生态环境学报 ›› 2022, Vol. 31 ›› Issue (2): 286-296.DOI: 10.16258/j.cnki.1674-5906.2022.02.009
刘江1(), 朱丽杰1,2, 张开1, 王晓明3, 王立为1, 高西宁1,4,*(
)
收稿日期:
2021-09-03
出版日期:
2022-02-18
发布日期:
2022-04-14
通讯作者:
*高西宁(1973年生),男,副教授,博士,从事农业气象灾害研究。E-mail: syaugxn@syau.edu.cn作者简介:
刘江(1968年生),男,副教授,博士,从事农业气象灾害研究。E-mail: snliujiang@syau.edu.cn
基金资助:
LIU Jiang1(), ZHU Lijie1,2, ZHANG Kai1, WANG Xiaoming3, WANG Liwei1, GAO Xining1,4,*(
)
Received:
2021-09-03
Online:
2022-02-18
Published:
2022-04-14
摘要:
在全球气候变化背景下,干旱发生的频率和强度都有所增强,严重影响农业生产。研究大豆(Glycine max)在不同生育期不同强度干旱胁迫/复水条件下的光合特性和产量变化,可明确干旱对大豆生长发育影响并为探索灾变机制提供理论依据。通过水分控制试验,分别在开花期和鼓粒期对大豆实施轻度干旱胁迫(65%田间持水量)和重度干旱胁迫(50%田间持水量),并分别持续7、14、21 d。在胁迫结束后进行复水,复水水平控制到对照处理水平(80%田间持水量)。结果表明,开花期和鼓粒期干旱胁迫使大豆最大净光合速率分别降低19.56%—70.86%和44.38%—74.03%。在开花期,随着干旱胁迫强度的增加,气孔限制值呈升高趋势,胞间CO2浓度呈降低趋势,大豆净光合速率下降是由气孔因素主导。在鼓粒期,随着干旱胁迫强度的增加,气孔限制值由升高趋势转为降低趋势,胞间CO2浓度由降低趋势转为升高趋势,大豆净光合速率下降由气孔因素主导转为非气孔因素主导。当干旱胁迫持续时间较短时(7—14 d),大豆水分利用效率升高6.88%—52.34%,随着干旱持续时间的延长(21 d),水分利用效率降低20.41%—61.18%。开花期干旱胁迫使大豆减产15.63%—55.47%,而鼓粒期减产24.17%—59.63%。干旱胁迫导致大豆净光合速率和产量下降,且相同程度的干旱,在鼓粒期对大豆产量的影响大于开花期;持续时间较短的干旱胁迫可提高水分利用效率,而长时间干旱胁迫使水分利用效率降低。
中图分类号:
刘江, 朱丽杰, 张开, 王晓明, 王立为, 高西宁. 不同生育期干旱胁迫/复水对大豆光合特性及产量的影响[J]. 生态环境学报, 2022, 31(2): 286-296.
LIU Jiang, ZHU Lijie, ZHANG Kai, WANG Xiaoming, WANG Liwei, GAO Xining. Effects of Drought Stress/Rewatering on Photosynthetic Characteristics and Yield of Soybean at Different Growth Stages[J]. Ecology and Environment, 2022, 31(2): 286-296.
图1 开花期干旱胁迫/复水时大豆气孔限制值和胞间CO2浓度——光响应曲线
Figure 1 Stomatal limitation value and intracellular CO2 concentration light response curve of Soybean under drought stress/rewatering at flowering stage
图2 鼓粒期干旱胁迫/复水时大豆气孔限制值和胞间CO2浓度——光响应曲线
Figure 2 Stomatal limitation value and intracellular CO2 concentration light response curve of Soybean under drought stress/rewatering at full seed stage
生育期 Growth period | 项目 Item | 轻度胁迫7 d Mild stress for 7 days | 重度胁迫7 d Severe stress for 7 days | 轻度胁迫14 d Mild stress for 14 days | 重度胁迫14 d Severe stress for 14 days | 轻度胁迫21 d Mild stress for 21 days | 重度胁迫21 d Severe stress for 21 days | CK |
---|---|---|---|---|---|---|---|---|
开花期 Flowering stage | 单株粒数 Grain number per plant | 93.33± 1.53ab | 79.00± 1.00b | 81.33± 0.58b | 70.67± 1.53bc | 71.67± 2.08bc | 55.33± 2.08c | 106.33± 2.52a |
单株秕粒数 Unfilled grain number per plant | 11.00± 1.00b | 14.67± 1.15ab | 12.00± 1.00b | 17.67± 0.58a | 13.33± 0.58b | 19.33± 1.15a | 9.67± 0.58b | |
单株荚数 Pod number per plant | 50.33± 2.31ab | 51.67± 3.06ab | 46.00± 1.00b | 43.33± 1.53b | 46.67± 1.15b | 33.33± 1.53c | 57.67± 2.52a | |
产量 Yield/(kg∙hm-2) | 3817.80± 82.18b | 3292.05± 64.02bc | 3407.85± 152.98bc | 2983.50± 106.86c | 2872.01± 79.10c | 2015.22± 67.38d | 4525.20± 68.12a | |
鼓粒期 Full seed stage | 单株粒数 Grain number per plant | 82.67± 2.52b | 75.00± 1.00b | 70.33± 0.58bc | 66.00± 0.00c | 61.33± 1.53cd | 53.33± 1.15d | 106.33± 2.52a |
单株秕粒数 Unfilled grain number per plant | 11.00± 1.00b | 14.67± 1.15b | 12.00± 1.00b | 18.67± 1.53a | 18.67± 1.53a | 21.00± 1.00a | 9.67± 0.58b | |
单株荚数 Pod number per plant | 53.33± 2.31a | 52.67± 1.15a | 40.33± 2.31b | 41.33± 1.15b | 34.67± 0.58b | 36.00± 1.00b | 57.67± 2.52a | |
产量 Yield/(kg∙hm-2) | 3431.40± 69.14b | 3061.05± 83.76bc | 2847.60± 39.31c | 2561.85± 91.10c | 2551.05± 69.30c | 1827.00± 47.23d | 4525.20± 68.12a |
表1 干旱胁迫下大豆产量变化的多重比较分析
Table 1 Multiple comparison of soybean yield changes under drought stress
生育期 Growth period | 项目 Item | 轻度胁迫7 d Mild stress for 7 days | 重度胁迫7 d Severe stress for 7 days | 轻度胁迫14 d Mild stress for 14 days | 重度胁迫14 d Severe stress for 14 days | 轻度胁迫21 d Mild stress for 21 days | 重度胁迫21 d Severe stress for 21 days | CK |
---|---|---|---|---|---|---|---|---|
开花期 Flowering stage | 单株粒数 Grain number per plant | 93.33± 1.53ab | 79.00± 1.00b | 81.33± 0.58b | 70.67± 1.53bc | 71.67± 2.08bc | 55.33± 2.08c | 106.33± 2.52a |
单株秕粒数 Unfilled grain number per plant | 11.00± 1.00b | 14.67± 1.15ab | 12.00± 1.00b | 17.67± 0.58a | 13.33± 0.58b | 19.33± 1.15a | 9.67± 0.58b | |
单株荚数 Pod number per plant | 50.33± 2.31ab | 51.67± 3.06ab | 46.00± 1.00b | 43.33± 1.53b | 46.67± 1.15b | 33.33± 1.53c | 57.67± 2.52a | |
产量 Yield/(kg∙hm-2) | 3817.80± 82.18b | 3292.05± 64.02bc | 3407.85± 152.98bc | 2983.50± 106.86c | 2872.01± 79.10c | 2015.22± 67.38d | 4525.20± 68.12a | |
鼓粒期 Full seed stage | 单株粒数 Grain number per plant | 82.67± 2.52b | 75.00± 1.00b | 70.33± 0.58bc | 66.00± 0.00c | 61.33± 1.53cd | 53.33± 1.15d | 106.33± 2.52a |
单株秕粒数 Unfilled grain number per plant | 11.00± 1.00b | 14.67± 1.15b | 12.00± 1.00b | 18.67± 1.53a | 18.67± 1.53a | 21.00± 1.00a | 9.67± 0.58b | |
单株荚数 Pod number per plant | 53.33± 2.31a | 52.67± 1.15a | 40.33± 2.31b | 41.33± 1.15b | 34.67± 0.58b | 36.00± 1.00b | 57.67± 2.52a | |
产量 Yield/(kg∙hm-2) | 3431.40± 69.14b | 3061.05± 83.76bc | 2847.60± 39.31c | 2561.85± 91.10c | 2551.05± 69.30c | 1827.00± 47.23d | 4525.20± 68.12a |
[1] |
BATTIPAGLIA G, MICCO V D, BRAND W A, et al., 2014. Drought impact on water use efficiency and intra-annual density fluctuations in Erica arborea on Elba (Italy)[J]. Plant, Cell and Environment, 37(2): 382-391.
DOI URL |
[2] |
FARQUHAR G D, SHARKEY T D, 1982. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 33(1): 317-345.
DOI URL |
[3] |
FARQUHAR G D, RICHARDS R A, 1984. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes[J]. Functional Plant Biology, 11(6): 539-552.
DOI URL |
[4] |
GRIFFITHS H, PARRY M A J, 2002. Plant responses to water stress[J]. Annals of Botany, 89(7): 801-802.
DOI URL |
[5] |
HETHERINGTON A M, WOODWARD F I, 2003. The role of stomata in sensing and driving environmental change[J]. Nature, 424(6951): 901-908.
DOI URL |
[6] |
JALEEL C A, GOPI R, SANKAR B, et al., 2008. Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress[J]. Comptes Rendus Biologies, 331(1): 42-47.
DOI URL |
[7] |
LIN M J, HSU B D, 2004. Photosynthetic plasticity of Phalaenopsis in response to different light environments[J]. Journal of Plant Physiology, 161(11): 1259-1268.
DOI URL |
[8] |
LIU F L, ANDERSEN M N, JACOBSEN S E, et al., 2005. Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying[J]. Environmental and Experimental Botany, 54(1): 33-40.
DOI URL |
[9] |
MANAVALAN L P, GUTTIKONDA S K, TRAN L S P, et al., 2009. Physiological and molecular approaches to improve drought resistance in soybean[J]. Plant Cell Physiol, 50(7): 1260-1276.
DOI URL |
[10] | OLSEN R T, RUTER J M, RIEGER M W, 2002. Photosynthetic responses of container-grown Illicium L. taxa to sun and shade[J]. Journal of the American Society for Horticultural, 127(6): 919-924. |
[11] |
ZHOU Y C, CHENG X L, FAN J W, et al., 2016. Relationships between foliar carbon isotope composition and elements of C3 species in grasslands of Inner Mongolia, China[J]. Plant Ecology, 217(7): 883-897.
DOI URL |
[12] | 白伟, 孙占祥, 刘晓晨, 等, 2009. 花期水分胁迫对大豆器官平衡和产量的影响[J]. 杂粮作物, 29(2): 89-92. |
BAI W, SUN Z X, LIU X C, et al., 2009. Effect of water stress at flowering time on organ equilibrium and yield of soybean[J]. Rain Fed Crops, 29(2): 89-92. | |
[13] | 曹树青, 陆巍, 翟虎渠, 等, 2001. 用水稻苗期叶绿素含量相对稳定期估算水稻剑叶光合功能期的方法研究[J]. 中国水稻科学 (4): 70-74. |
CAO S Q, WEI W, ZHAI H Q, et al., 2001. Research on the method to Estimating flag leaf photosynthesis function duration at rice seedling stage by relative steady phase of chlorophyll cintent[J]. Chinese Rice Science (4): 70-74. | |
[14] | 曹秀清, 蒋尚明, 2017. 干旱胁迫对大豆品质及产量的影响[J]. 现代农业科技 (16): 3-4, 7. |
CAO X Q, JIANG S M, 2017. Effect of drought stress on yield and quality of soybean[J]. Modern Agricultural Science and Technology (16): 3-4, 7. | |
[15] | 常敬礼, 杨德光, 谭巍巍, 等, 2008. 水分胁迫对玉米叶片光合作用的影响[J]. 东北农业大学学报, 39(11): 1-5. |
CHANG J L, YANG D G, TAN W W, et al., 2008. Effects of water stress on maize leaf photosynthesis[J]. Journal of Northeast Agricultural University, 39(11): 1-5. | |
[16] | 丁友芳, 张晓霞, 史玲玲, 等, 2010. 葛根净光合速率日变化及其与环境因子的关系[J]. 北京林业大学学报, 32(5): 132-137. |
DING Y F, ZHANG X X, SHI L L, et al., 2010. Diurnal change of net photosynthetic rates in Pueraria lobata and its relation with environmental factors[J]. Journal of Beijing Forestry University, 32(5): 132-137. | |
[17] | 高玉秋, 徐彩龙, 马立晖, 等, 2021. 鄂伦春旗耕地土壤有机质含量的时空变化趋势及其与大豆产量的关系[J]. 农学学报, 11(2): 57-63. |
GAO Y Q, XU C L, MA L H, et al., 2021. Temporal-spatial distribution of arable soil organic matter in Oroqen banner and its relationship with soybean yield[J]. Journal of Agronomy, 11(2): 57-63. | |
[18] | 何海军, 寇思荣, 王晓娟, 2011. 干旱胁迫对不同株型玉米光合特性及产量性状的影响[J]. 干旱地区农业研究, 29(3): 63-66, 74. |
HE H J, KOU S R, WANG X J, 2011. Effects of drought stress on Photosynthetic Characteristics and yield components of different plant types of corn[J]. Agricultural Research in Arid Areas, 29(3): 63-66, 74. | |
[19] | 侯荣娜, 戴旭宏, 2019. 中美贸易战视角下振兴东北地区大豆产业发展的政策选择[J]. 农村经济 (12): 26-32. |
HOU R N, DAI H X, 2019. Policy choice of revitalizing the development of soybean industry in Northeast China from the perspective of Sino US trade war[J]. Rural Economy (12): 26-32. | |
[20] | 侯志强, 蒋尚明, 金菊良, 等, 2018. 不同生育期干旱胁迫对夏大豆耗水量和水分利用效率的影响[J]. 灌溉排水学报, 37(5): 19-24. |
HOU Z Q, JIANG S M, JIN J L, et al., 2018. Impact of water stress occruuing at different growth stages on water consumption and water use efficiency of summer soybean[J]. Journal of Irrigation and Drainage, 37(5): 19-24. | |
[21] | 李文滨, 宋春晓, 苌兴超, 等, 2019. 干旱胁迫下20个大豆品种抗旱性评价[J]. 东北农业大学学报, 50(4): 1-10. |
LI W B, SONG C X, CHANG X C, et al., 2019. Drought resistance of evaluation 20 soybean varieties under drought stress[J]. Journal of Northeast Agricultural University, 50(4): 1-10. | |
[22] | 李秀芬, 马树庆, 于海, 等, 2021. 春大豆鼓粒至成熟期水分胁迫对结实和产量的影响[J]. 气象与环境学报, 37(5): 86-92. |
LI X F, MA S Q, YU H, et al., 2021. Impact of water stress from pod filling to maturity on seed setting and yield of spring soybean[J]. Journal of Meteorology and environment, 37(5): 86-92. | |
[23] | 刘吉利, 赵长星, 吴娜, 等, 2011. 苗期干旱及复水对花生光合特性及水分利用效率的影响[J]. 中国农业科学, 44(3): 469-476. |
LIU J L, ZHAO C X, WU N, et al., 2011. Effects of drought and rewatering at seedling stage on photosynthetic characteristics and water use efficiency of peanut[J]. Chinese Agricultural Science, 44(3): 469-476. | |
[24] | 楼靓珺, 宋新山, 赵晓祥, 2013. 土壤水和空气湿度组合对大豆幼苗光合特性的影响及其复水响应[J]. 中国农学通报, 29(33): 118-123. |
LOU L J, SONG X S, ZHAO X X, 2003. Effects of drought and rewatering on photosynthetic Characteristics in soybean seedlings under different air humidity[J]. Bulletin of Chinese agronomy, 29(33): 118-123. | |
[25] | 卢琼琼, 宋新山, 严登华, 2012. 干旱胁迫对大豆苗期光合生理特性的影响[J]. 中国农学通报, 28(9): 42-47. |
LU Q Q, SONG X S, YAN D H, 2012. Effects of drought stress on photosynthetic physiological characteristics in soybean seeding[J]. Chinese Agricultural Science Bulletin, 28(9): 42-47. | |
[26] | 罗丹丹, 王传宽, 金鹰, 2019. 植物应对干旱胁迫的气孔调节[J]. 应用生态学报, 30(12): 4333-4343. |
LUO D D, WANG C K, JIN Y, 2019. Stomatal regulation of plants in response to drought stress[J]. Chinese Journal of Applied Ecology, 30(12): 4333-4343. | |
[27] | 马玥, 苏宝玲, 韩艳刚, 等, 2021. 岳桦幼苗光合特性和非结构性碳水化合物积累对干旱胁迫的响应[J]. 应用生态学报, 32(2): 513-520. |
MA Y, SU B L, HAN Y G, et al., 2021. Response of photosynthetic characteristics and non-structural carbohydrate accumulation of Betula ermanii seedlings to drought stress[J]. Journal of Applied Ecology, 32(2): 513-520. | |
[28] | 莫飞, 王桂霞, 胡明阳, 2020. 基于成本视角的东北地区大豆生产现状分析[J]. 大豆科学, 39(6): 947-953. |
MO F, WANG G X, HU M Y, 2020. Analysis of soybean production in Northeast China based on cost[J]. Soybean Science, 39(6): 947-953. | |
[29] | 庞杰, 张凤兰, 郝丽珍, 等, 2013. 沙芥幼苗叶片解剖结构和光合作用对干旱胁迫的响应[J]. 生态环境学报, 22(4): 575-581. |
PANG J, ZHANG F L, HAO L Z, et al., 2013. Effect of stress on anatomical structure and photosynthesis of Pugionium cornutum (L.) Gaertn. Leaves in seedling[J]. Ecology and Environmental sciences, 22(4): 575-581. | |
[30] | 汪本福, 黄金鹏, 杨晓龙, 等, 2014. 干旱胁迫抑制作物光合作用机理研究进展[J]. 湖北农业科学, 53(23): 5628-5632. |
WANG B F, HUANG J P, YANG X L, et al., 2014. Advances on inhibition mechanism of crop photosynthesis by drought stress[J]. Hubei Agricultural Sciences, 53(23): 5628-5632. | |
[31] | 吴慎杰, 2003. 大豆抗旱育种生理和形态选择指标的应用研究[D]. 晋中: 山西农业大学: 1-60. |
WU S J, 2003. Study on physiological and morphology selecting targets in drought-resistant breeding of soybean[D]. Jinzhong: Shanxi Agricultural University: 1-60. | |
[32] | 王海珍, 韩路, 徐雅丽, 等, 2015. 不同温度下灰胡杨叶片气孔导度对光强响应的模型分析[J]. 生态环境学报, 24(5): 741-748. |
WANG H Z, HAN L, XU Y L, et al., 2015. Model analysis of the stomatal conductance response to light in populus pruinosa at different temperatures in the taklimakan desert[J]. Ecology and Environmental Sciences, 24(5): 741-748. | |
[33] | 王诗雅, 冯乃杰, 项洪涛, 等, 2020. 水分胁迫对大豆生长与产量的影响及应对措施[J]. 中国农学通报, 36(27): 41-45. |
WANG S Y, FENG N J, XIANG H T, et al., 2020. Water stress: effects on growth and yield of soybean and the countermeasures[J]. Chinese Agricultural Science Bulletin, 36(27): 41-45. | |
[34] | 王文森, 2018. 基于叶绿素荧光动力学的大豆干旱/NaCl胁迫影响分析[D]. 沈阳: 沈阳农业大学: 1-120. |
WANG W S, 2018. Analysis of effects of drought/NaCl stress on soybean based on chlorophyll fluorescence kinetics[D]. Shenyang: Shenyang Agricultural University: 1-120. | |
[35] | 许大全, 1997. 光合作用气孔限制分析中的一些问题[J]. 植物生理学通讯, 33(4): 241-244. |
XU D Q, 1997. Some problems in stomatal limitation analysis of photosynthesis[J]. Plant Physiology Communications, 33(4): 241-244. | |
[36] | 许鑫怡, 曹历娟, 李天祥, 2021. 新冠疫情下的中巴大豆贸易: 现状、机遇与挑战[J]. 大豆科学, 40(4): 553-561. |
XU X Y, CAO L J, LI T X, 2021. China's soybean trade with brazil under COVID-19's: Status quo, opportunities and challenges[J]. Soybean Science, 40(4): 553-561. | |
[37] | 杨明凤, 王金梅, 吉春容, 等, 2021. 干旱胁迫对棉花生长发育和光合荧光参数的影响[J]. 中国农学通报, 37(13): 22-28. |
YANG M F, WANG J M, JI C R, et al., 2021. Response to growth, photosynthesis and chlorophyll fluorescence of cotton to drought stress[J]. Chinese Agricultural Science Bulletin, 37(13): 22-28. | |
[38] | 张洪鹏, 张盼盼, 李冰, 等, 2016. 烯效唑对淹水胁迫下大豆叶片光合特性及产量的影响[J]. 中国油料作物学报, 38(5): 611-618. |
ZHANG H P, ZHANG P P, LI B, et al., 2016. Effects of Uniconazole on leaf photosynthetic characteristics and yield of soybean under waterlogging stress[J]. Chinese Journal of Oil Crop Sciences, 38(5): 611-618. | |
[39] | 张仟雨, 李萍, 宗毓铮, 等, 2016. 干旱对大豆生理及产量影响的研究[J]. 华北农学报, 31(5): 140-145. |
ZHANG Q Y, LI P, ZONG Y Z, et al., Effects of drought on physiology and yield of soybean[J]. Acta Agriculturae Boreali-sinica, 31(5): 140-145. | |
[40] | 张雅梅, 茹广欣, 肖梦雨, 等, 2021. 干旱胁迫对泡桐幼苗生长和叶绿素荧光参数的影响[J]. 中南林业科技大学学报, 41(6): 22-30. |
ZHANG Y M, RU G X, XIAO M Y, et al., 2021. Influence of drought stress on the growth and chlorophyll fluorescence of paulownia seedling[J]. Journal of Central South University of Forestry and Technology, 41(6): 22-30. | |
[41] | 张仁和, 郑友军, 马国胜, 等, 2011. 干旱胁迫对玉米苗期叶片光合作用和保护酶的影响[J]. 生态学报, 31(5): 1303-1311. |
ZHANG E H, ZHENG Y J, MA G S, et al., 2011. Effects of drought stress on photosynthetic and protective enzyme in maize seeding[J]. Acta Ecologica Sinica, 31(5): 1303-1311. | |
[42] | 郑鹏飞, 余新晓, 贾国栋, 等, 2019. 北京山区侧柏人工林水分利用效率及其影响因素[J]. 应用生态学报, 30(3): 727-734. |
ZHENG P F, YU X X, JIA G D, et al., 2019. Water use efficiency and its influencing factors of platycladus orientalis plantation in Beijing mountains area, China[J]. Chinese Journal of Applied Ecology, 30(3): 727-734. |
[1] | 胡启瑞, 吉春容, 李迎春, 王雪姣, 杨明凤, 郭燕云. 膜下滴灌棉花蕾期干旱胁迫对光合特性及产量的影响[J]. 生态环境学报, 2023, 32(6): 1045-1052. |
[2] | 王敬, 孟珂, 陈璇, 章家恩, 向慧敏, 钟嘉文, 石兆基. 酸雨对生菜和上海青的产量、品质及生理特性的影响[J]. 生态环境学报, 2023, 32(6): 1098-1107. |
[3] | 李程程, 张子蕤, 宋晓萱, 孔娟娟, 韩阳, 阮亚男. 臭氧胁迫对大豆抗氧化代谢与生殖生长的影响[J]. 生态环境学报, 2022, 31(7): 1383-1392. |
[4] | 黄巧义, 于俊红, 黄建凤, 黄旭, 李苹, 付弘婷, 唐拴虎, 刘一锋, 徐培智. 广东省主要农作物秸秆养分资源量及替代化肥潜力[J]. 生态环境学报, 2022, 31(2): 297-306. |
[5] | 张开, 王立为, 高西宁, 贺明慧. 基于DNDC模型不同降水年型下氮肥管理对马铃薯田N2O减排及增产潜力影响研究[J]. 生态环境学报, 2021, 30(8): 1672-1682. |
[6] | 党慧慧, 刘超, 伍翥嵘, 王圆媛, 胡正华, 李琪, 陈书涛. 不同播期粳稻稻田甲烷排放及综合效益研究[J]. 生态环境学报, 2021, 30(7): 1436-1446. |
[7] | 朱勇勇, 宋秉羲, 杨王敏, 张宇鹏, 高志红, 陈晓远. 旱作条件下氮肥减施对水稻生长、产量与经济收益的影响[J]. 生态环境学报, 2021, 30(11): 2150-2156. |
[8] | 周映彤, 王岩, 孙铭禹, 伞昱, 姚星州, 赵天宏. 近地层臭氧浓度升高对亲子代大豆叶片抗氧化系统的影响[J]. 生态环境学报, 2021, 30(11): 2195-2203. |
[9] | 武岩, 靳拓, 王跃飞, 贺鹏程, 罗军, 刘宏金, 张雷, 郭晓宇, 陈瑞英. 内蒙古阴山北麓马铃薯应用PBAT/PLA全生物降解地膜可行性分析[J]. 生态环境学报, 2021, 30(10): 2100-2108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||