生态环境学报 ›› 2021, Vol. 30 ›› Issue (7): 1436-1446.DOI: 10.16258/j.cnki.1674-5906.2021.07.013
党慧慧(), 刘超, 伍翥嵘, 王圆媛, 胡正华*(
), 李琪, 陈书涛
收稿日期:
2021-03-26
出版日期:
2021-07-18
发布日期:
2021-10-09
通讯作者:
*E-mail: zhhu@nuist.edu.cn作者简介:
党慧慧(1997年生),女,硕士研究生,研究方向为主要从事农业气象与气候变化研究。E-mail: 2431205531@qq.com
基金资助:
DANG Huihui(), LIU Chao, WU Zhurong, WANG Yuanyuan, HU Zhenghua*(
), LI Qi, CHEN Shutao
Received:
2021-03-26
Online:
2021-07-18
Published:
2021-10-09
摘要:
为研究播期对稻田甲烷(CH4)排放及其综合效益的影响,以优选最佳播期实现水稻丰产和稻田CH4减排,于2019、2020年以粳稻(南粳9108)为试验材料,开展了分期播种试验。试验设两个不同播期,延期播种(Ⅱ期)的播种和移栽时间均比对照(Ⅰ期)延迟了10 d。采用透明箱-高精度气体分析仪观测CH4通量;在水稻关键生育期,取水稻根际土测定土壤理化性质及酶活性;收获时进行水稻测产;根据产出与投入的差值计算水稻产量经济效益,进而计算基于CH4减排的水稻生产综合效益。结果表明,2019、2020年水稻生长季,Ⅰ期和Ⅱ期稻田CH4排放通量季节变化趋势一致,均呈逐渐增长,达到峰值后再下降趋势。2019、2020年的稻田CH4累积排放量,Ⅱ期比Ⅰ期分别减小了15.4%(P=0.006)和26.3%(P=0.160)。Ⅰ期和Ⅱ期的稻田CH4排放通量与土壤DOC含量、NO3--N含量、土壤转化酶和脲酶活性均呈正相关关系,与土壤NH4+-N含量呈负相关关系。2019、2020年,Ⅱ期的水稻产量比Ⅰ期分别降低了17.9%(P=0.004)和40.2%(P=0.000),Ⅱ期水稻生产综合效益比Ⅰ期分别减小了40.2%(P=0.000)和60.0%(P =0.000)。研究表明,延期播种10 d降低了粳稻稻田CH4排放,同时也降低了水稻产量和水稻生产综合效益。
中图分类号:
党慧慧, 刘超, 伍翥嵘, 王圆媛, 胡正华, 李琪, 陈书涛. 不同播期粳稻稻田甲烷排放及综合效益研究[J]. 生态环境学报, 2021, 30(7): 1436-1446.
DANG Huihui, LIU Chao, WU Zhurong, WANG Yuanyuan, HU Zhenghua, LI Qi, CHEN Shutao. Methane Emission and Comprehensive Benefits of Japonica Rice Paddy Field with Different Sowing Dates[J]. Ecology and Environment, 2021, 30(7): 1436-1446.
年份 Year | 处理 Treatment | 播种期 Sowing | 移栽期 Transplanting | 分蘖期 Tillering | 拔节期 Jointing | 抽穗期 Heading | 成熟期 Maturity |
---|---|---|---|---|---|---|---|
2019 | Ⅰ | Jun.1 | Jul.1 | Jul.1 | Aug.12 | Aug.31 | Oct.11 |
Ⅱ | Jun.11 | Jul.11 | Jul.11 | Aug.21 | Sept.7 | Oct.13 | |
2020 | Ⅰ | May.29 | Jun.28 | Jun.28 | Aug.6 | Aug.25 | Oct.15 |
Ⅱ | Jun.8 | Jul.8 | Jul.8 | Aug.14 | Aug.29 | Oct.17 |
表1 不同播期下粳稻的关键生育期
Table 1 Critical growth stages of japonica rice under different sowing dates
年份 Year | 处理 Treatment | 播种期 Sowing | 移栽期 Transplanting | 分蘖期 Tillering | 拔节期 Jointing | 抽穗期 Heading | 成熟期 Maturity |
---|---|---|---|---|---|---|---|
2019 | Ⅰ | Jun.1 | Jul.1 | Jul.1 | Aug.12 | Aug.31 | Oct.11 |
Ⅱ | Jun.11 | Jul.11 | Jul.11 | Aug.21 | Sept.7 | Oct.13 | |
2020 | Ⅰ | May.29 | Jun.28 | Jun.28 | Aug.6 | Aug.25 | Oct.15 |
Ⅱ | Jun.8 | Jul.8 | Jul.8 | Aug.14 | Aug.29 | Oct.17 |
图1 不同播期下土壤温度、土壤湿度动态变化 图(a)、(b)为2019年水稻生长季,图(c)、(d)为2020年水稻生长季。数据用平均值±SE表示
Fig. 1 Dynamic changes of soil temperature and moisture under different sowing dates Figures (a) and (b) shows the rice growing season in 2019, and figures (c) and (d) shows the rice growing season in 2020. The data were expressed as mean±SE
图2 不同播期下稻田CH4排放通量的季节变化 图(a)为2019年水稻生长季,图(b)为2020年水稻生长季。数据用平均值±SE表示
Fig. 2 Seasonal variation of CH4 emission flux from paddy fields under different sowing dates Figure (a) is the rice growing season in 2019, and figure (b) is the rice growing season in 2020. The data were expressed as mean±SE
图3 不同播期下稻田CH4的累积排放量 图(a)为2019年水稻生长季,图(b)为2020年水稻生长季。数据值为平均值±SE(n=3)。不同小写字母表示不同播期处理间差异性显著,不同大写字母表示不同生育期间差异性显著,P<0.05
Fig. 3 Cumulative amount of CH4 from paddy fields under different sowing dates Figure (a) is the rice growing season in 2019, and figure (b) is the rice growing season in 2020. The data value was mean±SE (n=3). Different small letters indicated significant differences among different sowing dates, and different capital letters indicated significant differences among different growth stage, P<0.05
年份 Year | 生育期 Growth Stage | 处理 Treatment | pH | 水溶性有机碳 w(DOC)/(mg·kg-1) | 铵态氮 w(NH4+-N)/(mg·kg-1) | 硝态氮 w(NO3--N)/(mg·kg-1) |
---|---|---|---|---|---|---|
2019 | 分蘖期 Tillering | Ⅰ | 6.80±0.07aA | 77.46±22.99aA | 49.72±5.11aA | 5.67±1.01aA |
Ⅱ | 6.47±0.09aA | 96.41±14.40aA | 40.95±4.44aB | 3.34±0.72aA | ||
成熟期 Maturity | Ⅰ | 6.46±0.09aB | 88.29±33.97aA | 28.17±1.67bB | 3.86±0.72aA | |
Ⅱ | 6.11±0.18aA | 61.09±14.39aA | 66.51±3.31aA | 3.47±0.69aA | ||
2020 | 分蘖期 Tillering | Ⅰ | 6.47±0.03aA | 110.53±1.52aA | 29.49±0.24aA | 4.37±0.19aA |
Ⅱ | 6.35±0.04aA | 103.51±3.82aA | 29.49±0.45aA | 5.87±0.67aA | ||
成熟期 Maturity | Ⅰ | 6.45±0.02aA | 114.91±4.64aA | 28.21±0.67aA | 2.50±0.41aB | |
Ⅱ | 6.40±0.04aA | 95.61±3.82bA | 29.26±0.31aA | 2.22±0.49aB |
表2 水稻不同播期的土壤pH值、DOC、NH4+-N、NO3--N含量
Table 2 pH value, DOC, NH4+-N and NO3--N contents of soil at different sowing dates of rice
年份 Year | 生育期 Growth Stage | 处理 Treatment | pH | 水溶性有机碳 w(DOC)/(mg·kg-1) | 铵态氮 w(NH4+-N)/(mg·kg-1) | 硝态氮 w(NO3--N)/(mg·kg-1) |
---|---|---|---|---|---|---|
2019 | 分蘖期 Tillering | Ⅰ | 6.80±0.07aA | 77.46±22.99aA | 49.72±5.11aA | 5.67±1.01aA |
Ⅱ | 6.47±0.09aA | 96.41±14.40aA | 40.95±4.44aB | 3.34±0.72aA | ||
成熟期 Maturity | Ⅰ | 6.46±0.09aB | 88.29±33.97aA | 28.17±1.67bB | 3.86±0.72aA | |
Ⅱ | 6.11±0.18aA | 61.09±14.39aA | 66.51±3.31aA | 3.47±0.69aA | ||
2020 | 分蘖期 Tillering | Ⅰ | 6.47±0.03aA | 110.53±1.52aA | 29.49±0.24aA | 4.37±0.19aA |
Ⅱ | 6.35±0.04aA | 103.51±3.82aA | 29.49±0.45aA | 5.87±0.67aA | ||
成熟期 Maturity | Ⅰ | 6.45±0.02aA | 114.91±4.64aA | 28.21±0.67aA | 2.50±0.41aB | |
Ⅱ | 6.40±0.04aA | 95.61±3.82bA | 29.26±0.31aA | 2.22±0.49aB |
年份 Year | 生育期 Growth Stage | 处理 Treatment | 过氧化氢酶活性 Catalase activity/(mL∙g-1∙h-1) | 转化酶活性 Invertase activity/(mg∙g-1∙d-1) | 脲酶活性 Urease activity/(mg∙g-1∙d-1) |
---|---|---|---|---|---|
2019 | 分蘖期 Tillering | Ⅰ | 6.24±0.84aA | 64.30±2.47aA | 0.010±0.003bB |
Ⅱ | 7.89±0.23aA | 49.18±4.01bA | 0.043±0.004aA | ||
成熟期 Maturity | Ⅰ | 8.34±0.27aA | 32.10±2.07bB | 0.039±0.006aA | |
Ⅱ | 7.32±0.69aA | 48.66±4.41aA | 0.038±0.005aA | ||
2020 | 分蘖期 Tillering | Ⅰ | 10.47±0.09bA | 45.98±0.38bB | 0.345±0.013aA |
Ⅱ | 10.87±0.08aA | 50.28±1.15aB | 0.356±0.004aA | ||
成熟期 Maturity | Ⅰ | 10.75±0.19aA | 67.21±3.03aA | 0.312±0.009aA | |
Ⅱ | 9.71±0.04bB | 58.06±1.42aA | 0.299±0.007aB |
表3 水稻不同播期的土壤过氧化氢酶、转化酶、脲酶活性
Table 3 Catalase, invertase and urease activities of soil at different sowing dates of rice
年份 Year | 生育期 Growth Stage | 处理 Treatment | 过氧化氢酶活性 Catalase activity/(mL∙g-1∙h-1) | 转化酶活性 Invertase activity/(mg∙g-1∙d-1) | 脲酶活性 Urease activity/(mg∙g-1∙d-1) |
---|---|---|---|---|---|
2019 | 分蘖期 Tillering | Ⅰ | 6.24±0.84aA | 64.30±2.47aA | 0.010±0.003bB |
Ⅱ | 7.89±0.23aA | 49.18±4.01bA | 0.043±0.004aA | ||
成熟期 Maturity | Ⅰ | 8.34±0.27aA | 32.10±2.07bB | 0.039±0.006aA | |
Ⅱ | 7.32±0.69aA | 48.66±4.41aA | 0.038±0.005aA | ||
2020 | 分蘖期 Tillering | Ⅰ | 10.47±0.09bA | 45.98±0.38bB | 0.345±0.013aA |
Ⅱ | 10.87±0.08aA | 50.28±1.15aB | 0.356±0.004aA | ||
成熟期 Maturity | Ⅰ | 10.75±0.19aA | 67.21±3.03aA | 0.312±0.009aA | |
Ⅱ | 9.71±0.04bB | 58.06±1.42aA | 0.299±0.007aB |
指标 Index | 水溶性有机碳 DOC | 铵态氮 NH4+-N | 硝态氮 NO3--N | 转化酶 Invertase | 脲酶 Urease |
---|---|---|---|---|---|
2019年CH4通量 CH4 flux in 2019 | 0.207 | -0.208 | 0.163 | 0.348 | 0.010 |
2020年CH4通量 CH4 flux in 2020 | 0.130 | -0.181 | 0.375 | 0.088 | 0.147 |
表4 CH4排放平均通量与土壤理化、酶活性的Pearson相关分析
Table 4 Pearson correlation analysis of average CH4 emission flux with soil physicochemical and enzyme activities
指标 Index | 水溶性有机碳 DOC | 铵态氮 NH4+-N | 硝态氮 NO3--N | 转化酶 Invertase | 脲酶 Urease |
---|---|---|---|---|---|
2019年CH4通量 CH4 flux in 2019 | 0.207 | -0.208 | 0.163 | 0.348 | 0.010 |
2020年CH4通量 CH4 flux in 2020 | 0.130 | -0.181 | 0.375 | 0.088 | 0.147 |
图4 不同播期下稻田CH4排放通量与土壤温度(a)及气温(b)的关系
Fig. 4 Relationship between CH4 emission flux and soil temperature (a) and air temperature (b) from paddy fields under different sowing dates
年份 Year | 处理 Treatment | CH4增温潜势 CH4 warming potential/(kg·hm-2) | CH4增温潜势成本 CH4 warming potential costs/(yuan·hm-2) | 水稻产量 Rice yield/ (kg·hm-2) | 水稻产量经济效益 The economic benefits of rice production/(yuan·hm-2) | 基于CH4减排的水稻生产综合效益 Comprehensive benefits based on CH4 emission reduction/(yuan·hm-2) |
---|---|---|---|---|---|---|
2019 | Ⅰ | 1930.17±41.34a | 80a | 10102.00±244.49a | 11720a | 11640a |
Ⅱ | 1632.09±37.08b | 68b | 8298.75±309.38b | 7032b | 6964b | |
2020 | Ⅰ | 3513.97±280.16 | 146 | 11687.33±170.29a | 15842a | 15696a |
Ⅱ | 2589.58±458.51 | 108 | 8051.48±118.13b | 6389b | 6281b |
表5 不同播期下基于CH4减排的水稻生产综合效益
Table 5 Comprehensive benefits of rice production based on CH4 emission reduction under different sowing dates
年份 Year | 处理 Treatment | CH4增温潜势 CH4 warming potential/(kg·hm-2) | CH4增温潜势成本 CH4 warming potential costs/(yuan·hm-2) | 水稻产量 Rice yield/ (kg·hm-2) | 水稻产量经济效益 The economic benefits of rice production/(yuan·hm-2) | 基于CH4减排的水稻生产综合效益 Comprehensive benefits based on CH4 emission reduction/(yuan·hm-2) |
---|---|---|---|---|---|---|
2019 | Ⅰ | 1930.17±41.34a | 80a | 10102.00±244.49a | 11720a | 11640a |
Ⅱ | 1632.09±37.08b | 68b | 8298.75±309.38b | 7032b | 6964b | |
2020 | Ⅰ | 3513.97±280.16 | 146 | 11687.33±170.29a | 15842a | 15696a |
Ⅱ | 2589.58±458.51 | 108 | 8051.48±118.13b | 6389b | 6281b |
[1] | BHATTACHARYYA P, ROY K S, NEOGI S, et al., 2013. Impact of elevated CO2 and temperature on soil C and N dynamics in relation to CH4 and N2O emissions from tropical flooded rice (Oryza sativa L.) - ScienceDirect[J]. Science of The Total Environment, 461-462: 601-611. |
[2] | WANG C, LAI D Y F, TONG C, et al., 2015. Variations in temperature sensitivity (Q10) of CH4 emission from a subtropical estuarine marsh in southeast China[J]. Plos One, 10(5): 5-12. |
[3] |
DORICH R A, NELSON D W, 1984. Evaluation of manual cadmium reduction methods for determination of nitrate in potassium chloride extracts of soil[J]. Soil Science Society of America Journal, 48: 1(1): 72-75.
DOI URL |
[4] |
DAS K, BARUAH K K, 2008. A comparison of growth and photosynthetic characteristics of two improved rice cultivars on methane emission from rainfed agroecosystem of northeast India[J]. Agriculture Ecosystems & Environment, 124(1-2): 105-113.
DOI URL |
[5] |
GOPAL M, GUPTA A, ARUNACHALAM V, et al., 2007. Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities[J]. Bioresource Technology, 98(16): 3154-3158.
DOI URL |
[6] | GE H X, ZHANG H S, ZHANG H, et al., 2018. The characteristics of methane flux from an irrigated rice farm in east China measured using the eddy covariance method[J]. Agricultural & Forest Meteorology, 249: 228-238. |
[7] | IPCC, 2013. Working GroupⅠcontribution to the IPCC Fifth AS sessment Report (AR5). Climate change 2013: The Physical Science Basis. Final Draft Underlying Scientific-Technical Assessment[R/OL].[2013-10-30]. |
[8] |
JOHNSON J L, TEMPLE K L, 1964. Some variables affecting the measurement of “catalase activity” in soil[J]. Soil Science Society of America Journal, 28(2): 207-209.
DOI URL |
[9] | KEMPERS A J, ZWEERS A, 1986. Ammonium determination in soil extracts by the salicylate acid method[J]. Communications in Soil Science & Plant Analysis, 17(7): 715-723. |
[10] |
KIRSCHKE S, BOUSQUET P, CIAIS P, et al., 2013. Three decades of global methane sources and sinks[J]. Nature Geoscience, 6(10): 813-823.
DOI URL |
[11] | KANDELER E, GERBER H, 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium[J]. Biology & Fertility of Soils, 6(1): 68-72. |
[12] | LI H, GUO H Q, HELBIG M, et al., 2019. Does direct-seeded rice decrease ecosystem-scale methane emissions?—A case study from a rice paddy in southeast China[J]. Agricultural and Forest Meteorology, 272-273: 118-127. |
[13] |
SIMMONDS M B, MERLE A, ARLENE A, et al., 2015. Seasonal methane and nitrous oxide emissions of several rice cultivars in direct-seeded systems[J]. Journal of Environmental Quality, 44(1): 103-113.
DOI URL |
[14] | QUAN Y, JUDITH P, RALF C, et al., 2012. Partitioning of CH4 and CO2 production originating from rice straw, soil and root organic carbon in rice microcosms[J]. Plos One, 7(11): 3-7. |
[15] |
SAUNOIS M, STAVERT A R, POULTER B, et al., 2020. The global methane budget 2000-2017 [J]. Earth System Science Data, 12(3): 1561-1623.
DOI URL |
[16] |
TOKIDA T, ADACHI M, CHENG W, et al., 2011. Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature[J]. Global Change Biology, 17(11): 3327-3337.
DOI URL |
[17] | WANG W, LAI D Y F, WANG C, et al., 2016. Effects of inorganic amendments, rice cultivars and cultivation methods on greenhouse gas emissions and rice productivity in a subtropical paddy field[J]. Ecological engineering: The Journal of Ecotechnology, 95: 770-778. |
[18] | 艾磊, 2016. 不同生态区播期对粳稻生育进程、产量及品质的影响[D]. 武汉: 华中农业大学: 23-52. |
AI L, 2016. Effects of sowing date on growth period, yield and quality of Japonica rice in different ecological regions[D]. Wuhan: Huazhong Agricultural University: 23-52. | |
[19] | 符冠富, 王丹英, 李华, 等, 2009. 水稻不同生育期温光条件对籽粒充实和米质的影响[J]. 中国农业气象, 30(3): 375-382. |
FU G F, WANG D Y, LI H, et al., 2009. Influence of temperature and sunlight conditions on rice grain filling and quality in different growth stages[J]. Chinese Journal of Agrometeorology, 30(3): 375-382. | |
[20] | 甘德欣, 2003. 稻鸭共栖免耕减排甲烷机制及综合效益研究[D]. 长沙: 湖南农业大学: 64-67. |
GAN D X, 2003. A study on the mechanism of mitigating methane and ingredient benefits of no-tillage in rice-duck complex system[D]. Changsha: Hunan Agricultural University: 64-67. | |
[21] | 韩广轩, 朱波, 高美荣, 等, 2003. 中国稻田甲烷排放研究进展[J]. 西南农业学报, 16(S1): 49-54. |
HAN G X, ZHU B, GAO M R, et al., 2003. Research progress on methane emission from rice field in China[J]. Southwest China Journal of Agricultural Sciences, 16(S1): 49-54. | |
[22] | 贾庆宇, 李晓岚, 于文颖, 等, 2020. 温度对东北平原水稻田甲烷排放的影响[J]. 生态环境学报, 29(1): 1-10. |
JIA Q Y, LI X L, YU W Y, et al., 2020. Effect of temperature on methane emission over paddy fields in Northeast Plain[J]. Ecology and Environmental Sciences, 29(1): 1-10. | |
[23] | 江瑜, 管大海, 张卫建, 2018. 水稻植株特性对稻田甲烷排放的影响及其机制的研究进展[J]. 中国生态农业学报, 26(2): 175-181. |
JIANG Y, GUAN D H, ZHANG W J, 2018. The effect of rice plant traits on methane emissions from paddy fields: A review[J]. Chinese Journal of Eco-Agriculture, 26(2): 175-181. | |
[24] | 焦燕, 黄耀, 宗良纲, 等, 2002. 土壤理化特性对稻田CH4排放的影响[J]. 环境科学, 23(5): 1-7. |
JIAO Y, HUANG Y, ZONG L G, et al., 2002. Methane emission from rice paddy soils as influenced by soil physico-chemical properties[J]. Environmental Science, 23(5): 1-7.
DOI URL |
|
[25] | 盛锋, 2019. 稻鸭共育对稻田环境的影响及效益评估[D]. 武汉: 华中农业大学: 64-71. |
SHENG F, 2019. Effects of rice-duck farming on rice field environment and its benefit evaluation[D]. Wuhan: Huazhong Agricultural University: 64-71. | |
[26] | 沈学良, 田光蕾, 周元昌, 等, 2020. 水稻生物学特性对稻田甲烷排放的影响[J]. 农学学报, 10(2): 75-80. |
SHEN X L, TIAN G L, ZHOU Y C, et al., 2020. Rice biological characteristics: Effects on methane emission from paddy fields[J]. Journal of Agriculture, 10(2): 75-80. | |
[27] | 田昌, 周旋, 黄思怡, 等, 2019. 控释尿素减施对稻田CH4和N2O排放及经济效益的影响[J]. 生态环境学报, 28(11): 2223-2230. |
TIAN C, ZHOU X, HUANG S Y, et al., 2019. Effects of controlled-release urea reduction on CH4 and N2O emissions and its economic benefits in double cropping paddy fields[J]. Ecology and Environmental Sciences, 28(11): 2223-2230. | |
[28] | 魏海苹, 孙文娟, 黄耀, 2012. 中国稻田甲烷排放及其影响因素的统计分析[J]. 中国农业科学, 45(17): 3531-3540. |
WEI H P, SUN W J, HUANG Y, 2012. Statistical analysis of methane emission from rice fields in China and the driving factors[J]. Scientia Agricultura Sinica, 45(17): 3531-3540. | |
[29] | 尉海东, 2013. 稻田甲烷排放研究进展[J]. 中国农学通报, 29(18): 6-10. |
WEI H D, 2013. Research progress on methane emission from paddy fields[J]. Chinese Agricultural Science Bulletin, 29(18): 6-10. | |
[30] | 汪伟, 裘实, 朱大伟, 等, 2018. 播期对不同软米粳稻品种产量、生育期及温光资源利用的影响[J]. 中国稻米, 24(2): 79-83. |
WANG W, QIU S, ZHU D W, et al., 2018. Effects of sowing date on yield, growth period and utilization of temperature and lightin different japonica rice cultivars[J]. China Rice, 24(2): 79-83. | |
[31] | 许轲, 孙圳, 霍中洋, 等, 2013. 播期、品种类型对水稻产量、生育期及温光利用的影响[J]. 中国农业科学, 46(20): 4222-4233. |
XU K, SUN Z, HUO Z Y, et al., 2013. Effects of seeding date and variety type on yield, growth stage and utilization of temperature and sunshine in rice[J]. Scientia Agricultura Sinica, 46(20): 4222-4233. | |
[32] | 徐年龙, 于洪喜, 叶仁宏, 等, 2020. 播期和栽插方式对水稻南粳9108产量和品质的影响[J]. 大麦与谷类科学, 37(1): 15-21. |
XU N L, YU H X, YE R H, et al., 2020. Effects of sowing date and transplanting methodonthe yield and quality of the rice cultivar Nanjing 9108[J]. Barley and Cereal Sciences, 37(1): 15-21. | |
[33] | 占新华, 周立祥, 2002. 土壤溶液和水体中水溶性有机碳的比色测定[J]. 中国环境科学, 22(5): 433-437. |
ZHAN X H, ZHOU L X, 2002. Colorimetric determination of dissolved organic carbon in soil solution and water environment[J]. China Environmental Science, 22(5): 433-437. | |
[34] | 甄丽莎, 谷洁, 高华, 等, 2012. 秸秆还田与施肥对土壤酶活性和作物产量的影响[J]. 西北植物学报, 32(9): 1811-1818. |
ZHEN L S, GU J, GAO H, et al., 2012. Effect of straws, manure and chemical fertilizer on soil properties and crop yields[J]. Acta Botanica Boreali-Occidentalia Sinica, 32(9): 1811-1818. | |
[35] | 周旋, 吴良欢, 戴锋, 2017. 生化抑制剂组合与施肥模式对黄泥田水稻产量和经济效益的影响[J]. 生态学杂志, 36(12): 3517-3525. |
ZHOU X, WU L H, DAI F, 2017. Effects of biochemical inhibitor combination and fertilization mode on rice yield and economic benefit in yellow clayey field[J]. Chinese Journal of Ecology, 36(12): 3517-3525. | |
[36] | 周文涛, 戈家敏, 王勃然, 等, 2020. 不同水稻品种甲烷排放与土壤酶的关系[J]. 农业环境科学学报, 39(11): 2675-2682. |
ZHOU W T, GE J M, WANG B R, et al., 2020. Relationships between methane emissions and soil enzymes of different rice varieties[J]. Journal of Agro-Environment Science, 39(11): 2675-2682. |
[1] | 胡启瑞, 吉春容, 李迎春, 王雪姣, 杨明凤, 郭燕云. 膜下滴灌棉花蕾期干旱胁迫对光合特性及产量的影响[J]. 生态环境学报, 2023, 32(6): 1045-1052. |
[2] | 王敬, 孟珂, 陈璇, 章家恩, 向慧敏, 钟嘉文, 石兆基. 酸雨对生菜和上海青的产量、品质及生理特性的影响[J]. 生态环境学报, 2023, 32(6): 1098-1107. |
[3] | 唐海明, 石丽红, 文丽, 程凯凯, 李超, 龙泽东, 肖志武, 李微艳, 郭勇. 长期施肥对双季稻田根际土壤氮素的影响[J]. 生态环境学报, 2023, 32(3): 492-499. |
[4] | 李成伟, 刘章勇, 龚松玲, 杨伟, 李绍秋, 朱波. 稻作模式改变对稻田CH4和N2O排放的影响[J]. 生态环境学报, 2022, 31(5): 961-968. |
[5] | 贺晓佳, 冯书华, 蒋明, 李明锐, 湛方栋, 李元, 何永美. UV-B辐射对水稻根际土壤活性有机碳转化和产甲烷潜力的影响[J]. 生态环境学报, 2022, 31(3): 556-564. |
[6] | 刘江, 朱丽杰, 张开, 王晓明, 王立为, 高西宁. 不同生育期干旱胁迫/复水对大豆光合特性及产量的影响[J]. 生态环境学报, 2022, 31(2): 286-296. |
[7] | 黄巧义, 于俊红, 黄建凤, 黄旭, 李苹, 付弘婷, 唐拴虎, 刘一锋, 徐培智. 广东省主要农作物秸秆养分资源量及替代化肥潜力[J]. 生态环境学报, 2022, 31(2): 297-306. |
[8] | 张开, 王立为, 高西宁, 贺明慧. 基于DNDC模型不同降水年型下氮肥管理对马铃薯田N2O减排及增产潜力影响研究[J]. 生态环境学报, 2021, 30(8): 1672-1682. |
[9] | 陈思, 王灿, 李想, 李明锐, 湛方栋, 李元, 祖艳群, 何永美. 不同UV-B辐射增幅对稻田土壤酶活性、活性有机碳含量及温室气体排放的影响[J]. 生态环境学报, 2021, 30(6): 1260-1268. |
[10] | 朱勇勇, 宋秉羲, 杨王敏, 张宇鹏, 高志红, 陈晓远. 旱作条件下氮肥减施对水稻生长、产量与经济收益的影响[J]. 生态环境学报, 2021, 30(11): 2150-2156. |
[11] | 武岩, 靳拓, 王跃飞, 贺鹏程, 罗军, 刘宏金, 张雷, 郭晓宇, 陈瑞英. 内蒙古阴山北麓马铃薯应用PBAT/PLA全生物降解地膜可行性分析[J]. 生态环境学报, 2021, 30(10): 2100-2108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||