生态环境学报 ›› 2025, Vol. 34 ›› Issue (4): 534-547.DOI: 10.16258/j.cnki.1674-5906.2025.04.004
收稿日期:
2024-11-16
出版日期:
2025-04-18
发布日期:
2025-04-24
通讯作者:
*王丽娟。E-mail: wanglj1981@126.com作者简介:
郭铭彬(2002年生),男,硕士研究生,主要研究方向为生态遥感与大气环境。E-mail: guomb61127@126.com
基金资助:
GUO Mingbin1(), GONG Jianzhou1, WANG Lijuan2,*(
), WANG Shikuan1
Received:
2024-11-16
Online:
2025-04-18
Published:
2025-04-24
摘要: 基于Sentinel-5P卫星提供的二氧化氮对流层柱浓度数据(NRTI/L3_NO2),结合气象数据、NDVI和陆表温度数据,采用Sen趋势分析、Mann-Kendall检验等方法,并辅以地理探测器与时空地理加权回归模型(GTWR),解析2019-2023年粤港澳大湾区NO2柱浓度时空变化与自然驱动机制。结果显示:1)年际变化上,2021年NO2柱浓度达到峰值,2020年为最低,季节性变化上冬季浓度最高,夏季最低,空间分布呈“中间高、四周低”的特点;2)Sen年趋势分析表明,广佛交界、深圳西部、肇庆等地NO2浓度上升,珠海、江门、澳门等地下降;Mann-Kendall检验显示,广州北部与肇庆为显著增长区;3)地理探测器分析表明,风速、温度、湿度和气压是主要影响因子,降水和太阳辐射影响较弱;湿度与风速、湿度与温度的交互作用显著,非线性增强效应表现在气压、降水与其他因子的交互中;4)GTWR模型分析显示,风速、温度和陆表温度对NO2浓度存在正向影响,广佛与深圳尤为显著;气压、湿度与植被指数对其存在负向影响,江门与珠海更为明显;降水与太阳辐射的影响复杂,空间差异较大。该研究可为理解大湾区NO2污染的时空变化及自然驱动机制提供参考,助力空气质量管理和污染控制策略的制定。
中图分类号:
郭铭彬, 龚建周, 王丽娟, 王时宽. 2019-2023年粤港澳大湾区NO2浓度变化的自然主控因子解析[J]. 生态环境学报, 2025, 34(4): 534-547.
GUO Mingbin, GONG Jianzhou, WANG Lijuan, WANG Shikuan. Analysis of the Natural Dominant Factors Driving NO2 Concentration Changes in the Guangdong-Hong Kong-Macao Greater Bay Area from 2019 to 2023[J]. Ecology and Environment, 2025, 34(4): 534-547.
数据 | 分辨率 | 数据来源 | 产品介绍 | |
---|---|---|---|---|
NO2数据 | 对流层柱浓度 | 1 km | GEE云平台( | 选用Sentinel-5P Near Real-Time NO2数据集,该影像集提供每天(近实时)的大气污染数据 |
气象数据 | 年平均风速(WSD) | 10 km | 选用ERA5-land数据集,该影像集通过重演 ECMWF ERA5气候再分析的陆地部分生成,拥有更高的空间分辨率 | |
年平均气温(TEMP) | ||||
年平均湿度(RH) | ||||
年平均气压(PRE) | ||||
年平均降水(PRCP) | ||||
年平均太阳辐射度(DNI) | ||||
植被数据 | 归一化植被指数(NDVI) | 500 m | 选用MODIS产品中MOD13A2 16d影像集,该影像集将16 d每个像素位置的植被指数(NDVI)进行合成而得 | |
下垫面状况 | 陆表温度(LST) | 1 km | 选用MODIS产品中的MOD11A2 V6影像集,为8 d平均地表温度合成数据 |
表1 数据主要信息、来源及相应产品介绍
Table 1 Data main information, sources and corresponding product descriptions
数据 | 分辨率 | 数据来源 | 产品介绍 | |
---|---|---|---|---|
NO2数据 | 对流层柱浓度 | 1 km | GEE云平台( | 选用Sentinel-5P Near Real-Time NO2数据集,该影像集提供每天(近实时)的大气污染数据 |
气象数据 | 年平均风速(WSD) | 10 km | 选用ERA5-land数据集,该影像集通过重演 ECMWF ERA5气候再分析的陆地部分生成,拥有更高的空间分辨率 | |
年平均气温(TEMP) | ||||
年平均湿度(RH) | ||||
年平均气压(PRE) | ||||
年平均降水(PRCP) | ||||
年平均太阳辐射度(DNI) | ||||
植被数据 | 归一化植被指数(NDVI) | 500 m | 选用MODIS产品中MOD13A2 16d影像集,该影像集将16 d每个像素位置的植被指数(NDVI)进行合成而得 | |
下垫面状况 | 陆表温度(LST) | 1 km | 选用MODIS产品中的MOD11A2 V6影像集,为8 d平均地表温度合成数据 |
判据 | 交互作用 |
---|---|
q(X1∩X2)<Min[q(X1), q(X2)] | 非线性减弱 |
Min[q(X1), q(X2)]<q(X1∩X2)< Max[q(X1), q(X2)] | 单因子非线性减弱 |
q(X1∩X2)>Max[q(X1), q(X2)] | 双因子增强 |
q(X1∩X2)=q(X1)+q(X2) | 独立 |
q(X1∩X2)>q(X1)+q(X2) | 非线性增强 |
表2 两个自变量对因子变量交互作用类型
Table 2 Type of interaction between two independent variables and factor variables
判据 | 交互作用 |
---|---|
q(X1∩X2)<Min[q(X1), q(X2)] | 非线性减弱 |
Min[q(X1), q(X2)]<q(X1∩X2)< Max[q(X1), q(X2)] | 单因子非线性减弱 |
q(X1∩X2)>Max[q(X1), q(X2)] | 双因子增强 |
q(X1∩X2)=q(X1)+q(X2) | 独立 |
q(X1∩X2)>q(X1)+q(X2) | 非线性增强 |
年份 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|
2019 | 0.684 | 0.672 | 0.297 | 0.603 | 0.183 | 0.466 | 0.444 | 0.167 |
2020 | 0.600 | 0.632 | 0.490 | 0.588 | 0.143 | 0.523 | 0.402 | 0.211 |
2021 | 0.630 | 0.675 | 0.378 | 0.613 | 0.131 | 0.539 | 0.358 | 0.215 |
2022 | 0.638 | 0.665 | 0.194 | 0.611 | 0.114 | 0.513 | 0.488 | 0.249 |
2023 | 0.607 | 0.624 | 0.804 | 0.595 | 0.123 | 0.444 | 0.460 | 0.181 |
多年均值 | 0.645 | 0.683 | 0.613 | 0.619 | 0.100 | 0.519 | 0.405 | 0.233 |
表3 因子探测逐年q值变化
Table 3 The factor detects the change of q value year by year
年份 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|
2019 | 0.684 | 0.672 | 0.297 | 0.603 | 0.183 | 0.466 | 0.444 | 0.167 |
2020 | 0.600 | 0.632 | 0.490 | 0.588 | 0.143 | 0.523 | 0.402 | 0.211 |
2021 | 0.630 | 0.675 | 0.378 | 0.613 | 0.131 | 0.539 | 0.358 | 0.215 |
2022 | 0.638 | 0.665 | 0.194 | 0.611 | 0.114 | 0.513 | 0.488 | 0.249 |
2023 | 0.607 | 0.624 | 0.804 | 0.595 | 0.123 | 0.444 | 0.460 | 0.181 |
多年均值 | 0.645 | 0.683 | 0.613 | 0.619 | 0.100 | 0.519 | 0.405 | 0.233 |
因子 | WSD | TEMP | RH | PRE | PRCP | NDVI | LST | DNI |
---|---|---|---|---|---|---|---|---|
VIF | 2.02 | 6.60 | 1.40 | 5.44 | 1.34 | 2.43 | 3.07 | 2.28 |
表4 各因子协方差值
Table 4 Covariance of each factor
因子 | WSD | TEMP | RH | PRE | PRCP | NDVI | LST | DNI |
---|---|---|---|---|---|---|---|---|
VIF | 2.02 | 6.60 | 1.40 | 5.44 | 1.34 | 2.43 | 3.07 | 2.28 |
[1] | CHEN Z Q, YU B L, YANG C S, et al., 2021. An extended time-series (2000-2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration[J]. Earth System Science Data, 13(3): 889-906. |
[2] | CHENG S, MA J, CHENG W, 2019. Tropospheric NO2 vertical column densities retrieved from ground-based MAX-DOAS measurements at Shangdianzi regional Atmospheric background station in China[J]. Journal of Environmental Sciences, 80(6): 186-196. |
[3] | DE FOY B, LU Z F, STREETS D G, 2016. Satellite NO2 retrievals suggest China has exceeded its NOx reduction goals from the Twelfth Five Year Plan[J]. Scientific Reports, 6: 35912. |
[4] | HUANG B, WU B, BARRY M, 2010. Geographically and temporally weighted regression for modeling spatiotemporal variation in house prices[J]. International Journal of Geographical Information Science, 24(3): 383-401. |
[5] | KROTKOV N A, MCLINDEN C A, LI C, et al., 2016. Aura OMI observation of regional SO2 and NO2 pollution changes from 2005 to 2015[J]. Atmospheric Chemistry & Physics, 16(7): 4605-4629. |
[6] | MÜLLER I, ERBERTSEDER T, TAUBENBÖCK H, 2022. Tropospheric NO2: Explorative analyses of spatial variability and impact factors[J]. Remote Sensing of Environment, 270: 112839. |
[7] | PRASAD L V N, REDDY C K K, DEPURU S R, 2015. Satellite derived pH estimation for acidity in precipitation using water vapor and nitrogen dioxide imagery[J]. Procedia Computer Science, 62: 637-648. |
[8] | QI L, FU A Q, DUAN X L, 2022. Excess deaths associated with long-term exposure to ambient NO2 in China[J]. Environmental Research Letters, 17(12): 124018. |
[9] | RAHMAN G, DAWOOD M, 2017. Spatio-statistical analysis of temperature fluctuation using Mann-Kendall and Sen’s slope approach[J]. Climate Dynamics, 48(3-4): 783-797. |
[10] | TOENGES-SCHULLER N, STEIN O, ROHRER F, et al., 2006. Global distribution pattern of anthropogenic nitrogen oxide emissions: Correlation analysis of satellite measurements and model calculations[J]. Journal of Geophysical Research: Atmospheres, 111(D5): 1-15 |
[11] | SEN P K, 1968. Estimates of the regression coefficient based on Kendall’s Tau[J]. Journal of the American Statistical Association, 63(324): 1379-1389. |
[12] | VAN DER A R J, PETERS D, ESKES H, et al., 2006. Detection of the trend and seasonal variation in tropospheric NO2 over China[J]. Journal of Geophysical Research, 111(D12): D12317. |
[13] | VELDERS G J M, GRANIER C, PORTMANN R W, et al., 2001. Global tropospheric NO2 column distributions: Comparing three-dimensional model calculations with GOME measurements[J]. Journal of Geophysical Research: Atmospheres, 106(D12): 12643-12660. |
[14] | WAGNER T, BEIRLE S, BRAUERS T, et al., 2011. Inversion of tropospheric profiles of aerosol extinction and HCHO and NO2 mixing ratios from MAX-DOAS observations in Milano during the summer of 2003 and comparison with independent data sets[J]. Atmospheric Measurement Techniques Discussions, 4(12): 2685-2715. |
[15] | WALTER A L, RUDOLPH B H, 1976. SMS/GOES visible images detect a synoptic-scale air pollution episode[J]. Monthly Review, 104(22): 1623-1626. |
[16] | WANG N, XU J W, PEI C L, et al., 2021. Air Quality During COVID-19 lockdown in the Yangtze River Delta and the Pearl River Delta: Two different responsive mechanisms to emission reductions in China[J]. Environmental Science & Technology, 55(9): 5721-5730. |
[17] | XIANG Y C, ZHANG L Y, MAO X Z, et al., 2014. Relationship between NO2 concentration and meteorological factors in the urban area of Wanzhou District[J]. Meteorological and Environmental Research, 5(3): 22-25. |
[18] | YANG G, ZHAO Y L, XING H F, et al., 2020. Understanding the changes in spatial fairness of urban greenery using time series remote sensing images: A case study of Guangdong-Hong Kong-Macao Greater Bay[J]. Cities, 715: 136763. |
[19] | ZHANG G X, HAN J L, SU B, 2023. Contributions of cleaner production and end-of-pipe treatment to NOx emissions and intensity reductions in China, 1997-2018[J]. Journal of Environmental Management, 326(Part B): 116822. |
[20] | ZHANG S H, YANG K, LI M C, et al., 2018. Combinational biophysical composition index (CBCI) for effective mapping biophysical composition in urban areas[J]. IEEE Access, 6: 41224-41237. |
[21] | ZHANG Y J, GAO J, ZHU Y J, et al., 2023. Evolution of ozone formation sensitivity during a persistent regional ozone episode in northeastern China and its implication for a control strategy[J]. Environmental Science & Technology, 58(1): 617-627. |
[22] | 蔡文博, 韩宝龙, 逯非, 等, 2020. 全球四大湾区生态环境综合评价研究[J]. 生态学报, 40(23): 8392-8402. |
CAI W B, HAN B L, LU F, et al., 2020. Comprehensive evaluation of the eco-environment in the four global bay areas[J]. Acta Ecologica Sinica, 40(23): 8392-8402. | |
[23] | 陈婉莹, 陈懿昂, 褚旸晰, 等, 2022. 珠三角地区臭氧来源特征的数值模拟研究[J]. 环境科学学报, 42(3): 293-308. |
CHEN W Y, CHEN Y A, CHU Y X, et al., 2022. Numerical simulation of ozone source characteristics in the Pearl River Delta region[J]. Acta Scientiae Circumstantiae, 42(3): 293-308. | |
[24] |
顾芳婷, 胡敏, 郑竞, 等, 2017. 大气颗粒物中有机硝酸酯的研究进展[J]. 化学进展, 29(9): 962-969.
DOI |
GU F T, HU M, ZHENG J, et al., 2017. Research progress on particulate organonitrates[J]. Progress in Chemistry, 29(9): 962-969.
DOI |
|
[25] |
姜建芳, 侯丽丽, 王鑫龙, 等, 2019. 中国近地面NO2污染分布特征及其社会经济影响因素分析[J]. 生态环境学报, 28(8): 1632-1641.
DOI |
JIANG J F, HOU L L, WANG X L, et al., 2019. Spatial analysis of ground-level NO2 in China and its socio-economic factors[J]. Ecology and Environmental Sciences, 28(8): 1632-1641. | |
[26] | 李秋芳, 刘翠棉, 丁学英, 等, 2022. 石家庄市NO2时空分布特征及影响因素[J]. 中国环境监测, 38(3): 62-73. |
LI Q F, LIU C M, DING X Y, et al., 2022. Temporal and spatial distribution characteristics and influencing factors of NO2 in Shijiazhuang[J]. Environmental Monitoring in China, 38(3): 62-73. | |
[27] |
梁秀娟, 王旭红, 牛林芝, 等, 2020. 大西安都市圈城市热岛效应时空分布特征及AOD对热岛强度的影响研究[J]. 生态环境学报, 29(8): 1566-1580.
DOI |
LIANG X J, WANG X H, NIU L Z, et al., 2020. Research on the temporal and spatial distribution characteristics of urban heat island effect and the influence of AOD on urban heat island intensity in the greater Xi’an metropolitan area[J]. Ecology and Environmental Sciences, 29(8): 1566-1580. | |
[28] | 梁勇歌, 2023. 西安市环境空气质量污染变化特征与影响因素研究[J]. 广东化工, 50(14): 151-153, 157. |
LIANG Y G, 2023. Study on the change characteristics and influencing factors of ambient air quality pollution in Xi’an[J]. Guangdong Chemical Industry, 50(14): 151-153, 157. | |
[29] | 刘显通, 郑腾飞, 万齐林, 等, 2015. OMI遥感珠三角城市群NO2的时空分布特征及人类活动影响分析[J]. 热带气象学报, 31(2): 193-201. |
LIU X T, ZHENG T F, WAN Q L, et al., 2015. Spatio-temporal characteristics of NO2 in concentrated PRD urban districts and analysis of anthropogenic influences based on OMI remote sensing data[J]. Journal of Tropical Meteorology, 31(2): 193-201. | |
[30] | 刘怡阳, 颉耀文, 郭泽呈, 2022. 基于Sentinel-5P卫星的中国NO2浓度遥感监测[J]. 中国环境科学, 42(11): 4983-4990. |
LIU Y Y, XIE Y W, GUO Z C, 2022. Monitoring atmospheric NO2 concentrations in China based on Sentinel-5P satellite products[J]. China Environmental Science, 42(11): 4983-4990. | |
[31] |
王劲峰, 徐成东, 2017. 地理探测器: 原理与展望[J]. 地理学报, 72(1): 116-134.
DOI |
WANG J F, XU C D, 2017. Geographical detector: Principles and prospects[J]. Journal of Geographical Sciences, 72(1): 116-134. | |
[32] | 王耀庭, 殷振平, 郑祚芳, 等, 2022. 基于长时序 “地-星” 数据的京津冀大气污染时空分布及演变特征[J]. 环境科学, 43(7): 3508-3522. |
WANG Y T, YIN Z P, ZHENG Z F, et al., 2022. Spatial-temporal distribution and evolution characteristics of air pollution in Beijing-Tianjin Hebei Region based on long-term “ground-satellite” data[J]. Environmental Science, 43(7): 3508-3522. | |
[33] | 肖钟湧, 谢先全, 陈颖锋, 等, 2020. 粤港澳大湾区NO2污染的时空特征及影响因素分析[J]. 中国环境科学, 40(5): 2010-2017. |
XIAO Z Y, XIE X Q, CHEN Y F, et al., 2020. Temporal and spatial characteristics and influencing factors of NO2 pollution over Guangdong-Hongkong-Macao Great Bay area, China[J]. China Environmental Science, 40(5): 2010-2017. | |
[34] | 张洪飞, 杜宁, 王莉, 等, 2024. 基于Catboost模型的广东省近地面NO2浓度估算[J]. 环境科学, 45(11): 6276-6285. |
ZHANG H F, DU N, WANG L, et al., 2024. Estimation of near-surface NO2 concentration in Guangdong Province based on Catboost model[J]. Environmental Science, 45(11): 6276-6285. | |
[35] | 张燕, 2021. 粤港澳大湾区与纽约、旧金山及东京国际一流湾区影响力比较[J]. 全球化 (4): 57-70, 135. |
ZHANG Y, 2021. A Comparison of the Influence of the Guangdong-Hong Kong-Macao Greater Bay Area with International First-Class Bay Areas: New York, San Francisco, and Tokyo[J]. Globalization (4): 57-70, 135. | |
[36] | 赵冉, 张成歆, 吴跃, 等, 2021. 基于EMI观测华北平原对流层NO2的时空变化研究[J]. 大气与环境光学学报, 16(3): 186-196. |
ZHAO R, ZHANG C X, WU Y, et al., 2021. Analysis of spatio-temporal variations of tropospheric nitrogen dioxide in the North China Plain based on EMI[J]. Journal of Atmospheric and Environmental Optics, 16(3): 186-196. |
[1] | 翁雷霆, 王鹏, 肖荣波, 白晋晶, 钟俊宏. 2000-2022年珠三角城市群PM2.5与O3时空分布特征及其影响因素[J]. 生态环境学报, 2025, 34(2): 268-278. |
[2] | 尤琪, 杨艺, 张寅清, 祝凌燕. 纳米银颗粒在水环境中的化学转化及影响因素[J]. 生态环境学报, 2025, 34(1): 156-166. |
[3] | 王雪融, 龚建周, 俞方圆. 粤港澳大湾区4种生态系统调节服务的互馈关系及机制[J]. 生态环境学报, 2024, 33(7): 1130-1141. |
[4] | 张维琛, 王惺琪, 王博杰. 塔布河流域生态系统服务时空格局及影响因素分析[J]. 生态环境学报, 2024, 33(7): 1142-1152. |
[5] | 李程, 程志鹏, 刘育金, 姚义鸣, 李春雷. 全(多)氟烷基化合物生态风险及其管控政策研究[J]. 生态环境学报, 2024, 33(6): 980-996. |
[6] | 张淼, 王桂霞, 王昌伟, 贺艳云, 许艳芳, 李琪, 许杨, 张俊骁, 张桂芹. 济南市区黑碳污染变化特征及来源解析[J]. 生态环境学报, 2024, 33(4): 560-572. |
[7] | 梁燕, 刘家齐, 肖凡, 潘民萍, 韦凯文, 张楚雯, 段敏. 氮沉降形态对西南岩溶区森林土壤有效磷来源的影响[J]. 生态环境学报, 2024, 33(2): 192-201. |
[8] | 罗小玲, 刘军, 王琦, 刘同旭, 梁耀杰, 谢志宜, 王中伟, 陈多宏. 2016年以来广东省不同土地利用类型土壤pH和有机质时空变化及其影响因素分析[J]. 生态环境学报, 2024, 33(12): 1849-1861. |
[9] | 袁茜, 傅开道, 陶雨晨, 张年, 杨丽莎. 澜沧江(云南段)水-气界面氧化亚氮释放通量时空分布特征及其影响因素研究[J]. 生态环境学报, 2024, 33(1): 54-61. |
[10] | 王超, 杨倩楠, 张池, 刘同旭, 张晓龙, 陈静, 刘科学. 丹霞山不同土地利用方式土壤磷组分特征及其有效性[J]. 生态环境学报, 2023, 32(5): 889-897. |
[11] | 李建辉, 党争, 陈琳. 黄河几字弯都市圈PM2.5时空特征及影响因素分析[J]. 生态环境学报, 2023, 32(4): 697-705. |
[12] | 何艳虎, 龚镇杰, 吴海彬, 蔡宴朋, 杨志峰, 陈晓宏. 粤港澳大湾区城市生态效率时空演变及影响因素[J]. 生态环境学报, 2023, 32(3): 469-480. |
[13] | 郝金虎, 韦玮, 李胜男, 马牧源, 李肖夏, 杨洪国, 姜琦宇, 柴沛东. 基于GEE平台的京津冀长时序水体时空格局及其影响因素[J]. 生态环境学报, 2023, 32(3): 556-566. |
[14] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[15] | 张莉, 李铖, 谭皓泽, 韦家怡, 程炯, 彭桂香. 广州典型城市林地对大气颗粒物的削减效应及影响因素[J]. 生态环境学报, 2023, 32(2): 341-350. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||