生态环境学报 ›› 2025, Vol. 34 ›› Issue (8): 1182-1191.DOI: 10.16258/j.cnki.1674-5906.2025.08.003
收稿日期:
2024-11-16
出版日期:
2025-08-18
发布日期:
2025-08-01
通讯作者:
*E-mail: 作者简介:
杜方旎(1997年生),女,助理研究员,博士,研究方向为放射生态学。E-mail: dufn525@163.com
基金资助:
DU Fangni(), FENG Qingliang, YUAN Han, CAO Shaofei*(
)
Received:
2024-11-16
Online:
2025-08-18
Published:
2025-08-01
摘要:
核电作为重要的清洁能源,是全球低碳能源的重要组成部分。随着核电的快速发展,越来越多的研究者关注到核电站排放的核素对周边水生生态环境的影响。模式生物基因组同人类有一定程度的相似性并且对污染物十分敏感,常常被筛选出并应用于污染物毒理效应和生态评估工作之中。其中,模式鱼类作为水生生态系统的重要组成部分被大量应用于以上研究中。该文阐述了生物标志物的定义及其应具备的特征。对不同种类的模式鱼类生物标志物进行总结分类,详述了其在分子层面、细胞组织和个体种群等不同层级上的毒理学效应。结合目前大量的国内外研究,讨论了亚生物标志物(分子、细胞等)和个体群体标志物在放射生态学评价中的应用情况和存在的优缺点,强调了在环境监测中应考虑多层次标志物相结合的方法。综合而言,模式鱼类生物标志物的应用前景广泛,但仍存在长期暴露的群体效应不明确、生物标志物随时间变化规律未知、环境中复合作用机理不明等问题。今后的研究应逐步解决所面临的问题,提高数据的可靠性,推进其在放射性生态风险评估中的运用,为海洋核污染的环境评估和治理提供科学参考。
中图分类号:
杜方旎, 冯青靓, 原寒, 曹少飞. 模式鱼类生物标志物在放射生态学研究中的应用及前景[J]. 生态环境学报, 2025, 34(8): 1182-1191.
DU Fangni, FENG Qingliang, YUAN Han, CAO Shaofei. Application and Prospects of Model Fish Biomarkers in Radioecology[J]. Ecology and Environmental Sciences, 2025, 34(8): 1182-1191.
地域 | 核素类型 | 浓度分布 | 参考文献 |
---|---|---|---|
印度尼西亚 南苏拉威西省 | 137Cs | 0.21-0.34 Bq·m−3 | Prihatiningsih et al., |
马来西亚 东海岸半岛 专属经济区 | 137Cs | 3.40-5.89 Bq·m−3 | Yii et al., |
239+240Pu | 2.33-7.95 mBq·m−3 | ||
日本福岛 | 236U | 106 atoms·kg−1 | Sakaguchi et al., |
137Cs(2011) | 6.8×107 Bq·m−3 | Buesseler et al., | |
137Cs(2012) | 10000 Bq·m−3 | Tsumune et al., | |
137Cs(2015) | 1000 Bq·m−3 | ||
134Cs | 6.12 Bq·m−3 | ||
北太平洋 | 137Cs | 1-2 Bq·m−3 | Aoyama et al., |
表1 不同核素在海洋中的分布情况
Table 1 The distribution of different nuclides in the marine environment
地域 | 核素类型 | 浓度分布 | 参考文献 |
---|---|---|---|
印度尼西亚 南苏拉威西省 | 137Cs | 0.21-0.34 Bq·m−3 | Prihatiningsih et al., |
马来西亚 东海岸半岛 专属经济区 | 137Cs | 3.40-5.89 Bq·m−3 | Yii et al., |
239+240Pu | 2.33-7.95 mBq·m−3 | ||
日本福岛 | 236U | 106 atoms·kg−1 | Sakaguchi et al., |
137Cs(2011) | 6.8×107 Bq·m−3 | Buesseler et al., | |
137Cs(2012) | 10000 Bq·m−3 | Tsumune et al., | |
137Cs(2015) | 1000 Bq·m−3 | ||
134Cs | 6.12 Bq·m−3 | ||
北太平洋 | 137Cs | 1-2 Bq·m−3 | Aoyama et al., |
生物标志物分类 | 检测种类 | 暴露剂量/剂量率 | 毒理学效应 | 参考文献 |
---|---|---|---|---|
分子 | 活性氧 | 22、170、470 µGy·h−1; 1×104、1×105、1×106 Bq·mL−1 | 活性氧增加 | Gagnaire et al., Di Lombo et al., |
激素 | 0.1 Gy和1 Gy | 褪黑激素增加 | Zhao et al., | |
蛋白质 | 2.25、21.01、204.3 mGy·d−1 | 蛋白质丰度发生显著变化 | Perez-Gelvez et al., | |
DNA | 0.8 mGy·d−1 | DNA链断裂 | Gagnaire et al., | |
0.01 Gy | DNA损伤显著提高 | Gagnaire et al., | ||
53 mGy·h−1 | 基因表达的全局变化 | Hurem et al., | ||
1 Gy | 干扰时钟基因的表达 | Zhao et al., | ||
2.21×103-5.95×105 Bq·mL−1 | OBT与DNA内化 | Di Lombo et al., | ||
mRNA | 15 mGy | axin2的mRNA表达水平显著上调,β-catenin、camk2、TCF/LEF和bcl9的mRNA表达水平显著下调 | Zhao et al., | |
0.1、0.2、0.4 mGy·h−1 | miRNA加工酶基因表达改变 | He et al., | ||
细胞/组织 | 神经元细胞 | 0.015、0.25、0.5、1.0、2.0 Gy | 不同程度的发育异常 | 刘美娟, |
红细胞 | 2、10、15 Gy | 细胞凋亡和和异常现象 | Sayed et al., | |
肌肉 | 3.3×101、1.3×102、1.2×103 µGy·h−1 | 肌肉损伤 | Gagnaire et al., | |
生物个体/种群 | 浓集系数 | - | BCF值与钾离子浓度有很强的依赖性 | Srivastava et al., |
产卵量 | 0.01 Gy | 产卵量显著降低 | 赵维超等, | |
孵化率 | 100 R·d−1和1000 R·d−1 | 孵化率降低 | Hyodo Taguchi et al., | |
昼夜节律 | 0.01、0.1、1 Gy | 昼夜节律改变 | Zhao et al., | |
运动行为 | 0.2 mGy·h−1和0.4 mGy·h−1 | 游泳速度增加 | He et al., | |
代际遗传 | 8.7 mGy·h−1 | 胚胎基因出现差异表达 | Hurem et al., | |
种群变化 | 5 mGy·h−1 | F1雌雄比产生差异 | Guirandy et al., |
表2 不同类别生物标志物总结表
Table 2 Summary table of different types of biomarkers
生物标志物分类 | 检测种类 | 暴露剂量/剂量率 | 毒理学效应 | 参考文献 |
---|---|---|---|---|
分子 | 活性氧 | 22、170、470 µGy·h−1; 1×104、1×105、1×106 Bq·mL−1 | 活性氧增加 | Gagnaire et al., Di Lombo et al., |
激素 | 0.1 Gy和1 Gy | 褪黑激素增加 | Zhao et al., | |
蛋白质 | 2.25、21.01、204.3 mGy·d−1 | 蛋白质丰度发生显著变化 | Perez-Gelvez et al., | |
DNA | 0.8 mGy·d−1 | DNA链断裂 | Gagnaire et al., | |
0.01 Gy | DNA损伤显著提高 | Gagnaire et al., | ||
53 mGy·h−1 | 基因表达的全局变化 | Hurem et al., | ||
1 Gy | 干扰时钟基因的表达 | Zhao et al., | ||
2.21×103-5.95×105 Bq·mL−1 | OBT与DNA内化 | Di Lombo et al., | ||
mRNA | 15 mGy | axin2的mRNA表达水平显著上调,β-catenin、camk2、TCF/LEF和bcl9的mRNA表达水平显著下调 | Zhao et al., | |
0.1、0.2、0.4 mGy·h−1 | miRNA加工酶基因表达改变 | He et al., | ||
细胞/组织 | 神经元细胞 | 0.015、0.25、0.5、1.0、2.0 Gy | 不同程度的发育异常 | 刘美娟, |
红细胞 | 2、10、15 Gy | 细胞凋亡和和异常现象 | Sayed et al., | |
肌肉 | 3.3×101、1.3×102、1.2×103 µGy·h−1 | 肌肉损伤 | Gagnaire et al., | |
生物个体/种群 | 浓集系数 | - | BCF值与钾离子浓度有很强的依赖性 | Srivastava et al., |
产卵量 | 0.01 Gy | 产卵量显著降低 | 赵维超等, | |
孵化率 | 100 R·d−1和1000 R·d−1 | 孵化率降低 | Hyodo Taguchi et al., | |
昼夜节律 | 0.01、0.1、1 Gy | 昼夜节律改变 | Zhao et al., | |
运动行为 | 0.2 mGy·h−1和0.4 mGy·h−1 | 游泳速度增加 | He et al., | |
代际遗传 | 8.7 mGy·h−1 | 胚胎基因出现差异表达 | Hurem et al., | |
种群变化 | 5 mGy·h−1 | F1雌雄比产生差异 | Guirandy et al., |
生物标志物分类 | 反应时间 | 检测时长 | 检测成本 | 可重复性 | 生态相关性 |
---|---|---|---|---|---|
生化指标 | 短 | 短 | 低 | 高 | 低 |
分子指标 | 短 | 短 | 低 | 高 | 低 |
细胞和组织指标 | 短 | 短 | 低 | 高 | 低 |
生物个体指标 | 长 | 长 | 高 | 较高 | 高 |
表3 不同生物标志物的特征差异
Table 3 Differences in the characteristics of different biomarkers
生物标志物分类 | 反应时间 | 检测时长 | 检测成本 | 可重复性 | 生态相关性 |
---|---|---|---|---|---|
生化指标 | 短 | 短 | 低 | 高 | 低 |
分子指标 | 短 | 短 | 低 | 高 | 低 |
细胞和组织指标 | 短 | 短 | 低 | 高 | 低 |
生物个体指标 | 长 | 长 | 高 | 较高 | 高 |
[1] | AOYAMA M, FUKASAWA M, HIROSE K, et al., 2011. Cross equator transport of 137Cs from North Pacific Ocean to South Pacific Ocean (BEAGLE2003 cruises)[J]. Progress in Oceanography, 89(1-4): 7-16. |
[2] | AOYAMA M, HAMAJIMA Y, HULT M, et al., 2016. 134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai-ichi Nuclear Power Plant accident, Japan. Part one: Surface pathway and vertical distributions[J]. Journal of Oceanography, 72: 53-65. |
[3] | AOYAMA M, HIROSE K, NEMOTO K, et al., 2008. Water masses labeled with global fallout 137Cs formed by subduction in the North Pacific[J]. Geophysical Research Letters, 35(1): 568-569. |
[4] |
ARCANJO C, ARMANT O, FLORIANI M, et al., 2018. Tritiated water exposure disrupts myofibril structure and induces mis-regulation of eye opacity and DNA repair genes in zebrafish early life stages[J]. Aquatic Toxicology, 200: 114-126.
DOI PMID |
[5] | AUTHMAN M M, ZAKI M S, KHALLAF E A, et al., 2015. Use of fish as bio-indicator of the effects of heavy metals pollution[J]. Journal of Aquaculture Research & Development, 6(4): 1-13. |
[6] | BERTUCCI EM, MASON MW, CAMUS AC, et al., 2020. Chronic low dose irradiation alters hepatic transcriptional profiles, but not global DNA methylation in medaka (Oryzias latipes)[J]. Science of The Total Environment, 729: 138680. |
[7] | BUESSELER K, AOYAMA M, FUKASAWA M, 2011. Impacts of the Fukushima nuclear power plants on marine radioactivity[J]. Environmental Science & Technology, 45(23): 9931-9935. |
[8] |
BUESSELER K, DAI M, AOYAMA M, et al., 2017. Fukushima Daiichi-derived radionuclides in the ocean: Transport, fate, and impacts[J]. Annual Review of Marine Science, 9: 173-203.
DOI PMID |
[9] | CONNELL D W, LAM P, RICHARDSON B, et al., 2019. Introduction to ecotoxicology[M]. New Jersey: John Wiley & Sons: 184. |
[10] | COUNCIL N R, 1987. Committee on biological markers[J]. Environmental Health Perspectives, 74: 3-9. |
[11] |
CRISTINA FOSSI M, MARSILI L, 1997. The use of non destructive biomarkers in the study of marine mammals[J]. Biomarkers, 2(4): 205-216.
DOI PMID |
[12] | DAI Y J, JIA Y F, CHEN N, et al., 2014. Zebrafish as a model system to study toxicology[J]. Environmental Toxicology and Chemistry, 33(1): 11-17. |
[13] | DI LOMBO M S, CAVALIE I, CAMILLERI V, et al., 2023a. Tritiated thymidine induces developmental delay, oxidative stress and gene overexpression in developing zebrafish (Danio rerio)[J]. Aquatic Toxicology, 265: 106766. |
[14] | DI LOMBO MS, CAVALIE I, CAMILLERI V, et al., 2023b. Tritiated thymidine internalization in zebrafish early life stages: Joint use of experimental procedures and microdosimetry[J]. Radiation Research, 199(4): 373-384. |
[15] | DONG S J, KANG M, WU X L, et al., 2014. Development of a promising fish model (Oryzias melastigma) for assessing multiple responses to stresses in the marine environment[J]. BioMed Research International, 1: 563131. |
[16] | FERREIRA M F, TURNER A, JHA A N, 2024. Controlled release of radioactive water from the fukushima daiichi nuclear power plant: Should we be concerned?[J]. Environmental Science & Technology, 58(11): 4840-4843. |
[17] | FERREIRA M F, TURNER A, VERNON E L, et al., 2023. Tritium: Its relevance, sources and impacts on non-human biota[J]. Science of the Total Environment, 876: 162816. |
[18] | FUKAMACHI S, SHIMADA A, NARUSE K, et al., 2001. Genomic analysis of γ-ray-induced germ-cell mutations at the b locus recovered from the medaka specific-locus test[J]. Mutation Research/Mutation Research Genomics, 458(1-2): 19-29. |
[19] | GAGNAIRE B, ARCANJO C, CAVALIÉ I, et al., 2021. Effects of gamma ionizing radiation exposure on Danio rerio embryo-larval stages- comparison with tritium exposure[J]. Journal of Hazardous Materials, 408: 124866. |
[20] | GAGNAIRE B, ARCANJO C, CAVALIÉ I, et al., 2020. Tritiated Water Exposure in Zebrafish (Danio rerio): Effects on the Early‐Life Stages[J]. Environmental Toxicology and Chemistry, 39(3): 648-658. |
[21] | GAGNAIRE B, CAVALIÉ I, PEREIRA S, et al., 2015. External gamma irradiation-induced effects in early-life stages of zebrafish, Danio rerio[J]. Aquatic Toxicology, 169: 69-78. |
[22] | GALLOWAY T S, SANGER R C, SMITH K L, et al., 2002. Rapid assessment of marine pollution using multiple biomarkers and chemical immunoassays[J]. Environmental Science & Technology, 36: 2219-2226. |
[23] | GEIGER G A, PARKER S E, BEOTHY A P, et al., 2006. Zebrafish as a “biosensor”? Effects of ionizing radiation and amifostine on embryonic viability and development[J]. Cancer Research, 66: 8172-8181. |
[24] | GUIRANDY N, GAGNAIRE B, CAMILLERI V, et al., 2022. Multigenerational exposure to gamma radiation affects offspring differently over generations in zebrafish[J]. Aquatic Toxicology, 244: 106101. |
[25] | HE C Q, MAO L, YAO J, et al., 2021. The threshold effects of low-dose-rate radiation on miRNA-mediated neurodevelopment of zebrafish[J]. Radiation Research, 196(6): 633-646. |
[26] |
HINTON T G, COUGHLIN D P, YI Y, et al., 2004. Low Dose Rate Irradiation Facility: initial study on chronic exposures to medaka[J]. Journal of Environmental Radioactivity, 74(1-3): 43-55.
PMID |
[27] | HU Q H, WENG J Q, WANG J S, 2010. Sources of anthropogenic radionuclides in the environment: A review[J]. Journal of Environmental Radioactivity, 101(6): 426-437. |
[28] |
HUREM S, MARTÍN LM, LINDEMAN L, et al., 2018. Parental exposure to gamma radiation causes progressively altered transcriptomes linked to adverse effects in zebrafish offspring[J]. Environmental Pollution, 234: 855-863.
DOI PMID |
[29] | HYODO TAGUCHI Y, ETOH H, 1983. The fecundity and fertility of medaka exposed to chronic γ-radiation in their embryonic stages[J]. Journal of Radiation Research, 24: 270-277. |
[30] | JUN E J, CHO Y J, LEE K H, 2024. Nuclear power to mitigate climate change: Pathways to a sustainable future[J]. Korean Journal of Chemical Engineering, 41(10): 2843-2849. |
[31] |
KONG R Y C, GIESY J P, WU R S S, et al., 2008. Development of a marine fish model for studying in vivo molecular responses in ecotoxicology[J]. Aquatic Toxicology, 86(2): 131-141.
PMID |
[32] | LAM P K S, 2009. Use of biomarkers in environmental monitoring[J]. Ocean & Coastal Management, 52(7): 348-354. |
[33] |
LEONELLI S, ANKENY R A, 2013. What makes a model organism?[J]. Endeavour, 37(4): 209-212.
DOI PMID |
[34] | LIN W H, FENG Y, YU K F, et al., 2020. Comparative study of radioactivity levels and radionuclide fingerprints in typical marine ecosystems of coral reefs, mangroves, and hydrothermal vents[J]. Marine Pollution Bulletin, 152: 110913. |
[35] | LINTON D M, WARNER G F, 2003. Biological indicators in the Caribbean coastal zone and their role in integrated coastal management[J]. Ocean & Coastal Management, 46(3-4): 261-276. |
[36] | LITTLEFIELD-WYER J, BROOKS P, KATOULI M, 2008. Application of biochemical fingerprinting and fatty acid methyl ester profiling to assess the effect of the pesticide Atradex on aquatic microbial communities[J]. Environmental Pollution, 153(2): 393-400. |
[37] | LOMARTIRE S, MARQUES J C, GONÇALVES A M M, 2021. Biomarkers based tools to assess environmental and chemical stressors in aquatic systems[J]. Ecological Indicators, 122: 107207. |
[38] |
MØLLER A, MOUSSEAU T A, 2007. Species richness and abundance of forest birds in relation to radiation at Chernobyl[J]. Biology Letters, 3(5): 483-486.
PMID |
[39] |
MØLLER A P, BARNIER F, MOUSSEAU T A, 2012. Ecosystems effects 25 years after Chernobyl: Pollinators, fruit set and recruitment[J]. Oecologia, 170(4): 1155-1165.
DOI PMID |
[40] | MØLLER A P, MOUSSEAU T A, 2006. Biological consequences of Chernobyl: 20 years on[J]. Trends in Ecology & Evolution, 21(4): 200-207. |
[41] | MøLLER A P, MOUSSEAU T A, 2011. Efficiency of bio-indicators for low-level radiation under field conditions[J]. Ecological Indicators, 11: 424-430. |
[42] | NAGATA K, OHASHI K, HASHIMOTO C, et al., 2023. Responses of hematopoietic cells after ionizing-irradiation in anemic adult medaka (Oryzias latipes)[J]. International Journal of Radiation Biology, 99(4): 663-672. |
[43] | NELSON N, 2016. Model homes for model organisms: Intersections of animal welfare and behavioral neuroscience around the environment of the laboratory mouse[J]. BioSocieties, 11: 46-66. |
[44] | NORTON W, BALLY-CUIF L, 2010. Adult zebrafish as a model organism for behavioural genetics[J]. BMC Neuroscience, 11: 1-11. |
[45] | PEREZ-GELVEZ Y N C, CAMUS A C, BRIDGER R, et al., 2021. Effects of chronic exposure to low levels of IR on Medaka (Oryzias latipes): A proteomic and bioinformatic approach[J]. International Journal of Radiation Biology, 97(10): 1485-1501. |
[46] | PRIHATININGSIH W, MAKMUR M, 2021. Radioactivity monitoring and radiological assessment of radionuclides at western coastal of South Sulawesi[J]. IOP Conference Series: Earth and Environmental Science. IOP Publishing, 860(1): 012012. |
[47] | SAKAGUCHI A, KADOKURA A, STEIER P, et al., 2012. Isotopic determination of U, Pu and Cs in environmental waters following the Fukushima Daiichi Nuclear Power Plant accident[J]. Geochemical Journal, 46(4): 355-360. |
[48] | SAYED AE, IGARASHI K, WATANABE-ASAKA T, et al., 2017. Double strand break repair and γ-H2AX formation in erythrocytes of medaka (Oryzias latipes) after γ-irradiation [J]. Environmental Pollution, 224: 35-43. |
[49] | SAYED A E, NAGATA K, NAKAZAWA T, et al., 2021. Low Dose-Rate Irradiation of Gamma-Rays-Induced Cytotoxic and Genotoxic Alterations in Peripheral Erythrocytes of p53-Deficient Medaka (Oryzias latipes)[J]. Frontiers in Marine Science, 8: 773481. |
[50] | SAYED A E, ODA S, MITANI H, 2014. Nuclear and cytoplasmic changes in erythrocytes of p53-deficient medaka fish (Oryzias latipes) after exposure to gamma-radiation[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 771: 64-70. |
[51] | SHIMA A, SHIMADA A, 1991. Development of a possible nonmammalian test system for radiation-induced germ-cell mutagenesis using a fish, the Japanese medaka (Oryzias latipes)[J]. Proceedings of the National Academy of Sciences, 88(6): 2545-2549. |
[52] | SHIMADA A, SHIMA A, 2001. High incidence of mosaic mutations induced by irradiating paternal germ cells of the medaka fish, Oryzias latipes[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 495(1-2): 33-42. |
[53] | SRIVASTAVA A, DENSCHLAG H, KELBER O, et al., 1990. Accumulation and discharge behavior of Cs-137 by zebra fish (Brachydanio rerio) in different aquatic environments[J]. Journal of Radioanalytical and Nuclear Chemistry, 138(1): 165-170. |
[54] | SRIVASTAVA A, REDDY S, KELBER O, et al., 1994. Uptake and release kinetics of 134Cs by Goldfish (Carassius auratus) and 137Cs by Zebra Fish (Brachydanio rerio) in controlled aquatic environment[J]. Journal of Radioanalytical and Nuclear Chemistry, 182: 63-69. |
[55] |
SUGANO Y, NEUHAUSS S C, 2013. Reverse genetics tools in zebrafish: A forward dive into endocrinology[J]. General and Comparative Endocrinology, 188: 303-308.
DOI PMID |
[56] | TSUMUNE D, TSUBONO T, AOYAMA M, et al., 2013. One-year, regional-scale simulation of 137Cs radioactivity in the ocean following the Fukushima Dai-ichi Nuclear Power Plant accident[J]. Biogeosciences, 10(8): 5601-5617. |
[57] | TSYUSKO O, GLENN T, YI Y, et al., 2011. Differential genetic responses to ionizing irradiation in individual families of Japanese medaka, Oryzias latipes[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 718(1-2): 18-23. |
[58] | TSYUSKO O, YI Y, COUGHLIN D, et al., 2007. Radiation-induced untargeted germline mutations in Japanese medaka[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 145(1): 103-110. |
[59] | WANG XW, ZHANG HC, LU J, et al., 2013. Radiation sensitivity differences of zebrafish embryos with different development stages to X-rays[J]. Progress in Modern Biomedicine, 13: 3225-3229. |
[60] |
WIRGIN II, GRUNWALD C, COURTENAY S, et al., 1994. A biomarker approach to assessing xenobiotic exposure in Atlantic tomcod from the North American Atlantic coast[J]. Environmental Health Perspectives, 102(9): 764-770.
PMID |
[61] |
WU R S S, SIU W H L, SHIN P K S, 2005. Induction, adaptation and recovery of biological responses: Implications for environmental monitoring[J]. Marine Pollution Bulletin, 51(8-12): 623-634.
PMID |
[62] | YASUDA T, FUNAYAMA T, NAGATA K, et al., 2020. Collimated microbeam reveals that the proportion of non-damaged cells in irradiated blastoderm determines the success of development in medaka (Oryzias latipes) Embryos[J]. Biology, 9(12): 447. |
[63] | YASUDA T, ISHIKAWA Y, SHIOYA N, et al., 2018. Radical change of apoptotic strategy following irradiation during later period of embryogenesis in medaka (Oryzias latipes)[J]. PloS ONE, 13(8): e0201790. |
[64] | YII M W, ZAL-U'YUN W M, ZAHARUDIN A, et al., 2011. Inventories of natural and anthropogenic radioactivities within exclusive economic zone of east coast Peninsular Malaysia[R]. |
[65] | ZHAO W C, HU N, LONG D X, et al., 2018. Development and genetic toxicity in zebrafish embryo induced by low dose γ-ray irradiation[J]. Atomic Energy Science and Technology, 26(4): 3869-3881. |
[66] | ZHAO W C, MAO L, HE C Q, et al., 2023. Effects of low dose radiation on behavior rhythm of zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 255: 114779. |
[67] |
ZHAO W C, YUAN P H, HU N, et al., 2020. Effects of low-dose gamma-ray radiation on apoptosis and development of zebrafish embryo brain[J]. Radiation Research, 194(1): 61-70.
DOI PMID |
[68] | ZHOU R, SI J, ZHANG H, et al., 2014. The effects of x-ray radiation on the eye development of zebrafish[J]. Human & Experimental Toxicology, 33(10): 1040-1050. |
[69] | 冯青靓, 曹少飞, 龙泽宇, 等, 2023. 斑马鱼在放射生物学领域的研究进展[J]. 中国实验动物学报, 31(4): 549-556. |
FENG Q L, CAO S F, LONG Z Y, et al., 2023. Research progress of zebrafish in the field of radiobiology[J]. Acta Laboratorium Animalis Scientia Sinica, 31(4): 549-556. | |
[70] |
冯永富, 胡南, 丁德馨, 等, 2017. γ电离辐射对斑马鱼胚胎肝、脾和肾发育形态学的影响[J]. 原子能科学技术, 51(10): 1886-1892.
DOI |
FNEG Y F, HU N, DING D X, et al., 2017. Effect of γ-ray irradiation on developmental morphology of liver, spleen and pronephros in zebrafish embryo[J]. Atomic Energy Science and Technology, 51(10): 1886-1892. | |
[71] |
林武辉, 张帆, 余克服, 等, 2023. 人工放射性核素在珊瑚岛礁系统中的富集与评估[J]. 地球科学进展, 38(3): 286-295.
DOI |
LIN W H, ZHANG F, YU K F, et al., 2023. Assessment and enrichment of artificial radionuclides in coral reef ecosystems[J]. Advances in Earth Science, 38(3): 286-295.
DOI |
|
[72] | 刘美娟, 2017. Hedgehog信号通路在γ辐射致斑马鱼胚胎神经发育毒性中的作用及机制研究[D]. 衡阳: 南华大学:65. |
LIU M J, 2017. The role and mechanism study of hedgehog signaling pathway in γ radiation induced developmental neurotoxicity in zeberfish embryos[D]. Hengyang: University of South China:65. | |
[73] | 苑朋辉, 赵维超, 胡南, 等, 2019. 低剂量率γ射线辐照对斑马鱼胚胎脑部发育形态学的影响[J]. 南华大学学报(自然科学版), 33(3): 28-32. |
YUAN P H, ZHAO W C, HU N, et al., 2019. Effects of low dose rate γ-ray irradiation on the developmental morphology of brain in zebrafish embryo[J]. Journal of University of South China: Science and Technology, 33(3): 28-32. | |
[74] |
赵维超, 胡南, 龙鼎新, 等, 2018. 低剂量γ射线辐照对斑马鱼胚胎的发育和遗传毒性效应[J]. 原子能科学技术, 52(9): 1695-1703.
DOI |
ZHAO W C, HU N, LONG D X, et al., 2018. Development and genetic toxicity in zebrafish embryo induced by low doseγ-ray irradiation[J]. Atomic Energy Science and Technology, 52(9): 1695-1703. |
[1] | 田蜜, 廖日权, 张健, 董凤凤, 唐建辉. 钦州湾全氟/多氟烷基化合物的污染特征及生态风险评估[J]. 生态环境学报, 2025, 34(7): 1020-1028. |
[2] | 胡习邦, 关晓彤, 谢紫霞, 张修玉. 农用地土壤中邻苯二甲酸二乙基已基酯的污染现状及生态风险评估[J]. 生态环境学报, 2023, 32(12): 2083-2093. |
[3] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
[4] | 解旭东, 侯智昊, 李楠, 岳翠霞, 李雅, 杨方社. 中国胡焕庸线下方四区域沉积物和土壤中抗生素污染特征及生态风险评价[J]. 生态环境学报, 2021, 30(5): 1023-1033. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||