[1] |
BORCH T, KRETZSCHMAR R, KAPPLER A, et al., 2010. Biogeochemical redox processes and their impact on contaminant dynamics[J]. Environmental Science & Technology, 44(1): 15-23.
DOI
URL
|
[2] |
BURTON E D, HOCKMANN K, KARIMIAN N, et al., 2019. Antimony mobility in reducing environments: The effect of microbial iron (III)-reduction and associated secondary mineralization[J]. Geochimica et Cosmochimica Acta, 245: 278-289.
DOI
URL
|
[3] |
CHEN C M, KUKKADAPU R, SPARKS D L, 2015. Influence of coprecipitated organic matter on Fe2+(aq)-catalyzed transformation of ferrihydrite: Implications for carbon dynamics[J]. Environmental Science & Technology, 49(18): 10927-10936.
DOI
URL
|
[4] |
CORNELL R M, SCHWERTMANN U, 1996. The iron oxides: Structure, properties, reactions, occurrences and uses[M]. New York: VCH: 2-6.
|
[5] |
GU B H, SCHMITT J, CHEN Z H, et al., 1994. Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models[J]. Environmental Science & Technology, 28(1): 38-46.
DOI
URL
|
[6] |
HANSEL C M, BENNER S G, FENDORF S, 2005. Competing Fe(II)-induced mineralization pathways of ferrihydrite[J]. Environmental Science &Technology, 39(18): 7147-7153.
DOI
URL
|
[7] |
HU S W, LU Y, PENG L F, et al., 2018. Coupled kinetics of ferrihydrite transformation and As(V) sequestration under the effect of humic acids: A mechanistic and quantitative study[J]. Environmental Science & Technology, 52(20): 11632-11641.
|
[8] |
HUANG P M, 2004. Soil mineral-organic matter-microorganism interactions: fundamentals and impacts[J]. Advances in Agronomy, 82: 393-472.
|
[9] |
JONES A M, COLLINS R N, ROSE J, et al., 2009. The effect of silica and natural organic matter on the Fe (II)-catalysed transformation and reactivity of Fe (III) minerals[J]. Geochimica et Cosmochimica Acta, 73(15): 4409-4422.
DOI
URL
|
[10] |
KAISER K, GUGGENBERGER G, HAUMAIER L, et al., 1997. Dissolved organic matter sorption on sub soils and minerals studied by 13C-NMR and DRIFT spectroscopy[J]. European Journal of Soil Science, 48(2): 301-310.
DOI
URL
|
[11] |
KATZ J E, ZHANG X, ATTENKOFER K, et al., 2012. Electron small polarons and their mobility in iron (oxyhydr) oxide nanoparticles[J]. Science, 337: 1200-1203.
DOI
URL
|
[12] |
LALONDE K, MUCCI A, OUELLET A, et al., 2012. Preservation of organic matter in sediments promoted by iron[J]. Nature, 483(7388): 198-200.
DOI
URL
|
[13] |
LEHMANN J, SOLOMON D, KINYANGI J, et al., 2008. Spatial complexity of soil organic matter forms at nanometre scales[J]. Nature Geoscience, 1(4): 238-242.
DOI
URL
|
[14] |
LIU C S, CHEN M J, LI F B, et al., 2019. Stabilization of Cd2+/Cr3+ During Aqueous Fe(II)-Induced Recrystallization of Al-Substituted Goethite[J]. Soil Science Society of America Journal, 83(2): 483-491.
DOI
URL
|
[15] |
PLATZMAN I, BRENER R, HAICK H, et al., 2008. Oxidation of polycrystalline copper thin films at ambient conditions[J]. The Journal of Physical Chemistry C, 112(4): 1101-1108.
DOI
URL
|
[16] |
SHENG A X, LI X X, ARAI Y, et al., 2020a. Citrate controls Fe (II)-catalyzed transformation of ferrihydrite by complexation of the labile Fe (III) intermediate[J]. Environmental Science & Technology, 54(12): 7309-7319.
DOI
URL
|
[17] |
SHENG A X, LIU J, LI X X, et al., 2020b. Labile Fe (III) from sorbed Fe (II) oxidation is the key intermediate in Fe (II)-catalyzed ferrihydrite transformation[J]. Geochimica et Cosmochimica Acta, 272: 105-120.
DOI
URL
|
[18] |
SINGH B, FANG Y Y, COWIE B C C, et al., 2014. NEXAFS and XPS characterisation of carbon functional groups of fresh and aged biochars[J]. Organic Geochemistry, 77: 1-10.
DOI
URL
|
[19] |
THOMASARRIGO L K, BYRNE J M, KAPPLER A, et al., 2018. Impact of organic matter on iron (II)-catalyzed mineral transformations in ferrihydrite-organic matter coprecipitates[J]. Environmental Science & Technology, 52(21): 12316-12326.
DOI
URL
|
[20] |
THOMASARRIGO L K, MIKUTTA C, BYRNE J, et al., 2017. Iron(II)-catalyzed iron atom exchange and mineralogical changes in iron-rich organic freshwater flocs: An iron isotope tracer study[J]. Environmental Science & Technology, 51(12): 6897-6907.
DOI
URL
|
[21] |
UNNIKRISHNAN R, JAIN M C, HARINARAYAN A K, et al., 2002. Additive-additive interaction: An XPS study of the effect of ZDDP on the AW/EP characteristics of molybdenum based additives[J]. Wear, 252(3-4): 240-249.
DOI
URL
|
[22] |
WU B, AMELUNG W, XING Y, et al., 2018. Iron cycling and isotope fractionation in terrestrial ecosystems[J]. Earth-Science Reviews, 190: 323-352.
DOI
URL
|
[23] |
YAN W J, ZHOU J M, LIU H, et al., 2016. Formation of goethite and magnetite rust via reaction with Fe (II)[J]. Journal of the Electrochemical Society, 163(6): C289.
DOI
URL
|
[24] |
YEN F S, CHEN W C, YANG J M, et al., 2002. Crystallite size variations of nanosized Fe2O3 powders during γ- to α-phase transformation[J]. Nano Letters, 2(3): 245-252.
DOI
URL
|
[25] |
ZHOU Z, LATTA D E, NOOR N, et al., 2018. Fe (II)-Catalyzed transformation of organic matter-ferrihydrite coprecipitates: a closer look using Fe isotopes[J]. Environmental Science & Technology, 52(19): 11142-11150.
DOI
URL
|
[26] |
胡世文, 刘同旭, 李芳柏, 等, 2022. 土壤铁矿物的生物-非生物转化过程及其界面重金属反应机制的研究进展[J]. 土壤学报, 59(1): 54-65.
|
|
HU S W, LIU T X, LI F B, et al., 2022. The abiotic and biotic transformation processes of soil iron-bearing minerals and its interfacial reaction mechanisms of heavy metals: A review[J]. Acta Pedologica Sinica, 59(1): 54-65.
|
[27] |
刘承帅, 韦志琦, 李芳柏, 等, 2016. 游离态Fe(Ⅱ)aq驱动赤铁矿晶相重组的Fe原子交换机制: 稳定Fe同位素示踪研究[J]. 中国科学: 地球科学, 46(11): 1542-1553.
|
|
LIU C S, WEI Z Q, LI F B, et al., 2016. The Fe atom exchange mechanism in Fe(II)-induced recrystallization of hematite: Stable Fe isotope tracing study[J]. Scientia Sinica Terrae, 46(11): 1542-1553.
DOI
URL
|
[28] |
王磊, 应蓉蓉, 石佳奇, 等, 2017. 土壤矿物对有机质的吸附与固定机制研究进展[J]. 土壤学报, 54(4): 805-818.
|
|
WANG L, YING R R, SHI J Q, et al., 2017. Advancement in study on adsorption of organic matter on soil minerals and its mechanism[J]. Acta Pedologica Sinica, 54(4): 805-818.
|
[29] |
王锐, 朱朝菊, 向文军, 等, 2017. 针铁矿与胡敏酸的交互作用及其复合物的稳定性[J]. 环境科学, 38(11): 4860-4867.
|
|
WANG R, ZHU C J, XIANG W J, et al., 2017. Interactions between Goethite and Humic Acid and the Stability of Goethite-Humic Acid Complex[J]. Environmental Science, 38(11): 4860-4867.
DOI
URL
|
[30] |
尹雪斐, 杨蕊嘉, 刘玉玲, 等, 2021. Cd(II)与As(V)在土壤铁氧化物和细菌表面上的共吸附研究[J]. 生态环境学报, 30(3): 614-620.
|
|
YIN X F, YANG R J, LIU Y L, et al., 2021. Co-adsorption of Cd(Ⅱ) and As(Ⅴ) on soil iron oxide and bacterial surface[J]. Ecology and Environmental Sciences, 30(3): 614-620.
|