场土壤重金属污染及健康风险评价[J]. 生态环境学报, 2021, 30(9): 1916-1922. |
[14] | 强承魁, 曹丹, 赵虎, 张明, 丁永辉, 关滢, 张光琴, 沈文妍, 秦越华. 土壤-油用牡丹系统重金属含量及生态健康风险分析[J]. 生态环境学报, 2021, 30(6): 1286-1292. |
[15] | 冉晓追, 刘鸿雁, 涂宇, 顾小凤, 于恩江. 大气TSP微观形貌、重金属分布特征及健康风险评价——以黔西北地质高背景与污染叠加区典型小流域为例[J]. 生态环境学报, 2021, 30(12): 2339-2350. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||