生态环境学报 ›› 2022, Vol. 31 ›› Issue (11): 2152-2160.DOI: 10.16258/j.cnki.1674-5906.2022.11.006
朱生堡1,2(), 唐光木1,*(
), 张云舒1, 徐万里1,*(
), 葛春辉1, 马海刚1
收稿日期:
2022-08-11
出版日期:
2022-11-18
发布日期:
2022-12-22
通讯作者:
徐万里(1971年生),男,研究员,博士,主要从事新疆绿洲农田土壤碳氮研究。E-mail: wlxu2005@163.com作者简介:
朱生堡(1996年生),男,硕士研究生,研究方向为农田生态变化研究。E-mail: zhushengbao001@126.com
基金资助:
ZHU Shengbao1,2(), TANG Guangmu1,*(
), ZHANG Yushu1, XU Wanli1,*(
), GE Chunhui1, MA Haigang1
Received:
2022-08-11
Online:
2022-11-18
Published:
2022-12-22
摘要:
分析比较新疆水旱长期耕作不同年限下土壤团聚体组成及其各粒级团聚体有机碳的动态变化,探讨水田和旱地土壤团聚体有机碳的赋存能力。采用湿筛法对新疆水田和旱地的土壤团聚体及其有机碳的变化进行研究。研究发现,(1)水田和旱地土壤有机碳随着种植时间的延长呈现增加趋势,旱地显著低于水田土壤有机碳的增加。(2)水田种植100 a内,53-250 μm微团聚体和>250 μm水稳性团聚体增加了199.80 g·kg-1和321.60 g·kg-1,<53 μm团聚体则逐步减少;旱地种植下,53-250 μm微团聚体在0-5 a间快速增加了231.21 g·kg-1,5 a后基本维持在一个相对稳定的水平;<53 μm团聚体0-10 a间快速下降后,维持在230.67-252.33 g·kg-1之间的稳定水平。(3)团聚体有机碳水田显著大于旱地,100 a间水田>250 μm水稳性团聚体有机碳质量分数,与荒地相比增加了22.95 g·kg-1;而旱地则在种植0-10 a间表现出增加的趋势,10 a后基本保持在相对稳定的水平;53-250 μm微团聚体有机碳质量分数水田比旱地显著高出了145.30%,在种植时间内(100 a)都呈现一致的增加趋势;<53 μm团聚体在种植100 a内都呈现出下降趋势,但水田<53 μm有机碳则在种植100 a内逐步减少,与自然土壤开垦前降低了45.28%,旱地土壤则在0-10 a间快速下降。(4)水田和旱地土壤团聚体质量分数与其有机碳质量分数之间呈正相关关系,不同粒径团聚体质量分数与其有机碳质量分数之间相关关系表现不同。综上,荒地开垦后水田比旱地更有利于土壤有机碳质量分数的提高和稳定性团聚体颗粒的形成,有利于促进土壤结构向良性方向发展。
中图分类号:
朱生堡, 唐光木, 张云舒, 徐万里, 葛春辉, 马海刚. 水旱长期耕作下土壤团聚体及有机碳动态变化[J]. 生态环境学报, 2022, 31(11): 2152-2160.
ZHU Shengbao, TANG Guangmu, ZHANG Yushu, XU Wanli, GE Chunhui, MA Haigang. Changes in Soil Aggregates Associated Organic Carbon under Long-term Irrigation and Drought Cultivation[J]. Ecology and Environment, 2022, 31(11): 2152-2160.
图1 水田和旱地土壤总有机碳质量分数 图中小写字母若不同,表明在种植年限的不同耕层土壤有机碳间差异显著(P<0.05)
Figure 1 Changes of soil total organic carbon in paddy field and dry land Different lowercases in the same soil SOC indicated significant different tillage layer with different planting years at P<0.05
采样区 Sampling sites | 类别 Types | 耕作年限 Tillage years/a | 养分质量分数 Nutrient Concentration | ||||
---|---|---|---|---|---|---|---|
w(TN)/ (g·kg-1) | w(TP)/ (g·kg-1) | w(AN)/ (g·kg-1) | w(AP)/ (g·kg-1) | w(AK)/ (g·kg-1) | |||
乌鲁木齐市米东区 Midong District, Urumqi | 水田 Paddy Field | 荒地 (0 a) | 0.47 | 0.81 | 35.60 | 26.60 | 153 |
2 | 0.66 | 0.95 | 30.17 | 29.20 | 166 | ||
5 | 1.05 | 1.27 | 95.03 | 66.10 | 183 | ||
10 | 0.47 | 1.08 | 35.33 | 24.53 | 85 | ||
15 | 0.48 | 1.15 | 46.93 | 37.53 | 92 | ||
20 | 0.85 | 1.59 | 60.37 | 61.20 | 185 | ||
30 | 0.77 | 1.52 | 65.20 | 72.83 | 196 | ||
50 | 1.31 | 1.24 | 84.00 | 72.13 | 109 | ||
80 | 2.22 | 1.18 | 134.55 | 79.60 | 140 | ||
100 | 2.28 | 1.83 | 89.70 | 94.20 | 152 | ||
玛纳斯县乐土驿镇 Manas County Letuyi Town | 旱地 Dry Land | 荒地 (0 a) | 0.48 | 0.86 | 36.70 | 13.60 | 370 |
2 | 0.60 | 0.88 | 68.00 | 23.20 | 598 | ||
5 | 0.51 | 1.06 | 30.70 | 10.60 | 326 | ||
10 | 0.84 | 1.28 | 89.90 | 25.00 | 359 | ||
15 | 0.64 | 0.96 | 61.50 | 20.80 | 444 | ||
20 | 0.75 | 0.84 | 39.50 | 12.10 | 354 | ||
30 | 0.78 | 0.94 | 48.80 | 12.80 | 404 | ||
50 | 0.72 | 0.66 | 53.20 | 11.70 | 305 | ||
80 | 0.74 | 0.99 | 58.70 | 17.40 | 417 | ||
100 | 0.72 | 0.96 | 54.80 | 15.70 | 365 |
表1 水田和旱地养分质量变化情况
Table 1 Nutrient changes in paddy and dry land
采样区 Sampling sites | 类别 Types | 耕作年限 Tillage years/a | 养分质量分数 Nutrient Concentration | ||||
---|---|---|---|---|---|---|---|
w(TN)/ (g·kg-1) | w(TP)/ (g·kg-1) | w(AN)/ (g·kg-1) | w(AP)/ (g·kg-1) | w(AK)/ (g·kg-1) | |||
乌鲁木齐市米东区 Midong District, Urumqi | 水田 Paddy Field | 荒地 (0 a) | 0.47 | 0.81 | 35.60 | 26.60 | 153 |
2 | 0.66 | 0.95 | 30.17 | 29.20 | 166 | ||
5 | 1.05 | 1.27 | 95.03 | 66.10 | 183 | ||
10 | 0.47 | 1.08 | 35.33 | 24.53 | 85 | ||
15 | 0.48 | 1.15 | 46.93 | 37.53 | 92 | ||
20 | 0.85 | 1.59 | 60.37 | 61.20 | 185 | ||
30 | 0.77 | 1.52 | 65.20 | 72.83 | 196 | ||
50 | 1.31 | 1.24 | 84.00 | 72.13 | 109 | ||
80 | 2.22 | 1.18 | 134.55 | 79.60 | 140 | ||
100 | 2.28 | 1.83 | 89.70 | 94.20 | 152 | ||
玛纳斯县乐土驿镇 Manas County Letuyi Town | 旱地 Dry Land | 荒地 (0 a) | 0.48 | 0.86 | 36.70 | 13.60 | 370 |
2 | 0.60 | 0.88 | 68.00 | 23.20 | 598 | ||
5 | 0.51 | 1.06 | 30.70 | 10.60 | 326 | ||
10 | 0.84 | 1.28 | 89.90 | 25.00 | 359 | ||
15 | 0.64 | 0.96 | 61.50 | 20.80 | 444 | ||
20 | 0.75 | 0.84 | 39.50 | 12.10 | 354 | ||
30 | 0.78 | 0.94 | 48.80 | 12.80 | 404 | ||
50 | 0.72 | 0.66 | 53.20 | 11.70 | 305 | ||
80 | 0.74 | 0.99 | 58.70 | 17.40 | 417 | ||
100 | 0.72 | 0.96 | 54.80 | 15.70 | 365 |
[1] |
OKOLO C C, GIRMAY G, AMANUEL Z, et al., 2020. Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semi-arid environment[J]. Agriculture, Ecosystems and Environment, 297: 106924.
DOI URL |
[2] |
JASTROW J D, 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J]. Soil Biology and Biochemistry, 28(4-5): 665-676.
DOI URL |
[3] |
JASTROW J D, AMONETTE J E, BAILEY V L, 2007. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration[J]. Climatic Change, 80(1): 5-23.
DOI URL |
[4] | KAY B D, 1998. Soil structure and organic carbon: A review[M]// Soil Processes and the Carbon Cycle, London: CRC Press. |
[5] | LAL R, KIMBLE J M, FOLLETT R F, et al., 2018. Soil processes and the carbon cycle[M]. CRC Press: 169-197. |
[6] |
LI J Y, YUAN X L, GE L, et al., 2020. Rhizosphere effects promote soil aggregate stability and associated organic carbon sequestration in rocky areas of desertification[J]. Agriculture Ecosystems & Environment, 304(2): 107126.
DOI URL |
[7] |
MOWO J G, JANSSEN B H, OENEMA O, et al., 2006. Soil fertility evaluation and management by smallholder farmer communities in northern Tanzania[J]. Agriculture, Ecosystems and Environment, 116(1): 47-59.
DOI URL |
[8] |
SIX J, ELLIOT E T, PAUSTIAN K, 2001. Soil structure and soil organic matter: Ⅱ. A normalized stability index and the effect of mineralogy[J]. Soil Science Society of America Journal, 64: 1042-1049.
DOI URL |
[9] |
WANG S Q, LI T X, ZHENG Z C, 2016. Effect of tea plantation age on the distribution of soil organic carbon and nutrient within micro-aggregates in the hilly region of western Sichuan, China[J]. Ecological Engineering, 90: 113-119.
DOI URL |
[10] | 白怡婧, 刘彦伶, 李渝, 等, 2021. 长期不同轮作模式对黄壤团聚体组成及有机碳的影响[J]. 土壤, 53(1): 161-167. |
BAI Y J, LIU Y L, LI Y, et al., 2021. Effects of different long-term rotation patterns on aggregate composition and organic carbon in Yellow Soil[J]. Soils, 53(1): 161-167. | |
[11] | 陈高起, 傅瓦利, 沈艳, 等, 2015. 岩溶区不同土地利用方式对土壤有机碳及其组分的影响[J]. 水土保持学报, 29(3): 123-129. |
CHEN G Q, FU W L, SHEN Y, et al., 2015. Effects of land use types on soil organic carbon and its fractions in Karst area[J]. Journal of Soil and Water Conservation, 29(3): 123-129. | |
[12] | 范如芹, 梁爱珍, 杨学明, 等, 2010. 耕作方式对黑土团聚体含量及特征的影响[J]. 中国农业科学, 43(18): 3767-3775. |
FAN R Q, LIANG A Z, YANG X M, et al., 2010. Effects of tillage on soil aggregates in black soils in northeast[J]. China Scientia Agricultura Sinica, 43(18): 3767-3775. | |
[13] | 巩杰, 王玉川, 谢余初, 等, 2011. 基于Meta-analysis的中国干旱半干旱区土地利用变化的土壤碳氮效应研究[J]. 安徽农业科学, 39(14): 8408-8411, 8419. |
GONG J, WANG Y C, XIE Y C, et al., 2011. Study on soil C and N effect of land use change in arid and semi-arid area of chin based on Meta-analysis[J]. Journal of Anhui Agricultural Sciences, 39(14): 8408-8411, 8419. | |
[14] | 顾美英, 徐万里, 茆军, 等, 2012. 新疆绿洲农田不同连作年限棉花根际土壤微生物群落多样性[J]. 生态学报, 32(10): 3031-3040. |
GU M Y, XU W L, MAO J, et al., 2012. Microbial community diversity of rhizosphere soil in continuous cotton cropping system in Xinjiang[J]. Acta Ecologica Sinica, 32(10): 3031-3040.
DOI URL |
|
[15] | 郭媛, 2021. 不同土地利用方式黑土团聚体稳定性及外源氮转化特征[D]. 长春: 吉林农业大学. |
GUO Y, 2021. Aggregate stability and exogenous nitrogen transformation characteristics of black soil from different land use[D]. Changchun: Jilin Agricultural University. | |
[16] | 胡尧, 李懿, 侯雨乐, 2018. 不同土地利用方式对岷江流域土壤团聚体稳定性及有机碳的影响[J]. 水土保持研究, 25(4): 22-29. |
HU Y, LI Y, HOU Y L, 2018. Effects of land use types on stability and organic carbon of soil aggregates in Minjiang River Valley[J]. Research of Soil and Water Conservation, 25(4): 22-29. | |
[17] | 黄先飞, 周运超, 张珍明, 2018. 土地利用方式下土壤有机碳特征及影响因素—以后寨河喀斯特小流域为例[J]. 自然资源学报, 33(6): 1056-1067. |
HUANG X F, ZHOU Y C, ZHANG Z M, 2018. Characteristics and affecting factors of soil organic carbon under land uses: A case study in Houzhai River Basin[J]. Journal of Natural Resources, 33(6): 1056-1067.
DOI URL |
|
[18] | 雷军, 张凤华, 林海荣, 等, 2017. 干旱区盐渍化荒地不同开垦年限土壤碳氮储量研究[J]. 干旱地区农业研究, 35(3): 266-271. |
LEI J, ZHANG F H, LIN H R, et al., 2017. Soil carbon and nitrogen storage of different reclamation years in salinized wasteland in arid region[J]. Agricultural Research in the Arid Areas, 35(3): 266-271. | |
[19] | 李庆逵, 1992. 中国水稻土[M]. 北京: 科学出版社. |
LI Q K, 1992. Chinese paddy soil[M]. Beijing: Science Press. | |
[20] | 李青春, 2019. 农牧交错带土地不同利用方式对土壤团聚体及有机碳影响研究[D]. 呼和浩特: 内蒙古农业大学. |
LI Q C, 2019. Study of soil aggregates and organic carbon under different land use patterns in the Farming-pastoral ecotone[D]. Hohhot: Inner Mongolia: Inner Mongolia Agricultural University. | |
[21] | 李欣雨, 夏建国, 田汶艳, 2017. 稻田植茶后土壤团聚体水稳性变化特征及影响因素分析[J]. 水土保持学报, 31(4): 148-153, 204. |
LI X Y, XIA J G, TIAN W Y, 2017. Research on the water stability and the driving forces of soil aggregate after paddy field switched to tea garden[J]. Journal of Soil and Water Conservation, 31(4): 148-153, 204. | |
[22] | 李欣雨, 夏建国, 鄢广奎, 等, 2017. 名山河流域不同土壤类型和土地利用方式下有机碳的分布特征[J]. 水土保持学报, 31(3): 224-230, 238. |
LI X Y, XIA J G, YAN G K, et al., 2017. Distribution of organic carbon under different soil types and utilization patterns in Mingshan River Watershed[J]. Journal of Soil and Water Conservation, 31(3): 224-230, 238. | |
[23] |
李龙, 秦富仓, 姜丽娜, 等, 2020. 半干旱区土壤有机碳时空变异特征研究[J]. 中国农业科技导报, 22(3): 100-107.
DOI |
LI L, QIN F C, JIANG L N, et al., 2020. Spatio-temporal variability of soil organic carbon in Semi-arid area[J]. Journal of Agricultural Science and Technology, 22(3): 100-107.
DOI |
|
[24] | 刘晓利, 何园球, 2009. 不同利用方式和开垦年限下红壤水稳性团聚体及养分变化研究[J]. 土壤, 41(1): 84-89. |
LIU X L, HE Y Q, 2009. Water-stable aggregates and nutrients in red soil under different reclamation years[J]. Soils, 41(1): 84-89. | |
[25] | 刘真勇, 高振, 王艳玲, 等, 2019. 旱地转变为稻田对关键带红壤剖面土壤团聚体碳含量的影响[J]. 土壤学报, 56(6): 1526-1535. |
LIU Z Y, GAO Z, WANG Y L, et al., 2019. Effect of conversion of upland into paddy field on content of carbon in soil aggregates along soil profile of red soil in critical red soil zone[J]. Acta Pedologica Sinica, 56(6): 1526-1535. | |
[26] | 罗晓虹, 王子芳, 陆畅, 等, 2019. 土地利用方式对土壤团聚体稳定性和有机碳含量的影响[J]. 环境科学, 40(8): 3816-3824. |
LUO X H, WANG Z F, LU C, et al., 2019. Effects of land use type on the content and stability of organic carbon in soil aggregates[J]. Environmental Science, 40(8): 3816-3824. | |
[27] | 马征, 王学君, 董晓霞, 等, 2020. 改良剂作用下滨海盐化潮土团聚体分布、稳定性及有机碳分布特征[J]. 水土保持学报, 34(4): 327-333. |
MA Z, WANG X J, DONG X X, et al., 2020. Effects of soil amendments on distribution and stability of soil aggregates and organic carbon content in coastal salinized Fluvo-aquic soil[J]. Journal of Soil and Water Conservation, 34(4): 327-333. | |
[28] | 毛霞丽, 陆扣萍, 何丽芝, 等, 2015. 长期施肥对浙江稻田土壤团聚体及其有机碳分布的影响[J]. 土壤学报, 52(4): 828-838. |
MAO X L, LU K P, HE L Z, et al., 2015. Effect of Long-term fertilizer application on distribution of aggregates and aggregate-associated organic carbon in paddy soil[J]. Acta Pedologica Sinica, 52(4): 828-838. | |
[29] | 曲文杰, 宋乃平, 陈林, 等, 2014. 荒漠草原两种沙化草地对浅耕翻的响应[J]. 水土保持研究, 21(1): 85-89. |
QUN W J, SONG N P, CHEN L, et al., 2014. Responses of two types of desertification grasslands in desert steppe to shallow ploughing[J]. Research of Soil and Water Conservation, 21(1): 85-89. | |
[30] | 桑文, 王卫超, 杨磊, 等, 2018. 盐渍化弃耕地不同恢复年限对土壤团聚体含量及稳定性的影响[J]. 湖北农业科学, 57(14): 27-31. |
SANG W, WANG W C, YANG L, et al., 2018. The content of soil aggregates in different restoration years of salted abandoned land and the impact of stability[J]. Hubei Agricultural Sciences, 57(14): 27-31. | |
[31] | 孙波, 王兴祥, 张桃林, 2002. 丘陵红壤耕作利用过程中土壤肥力的演变和预测[J]. 土壤学报, 39(6): 836-843. |
SUN B, WANG X X, ZHANG T L, 2002. Changes of red soil fertility and its prediction during the land-use and cultivation in low hill region[J]. Acta Pedologica Sinica, 39(6): 836-843. | |
[32] | 唐光木, 徐万里, 葛春辉, 等, 2011. 新疆水稻田土壤团聚体及有机碳动态变化[J]. 水土保持学报, 25(5): 215-218, 256. |
TANG G M, XU W L, GE C H, et al., 2011. Dynamic changes of soil aggregate and organic carbon in Xinjiang paddy soil[J]. Journal of Soil and Water Conservation, 25(5): 215-218, 256. | |
[33] | 汪明霞, 朱志锋, 刘凡, 等, 2012. 江汉平原不同土地利用方式下农田土壤有机碳组成特点[J]. 水土保持研究, 19(06): 24-28. |
WANG M X, ZHU Z F, LIU F, et al., Composition characteristics of soil organic carbon under land use change in Jianghan Plain, Hubei Province[J]. Research of Soil and Water Conservation, 19(06): 24-28. | |
[34] | 王少昆, 赵学勇, 张铜会, 2013. 造林对沙地土壤微生物的数量、生物量碳及酶活性的影响[J]. 中国沙漠, 33(2): 529-535. |
WANG S K, ZHAO X Y, ZHANG T H, 2013. Effects of afforestation on the abundance, biomass carbon and enzymatic activities of soil microorganism in sandy dunes[J]. Journal of Desert Research, 33(2): 529-535. | |
[35] | 王文艳, 张丽萍, 刘俏, 等, 2013. 黄土中主要矿物构成对土壤抗蚀性的影响及空间变异[J]. 水土保持学报, 27(4): 7-11. |
WANG W Y, ZHANG L P, LIU Q, et al., 2013. The influence and spatial variability of main mineral composition of Chinese loess on soil corrosion resistance[J]. Journal of Soil and Water Conservation, 27(4): 7-11. | |
[36] | 王晋, 庄舜尧, 朱兆良, 2014. 不同种植年限水田与旱地土壤有机氮组分变化[J]. 土壤学报, 51(2): 286-294. |
WANG J, ZHUANG S Y, ZHU Z L, 2014. Fractions of soil organic nitrogen in paddy and upland soils relative to cropping hist[J]. Acta Pedologica Sinica, 51(2): 286-294. | |
[37] | 谢钧宇, 曹寒冰, 孟会生, 等, 2020. 不同施肥措施及施肥年限下土壤团聚体的大小分布及其稳定性[J]. 水土保持学报, 34(3): 274-281, 290. |
XIE J Y, CAO H B, MENG H S, et al., 2020. Effects of different fertilization regimes and fertilization ages on size distribution and stability of soil aggregates[J]. Journal of Soil and Water Conservation, 34(3): 274-281, 290. | |
[38] | 徐颖菲, 姚玉才, 章明奎, 2019. 全年淹水种植茭白对水田土壤性态的影响[J]. 土壤通报, 50(1): 15-21. |
XU Y F, YAO Y C, ZHANG M K, 2019. Effects of zizania latifolia plantation with the whole year water-logging on soil properties of paddy fields[J]. Chinese Journal of Soil Science, 50(1): 15-21. | |
[39] | 薛彦飞, 薛文, 张树兰, 等, 2015. 长期不同施肥对塿土团聚体胶结剂的影响[J]. 植物营养与肥料学报, 21(6): 1622-1632. |
XUE Y F, XUE W, ZHANG S L, et al., 2015. Effects of Long-term fertilization regimes on changes of aggregate cementing agent of lou soil[J]. Journal of Plant Nutrition and Fertilizer, 21(6): 1622-1632. | |
[40] | 张晗, 赵小敏, 欧阳真程, 等, 2018. 江西省不同农田利用方式对土壤养分状况的影响[J]. 水土保持研究, 25(6): 53-60. |
ZHANG H, ZHAO X M, OUYANG Z C, et al., 2018. Effects of different farmland use types on soil nutrients in Jiangxi Province[J]. Research of Soil and Water Conservation, 25(6): 53-60. | |
[41] | 张剑雄, 谷丰, 朱波, 等, 2021. 林草恢复对热水河小流域侵蚀区土壤团聚体稳定性与有机碳氮特征的影响[J]. 草业科学, 38(6): 1012-1023. |
ZHANG J X, GU F, ZHU B, et al., 2021. Effects of forest and grass restoration on soil aggregate stability, and organic carbon and nitrogen characteristics in an eroded area of the Reshui River[J]. Pratacultural Science, 38(6): 1012-1023. | |
[42] | 章明奎, 徐建民, 2002. 利用方式和土壤类型对土壤肥力质量指标的影响[J]. 浙江大学学报, 28(3): 277-282. |
ZHANG M K, XU J M, 2002. Effects of land use and soil type on selected soil fertility quality indicators[J]. Journal of Zhejiang University, 28(3): 277-282. | |
[43] | 张强, 2016. 土壤有机质含量测定方法—以丘林法为例[J]. 世界有色金属 (3): 131-132. |
ZHANG Q, 2016. In case of linfa hill method for determination of soil organic matter content[J]. World Nonferrous Metals (3): 131-132. | |
[44] | 张仕吉, 2015. 湘中丘陵区不同土地利用方式土壤养分及碳库特征研究[D]. 长沙: 中南林业科技大学. |
ZHANG S J, 2015. Characteristics of different land-use types, soil nutrient, and carbon pool in the hill region of Central Hunan[D]. Changsha: Central South University of Forestry and Technology. | |
[45] | 张维俊, 李双异, 徐英德, 等, 2019. 土壤孔隙结构与土壤微环境和有机碳周转关系的研究进展[J]. 水土保持学报, 33(4): 1-9. |
ZHANG W J, LI S Y, XU Y D, et al., 2019. Advances in research on relationships between soil pore structure and soil miocroenvironment and organic carbon turnover[J]. Journal of Soil and Water Conservation, 33(4): 1-9. | |
[46] | 张维理, Kolbe H, 张认连, 2020. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 53(2): 317-331 |
ZHANG W L, KOLBE H, ZHANG R L, 2020. Research progress of SOC functions and transformation mechanisms[J]. Scientia Agricultura Sinica, 53(2): 317-331 | |
[47] | 张星星, 2017. 土壤团聚体研究进展[J]. 绿色科技, 24(2): 138-139. |
ZHANG X X, 2017. Advance in soil aggregate study[J]. Journal of Green Science and Technology, 24(2): 138-139. | |
[48] | 张延, 梁爱珍, 张晓平, 等, 2015. 土壤团聚体对有机碳物理保护机制研究[J]. 土壤与作物, 4(2): 85-90. |
ZHANG Y, LIANG A Z, ZHANG X P, et al., 2015. Progress in soil aggregates physical conservation mechanism for organic carbon[J]. Soil and Crop, 4(2): 85-90. | |
[49] | 张玉铭, 胡春胜, 陈素英, 等, 2021. 耕作与秸秆还田方式对碳氮在土壤团聚体中分布的影响[J]. 中国生态农业学报(中英文), 29(9): 1558-1570. |
ZHANG Y M, HU C S, CHEN S Y, et al., 2021. Effects of tillage and straw returning method on the distribution of carbon and nitrogen in soil aggregates[J]. Chinese Journal of Eco-Agriculture, 29(9): 1558-1570. | |
[50] | 郑杰炳, 王子芳, 周春蓉, 等, 2008. 土地利用方式对紫色土丘陵区土壤剖面碳、氮影响[J]. 生态环境, 17(5): 2041-2045. |
ZHENG J B, WANG Z F, ZHOU C R, et al., 2008. Effect of land use change on soil organic carbon and total nitrogen in soil profiles located in purple Hilly areas[J]. Ecology and Environment, 17(5): 2041-2045. | |
[51] | 郑子成, 王永东, 李廷轩, 等, 2011. 退耕对土壤团聚体稳定性及有机碳分布的影响[J]. 自然资源学报, 26(1): 119-127. |
ZHENG Z C, WANG Y D, LI T X, et al., 2011. Effect of abandoned cropland on stability and distributions of organic carbon in soil aggregates[J]. Journal of Natural Resources, 26(1): 119-127. | |
[52] | 朱锟恒, 段良霞, 李元辰, 等, 2021. 土壤团聚体有机碳研究进展[J]. 中国农学通报, 37(21): 86-90. |
ZHU K H, DUAN L X, LI Y C, et al., 2021. Research progress of organic carbon in soil aggregates[J]. Chinese Agricultural Science Bulletin, 37(21): 86-90. |
[1] | 李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888. |
[2] | 周沁苑, 董全民, 王芳草, 刘玉祯, 冯斌, 杨晓霞, 俞旸, 张春平, 曹铨, 刘文亭. 放牧方式对高寒草地瑞香狼毒根际土壤团聚体及有机碳特征的影响[J]. 生态环境学报, 2023, 32(4): 660-667. |
[3] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[4] | 陈治中, 昝梅, 杨雪峰, 董煜. 新疆森林植被碳储量预测研究[J]. 生态环境学报, 2023, 32(2): 226-234. |
[5] | 何亚婷, 何友均, 王鹏, 谢和生. 不同经营模式对蒙古栎林土壤有机碳组分的长效性影响[J]. 生态环境学报, 2023, 32(1): 11-17. |
[6] | 秦艳培, 徐少君, 田耀武. 黄河流域河南段植被和土壤及其碳密度空间分异研究[J]. 生态环境学报, 2022, 31(9): 1745-1753. |
[7] | 肖国举, 李秀静, 郭占强, 胡延斌, 王静. 贺兰山东麓土壤有机碳对玉米生长发育及水分利用的影响[J]. 生态环境学报, 2022, 31(9): 1754-1764. |
[8] | 王钊, 张曼胤, 胡宇坤, 刘魏魏, 张苗苗. 盐度对典型滨海湿地沉积物汞甲基化的影响[J]. 生态环境学报, 2022, 31(9): 1876-1884. |
[9] | 马辉英, 李昕竹, 马鑫钰, 贡璐. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131. |
[10] | 王超, 杨倩楠, 张池, 李祥东, 陈静, 张晓龙, 陈金洁, 刘科学. 东南湿润区典型丹霞地貌土壤有机碳组分及其敏感性研究[J]. 生态环境学报, 2022, 31(6): 1132-1140. |
[11] | 龚玲玄, 王丽丽, 赵建宁, 刘红梅, 杨殿林, 张贵龙. 不同覆盖作物模式对茶园土壤理化性质及有机碳矿化的影响[J]. 生态环境学报, 2022, 31(6): 1141-1150. |
[12] | 李美娇, 何凡能, 赵彩杉, 杨帆. 全球历史LUCC数据集新疆地区耕地数据可靠性评估[J]. 生态环境学报, 2022, 31(6): 1215-1224. |
[13] | 张恒宇, 孙树臣, 吴元芝, 安娟, 宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征[J]. 生态环境学报, 2022, 31(5): 875-884. |
[14] | 杜雪, 王海燕, 邹佳何, 孟海, 赵晗, 崔雪, 董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J]. 生态环境学报, 2022, 31(4): 663-669. |
[15] | 胡靓达, 周海菊, 黄永珍, 姚贤宇, 叶绍明, 喻素芳. 不同杉木林分类型植物多样性及其土壤碳氮关系的研究[J]. 生态环境学报, 2022, 31(3): 451-459. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||