Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (10): 1579-1587.DOI: 10.16258/j.cnki.1674-5906.2025.10.008
• Research Article [Environmental Science] • Previous Articles Next Articles
ZHANG Yangyang1,*(), LIU Xuejun2
Received:
2025-03-13
Online:
2025-10-18
Published:
2025-09-26
通讯作者:
作者简介:
张洋洋(1991年生),女,助理研究员,主要从事环境大气科学研究。E-mail: shenhaideyu18@126.com
基金资助:
CLC Number:
ZHANG Yangyang, LIU Xuejun. Atmospheric Ammonia Concentrations, Source Apportionment, and Implications during Winter in the Urban Area of Beijing[J]. Ecology and Environmental Sciences, 2025, 34(10): 1579-1587.
张洋洋, 刘学军. 北京城区冬季大气氨浓度、来源及启示[J]. 生态环境学报, 2025, 34(10): 1579-1587.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.10.008
编号 | 经纬度 | 地点 | 采样类型 | NH3排放来源及周边环境(2017年交通流量,标准车/d) |
---|---|---|---|---|
1 | 39°54′47.4408″N, 116°18′16.29″E | 西三环 | 马路点 | 城市交通 (216885) |
2 | 39°51′18.9972″N,116°23′20.9976″E | 南三环 | 马路点 | 城市交通 (197818) |
3 | 39°53′45.9996″N, 116°27′18.9972″E | 东三环 | 马路点 | 城市交通 (239960) |
4 | 39°57′59.9976″N, 116°22′9.9984″E | 北三环 | 马路点 | 城市交通 (214639) |
5 | 39°53′35.9988″N, 116°16′3″E | 西四环 | 马路点 | 城市交通 (293438) |
6 | 39°49′49.998″N, 116°23′57.9984″E | 南四环 | 马路点 | 城市交通 (299525) |
7 | 39°54′21.9996″N, 116°29′1.9968″E | 东四环 | 马路点 | 城市交通 (267345) |
8 | 39°59′7.998″N, 116°20′34.998″E | 北四环 | 马路点 | 城市交通 (270561) |
9 | 39°53′18.9996″N, 116°12′16.9992″E | 西五环 | 马路点 | 城市交通 (211184) |
10 | 39°45′32.9976″N, 116°23′19.9968″E | 南五环 | 马路点 | 城市交通 (183186) |
11 | 39°53′0.9996″N, 116°32′33″E | 东五环 | 马路点 | 城市交通 (295789) |
12 | 40°1′15.9996″N, 116°23′21.9984″E | 北五环 | 马路点 | 城市交通 (200412) |
13 | 40°1′30.9972″N, 116°16′34.9968″E | 农大教学楼楼顶 | 非马路点 | 住宅与交通、 办公与生活区 |
14 | 39°57′36.9972″N, 116°21′36.9972″E | 北师大 校园 | 非马路点 | 住宅与交通、 办公与生活区 |
15 | 40°8′18.9996″, 116°10′45.9984″ | 上庄 试验站 | 非马路点 | 农田(主要农作物为玉米,小麦),住宅,交通 |
16 | 40°0′47.9988″N, 116°22′6.9996″E | 奥森公园 | 非马路点 | 树林 |
17 | 116°15′25.272″N, 40°1′40.908″E | 百望山 森林公园 | 非马路点 | 树林 |
Table 1 Atmospheric ammonia sample collection information in Beijing
编号 | 经纬度 | 地点 | 采样类型 | NH3排放来源及周边环境(2017年交通流量,标准车/d) |
---|---|---|---|---|
1 | 39°54′47.4408″N, 116°18′16.29″E | 西三环 | 马路点 | 城市交通 (216885) |
2 | 39°51′18.9972″N,116°23′20.9976″E | 南三环 | 马路点 | 城市交通 (197818) |
3 | 39°53′45.9996″N, 116°27′18.9972″E | 东三环 | 马路点 | 城市交通 (239960) |
4 | 39°57′59.9976″N, 116°22′9.9984″E | 北三环 | 马路点 | 城市交通 (214639) |
5 | 39°53′35.9988″N, 116°16′3″E | 西四环 | 马路点 | 城市交通 (293438) |
6 | 39°49′49.998″N, 116°23′57.9984″E | 南四环 | 马路点 | 城市交通 (299525) |
7 | 39°54′21.9996″N, 116°29′1.9968″E | 东四环 | 马路点 | 城市交通 (267345) |
8 | 39°59′7.998″N, 116°20′34.998″E | 北四环 | 马路点 | 城市交通 (270561) |
9 | 39°53′18.9996″N, 116°12′16.9992″E | 西五环 | 马路点 | 城市交通 (211184) |
10 | 39°45′32.9976″N, 116°23′19.9968″E | 南五环 | 马路点 | 城市交通 (183186) |
11 | 39°53′0.9996″N, 116°32′33″E | 东五环 | 马路点 | 城市交通 (295789) |
12 | 40°1′15.9996″N, 116°23′21.9984″E | 北五环 | 马路点 | 城市交通 (200412) |
13 | 40°1′30.9972″N, 116°16′34.9968″E | 农大教学楼楼顶 | 非马路点 | 住宅与交通、 办公与生活区 |
14 | 39°57′36.9972″N, 116°21′36.9972″E | 北师大 校园 | 非马路点 | 住宅与交通、 办公与生活区 |
15 | 40°8′18.9996″, 116°10′45.9984″ | 上庄 试验站 | 非马路点 | 农田(主要农作物为玉米,小麦),住宅,交通 |
16 | 40°0′47.9988″N, 116°22′6.9996″E | 奥森公园 | 非马路点 | 树林 |
17 | 116°15′25.272″N, 40°1′40.908″E | 百望山 森林公园 | 非马路点 | 树林 |
[1] | BACKES A M, AULINGER A, BIESER J, et al., 2018. Ammonia emissions in Europe, part II: How ammonia emission abatement strategies affect secondary aerosols[J]. Atmospheric Environment, 126: 153-161. |
[2] | BHATTARAIN, WANG S, PAN Y, et al., 2021. δ15N-stable isotope analysis of NHx: An overview on analytical measurements, source sampling and its source apportionment[J]. Frontiers Of Environmental Science & Engineering, 15(6): 126. |
[3] | CAO H S, HENZE D K, CADY P K, et al., 2021. COVID-19 lockdowns afford the first satellite-based confirmation that vehicles are an under-recognized source of urban NH3 pollution in Los Angeles[J]. Environmental Science & Technology Letters, 9(1): 3-9. |
[4] | CHANG Y H, ZOU Z, ZHANG Y L, et al., 2019. Assessing contributions of agricultural and nonagricultural emissions to atmospheric ammonia in a Chinese megacity[J]. Environmental Science & Technology, 53(4): 1822-1833. |
[5] | CHANG Y H, LIU X J, DENG C R, et al., 2016. Source apportionment of atmospheric ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope signatures[J]. Atmospheric Chemistry and Physics, 16(18): 11635-11647. |
[6] | CHEN Z L, SONG W, HU C C, et al., 2022. Significant contributions of combustion-related sources to ammonia emissions[J]. Nature Communications, 13: 7710. |
[7] | DAMMERS E, MCLINDER C A, GRIFFIN D, et al., 2019. NH3 emissions from large point sources derived from CrIS and IASI satellite observations[J]. Atmospheric Chemistry and Physics, 19(19): 12261-12293. |
[8] | ELLIOTT E M, YU Z J, COLE A S, et al., 2019. Isotopic advances in understanding reactive nitrogen deposition and atmospheric processing[J]. Science of the Total Environment, 662: 393-403. |
[9] | FELIX J D, ELLIOT E M, GISH T J, et al., 2013. Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidationbacterial denitrifier approach[J]. Rapid Communications in Mass Spectrometry, 27(20): 2239-2246. |
[10] | FELIX J D, ELLIOT E M, GISH T, et al., 2014. Examining the transport of ammonia emissions across landscapes using nitrogen isotope ratios[J]. Atmospheric Environment, 95: 563-570. |
[11] | FENG S J, XU W, CHENG M M, et al., 2022. Overlooked nonagricultural and wintertime agricultural NH3 emissions in Quzhou County, North China Plain: Evidence from 15N-stable isotopes[J]. Environmental Science & Technology Letters, 9(2): 127-133. |
[12] | FREYER H, 1978. Seasonal trends of NH4+ and NO3- nitrogen isotope composition in rain collected at Jülich, Germany[J]. Tellus, 30(1): 83-92. |
[13] | GU M N, PAN Y P, WALTERS W W, et al., 2022. Vehicular emissions enhanced ammonia concentrations in winter mornings: Insights from diurnal nitrogen isotopic signatures[J]. Environmental Science & Technology, 56(3): 1578-1585. |
[14] |
HEATON T H E, SPIRO B, ROBERTSON S M C, 1997. Potential canopy influences on the isotopic composition of nitrogen and sulphur in atmospheric deposition[J]. Oecologia, 109(4): 600-607.
DOI PMID |
[15] | HEATON T, 1987. 15N/14N ratios of nitrate and ammonium in rain at Pretoria, South Africa[J]. Atmospheric Environment, 21(4): 843-852. |
[16] |
HRISTOV A N, ZAMAN S, VANDER P M, et al., 2009. Nitrogen losses from dairy manure estimated through nitrogen mass balance and chemical markers[J]. Journal of Environmental Quality, 38(6): 2438-2448.
DOI PMID |
[17] | HUANG S N, ELLIOT E M, FELIX J D, et al., 2019. Seasonal pattern of ammonium 15N natural abundance in precipitation at a rural forested site and implications for NH3 source partitioning[J]. Environmental Pollution, 247: 541-549. |
[18] | HUANG X, SONG Y, LI M M, et al., 2012. A high-resolution ammonia emission inventory in China[J]. Global Biogeochemical Cycles, 26(1): GB004161. |
[19] | KANG Y N, LIU M X, SONG Y, et al., 2016. High-resolution ammonia emissions inventories in China from 1980 to 2012[J]. Atmospheric Chemistry and Physics, 16(4): 2043-2058. |
[20] | KAWASHIMA H, OGATA R, GUNJI T, et al., 2021. Laboratory-based validation of a passive sampler for determination of the nitrogen stable isotope ratio of ammonia gas[J]. Atmospheric Environment, 245: 118009. |
[21] | LEE C, HRISTOV A N, CASSIDY T, et al., 2011. Nitrogen isotope fractionation and origin of ammonia nitrogen volatilized from cattle manure in simulated storage[J]. Atmosphere, 2(3): 256-270. |
[22] | LI Q, JIANG J K, CAI S Y, et al., 2016. Gaseous ammonia emissions from coal and biomass combustion in household stoves with different combustion efficiencies[J]. Environmental Science & Technology Letters, 3(3): 98-103. |
[23] | LI Y Z, LIU J, GEORGE C, et al., 2023. Apportioning atmospheric Ammonia sources across spatial and seasonal scales by their isotopic fingerprint[J]. Environmental Science & Technology, 57(43): 16424-16434. |
[24] |
LIU D W, FANG Y T, TU Y, et al., 2014. Chemical method for nitrogen isotopic analysis of ammonium at natural abundance[J]. Analytical Chemistry, 86(8): 3787-3792.
DOI PMID |
[25] | MAO L, LIU R, LIAO W H, et al., 2019. An observation-based perspective of winter haze days in four major polluted regions of China[J]. National Science Review, 6(3): 515-523. |
[26] | OSADA K, SAITO S, TSURUMARU H, et al., 2019. Vehicular exhaust contributions to high NH3 and PM2.5 concentrations during winter in Tokyo, Japan[J]. Atmospheric Environment, 206: 218-224. |
[27] | PAN Y P, GU M N, SONG L L, et al., 2020. Systematic low bias of passive samplers in characterizing nitrogen isotopic composition of atmospheric ammonia[J]. Atmospheric Research, 243: 105018. |
[28] | PAN Y P, TIAN S L, LIU D W, et al., 2016. Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: Evidence from 15N-stable isotope in size-resolved aerosol ammonium[J]. Environmental Science & Technology, 50(15): 8049-8056. |
[29] | PARNELL A C, INGER R, BEARHOP S, et al., 2010. Source partitioning using stable isotopes: Coping with too much variation[J]. PLoS One, 5(3): e9672. |
[30] | PAULOT F, JACOB D J, PINDER RW, et al., 2014. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3)[J]. Journal of Geophysical Research-atmospheres, 119(7): 4343-4364. |
[31] |
PLAUTZ J, 2018. Piercing the haze[J]. Science, 361(6407): 1060-1063.
DOI PMID |
[32] | RECHE C, VIANA M, PANDOLFI M, et al., 2012. Urban NH3 levels and sources in a Mediterranean environment[J]. Atmospheric Environment, 57: 153-164. |
[33] | SHAO P Y, TIAN H Z, SUN Y J, et al., 2018. Characterizing remarkable changes of severe haze events and chemical compositions in multi-size airborne particles (PM1, PM2.5 and PM10) from January 2013 to 2016-2017 winter in Beijing, China[J]. Atmospheric Environment, 189: 133-144. |
[34] | SUAREZ-BERTOA R, ZARDINI A, ASTORGA C, 2014. Ammonia exhaust emissions from spark ignition vehicles over the New European Driving Cycle[J]. Atmospheric Environment, 97: 43-53. |
[35] | SUN K, TAO L, MILLER D J, et al., 2017. Vehicle emissions as an important urban ammonia source in the United States and China[J]. Environmental Science & Technology, 51(4): 2472-2481. |
[36] | SUN Q, GU M N, WU D M, et al., 2023. Concurrent measurements of atmospheric ammonia concentrations in the megacities of Beijing and Shanghai by using cavity ring-down spectroscopy[J]. Atmospheric Environment, 307: 119848. |
[37] | SONG L L, WALTERS W W, PAN Y P, et al., 2021. 15N natural abundance of vehicular exhaust ammonia, quantified by active sampling techniques[J]. Atmospheric Environment, 255: 118430. |
[38] | TANG Y S, CAPE J, SUTTON M, 2001. Development and types of passive samplers for monitoring atmospheric NO2 and NH3concentrations[J]. Scientific World Journal, 1: 513-529. |
[39] | TI C P, MA S T, PENG L Y, et al., 2021. Changes of δ15N values during the volatilization process after applying urea on soil[J]. Environmental Pollution, 270: 116204. |
[40] | WALTERS W W, CHAI J, HASTINGS M G, 2019. Theoretical phase resolved ammonia-ammonium nitrogen equilibrium isotope exchange fractionations: Applications for tracking atmospheric ammonia gas-to- particle conversion[J]. ACS Earth and Space Chemistry, 3(1): 79-89. |
[41] | WALTERS W W, SONG L, CHAI J, et al., 2020. Characterizing the spatiotemporal nitrogen stable isotopic composition of ammonia in vehicle plumes[J]. Atmospheric Chemistry and Physics, 20: 11551-11567. |
[42] | WANG C J, LI X J, ZHANG T L, et al., 2022. Developing nitrogen isotopic source profiles of atmospheric ammonia for source apportionment of ammonia in urban Beijing[J]. Frontiers in Environmental Science, 10: 903013. |
[43] |
WANG S S, NAN J L, SHI C Z, et al., 2015. Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China[J]. Scientific Reports, 5: 15842.
DOI PMID |
[44] | WANG Y J, WEN Y F, ZHANG S J, et al., 2023. Vehicular Ammonia emissions significantly contribute to urban PM2.5 pollution in two Chinese megacities[J]. Environmental Science & Technology, 57(7): 2698-2705. |
[45] | WEN Z, XU W, PAN X Y, et al., 2021. Effects of reactive nitrogen gases on the aerosol formation in Beijing from late autumn to early spring[J]. Environmental Research Letters, 16: 025005. |
[46] | WU L B, REN H, WANG P, et al., 2019. Aerosol Ammonium in the Urban Boundary Layer in Beijing: Insights from Nitrogen Isotope Ratios and Simulations in Summer 2015[J]. Environmental Science & Technology Letters, 6(7): 389-395. |
[47] | WU Y Y, GU B J, ERISMAN J W, et al., 2016. PM2.5 pollution is substantially affected by ammonia emissions in China[J]. Environmental Pollution, 218: 86-94. |
[48] | XIANG Y K, DAO X, GAO M, et al., 2022. Nitrogen isotope characteristics and source apportionment of atmospheric ammonium in urban cities during a haze event in northern China Plain[J]. Atmospheric Environment, 269: 118800. |
[49] | XU W, LIU X J, LIU L, et al., 2019. Impact of emission controls on air quality in Beijing during APEC 2014: Implications from water-soluble ions and carbonaceous aerosol in PM2.5 and their precursors[J]. Atmospheric Environment, 210: 241-252. |
[50] | XU W, SONG W, ZHANG Y Y, et al., 2017. Air quality improvement in a megacity: Implications from 2015 Beijing Parade Blue pollution control actions[J]. Atmospheric Chemistry and Physics, 17(1): 31-46. |
[51] |
ZHANG C L, GENG X S, WANG H, et al., 2017. Emission factor for atmospheric ammonia from a typical municipal wastewater treatment plant in South China[J]. Environmental Pollution, 220(Part B): 963-970.
DOI PMID |
[52] | ZHANG L, CHEN Y F, ZHAO Y H, et al., 2018b. Agricultural ammonia emissions in China: Reconciling bottom-up and top-down estimates[J]. Atmospheric Chemistry and Physics, 18(1): 1-36. |
[53] | ZHANG Y Y, BENEDICT K B, TANG A H, et al., 2020. Persistent non-agricultural and periodic agricultural emissions dominate sources of ammonia in urban Beijing: Evidence from 15N stable isotope in vertical profiles[J]. Environmental Science & Technology, 54(1): 102-109. |
[54] | ZHANG Y Y, LIU X J, FANG Y T, et al., 2021. Atmospheric ammonia in Beijing during the COVID-19 outbreak: Concentrations, sources, and implications[J]. Environmental Science & Technology Letters, 8(1): 32-38. |
[55] | ZHANG Y Y, MA X, TANG A H, et al., 2023. Source apportionment of atmospheric ammonia at 16 sites in China using a Bayesian isotope mixing model based on δ15N-NHx signatures[J]. Environmental Science & Technology, 57(16): 6599-6608. |
[56] | ZHANG Y Y, TANG A H, WANG D D, et al., 2018a. The vertical variability of ammonia in urban Beijing, China[J]. Atmospheric Chemistry and Physics, 18(22): 16385-16398. |
[57] | ZHANG Z N, LIU L D, MA Y L, et al., 2022. Variation of particles in the exhaust plume of gasoline direct injection vehicles based on a multipoint sampling system: Concentrations, components, and numbers[J]. Acs ES&T Engineering, 2(8): 1435-1444. |
[58] | ZHAO D D, XIN J Y, GONG C S, et al., 2019. The formation mechanism of air pollution episodes in Beijing city: Insights into the measured feedback between aerosol radiative forcing and the atmospheric boundary layer stability[J]. Science of the Total Environment, 692: 371-381. |
[59] | 巨晓棠, 谷保静, 蔡祖聪, 2017. 关于减少农业氨排放以缓解灰霾危害的建议[J]. 科技导报, 35(13): 11-12. |
JU X T, GU B J, CAI Z C, 2017. Suggestions on reducing agricultural ammonia emissions to mitigate the hazards of haze[J]. Science & Technology Review, 35(13): 11-12. | |
[60] | 廖文玲, 刘明旭, 黄昕, 等, 2022. 2013-2018年中国县级氨排放清单估算[J]. 中国科学: 地球科学, 52(7): 1345-1356. |
LIAO W L, LIU M X, HUANG X, et al., 2022. Estimation for ammonia emissions at county level in China from 2013 to 2018[J]. Science China: Earth Sciences, 52(7): 1345-1356. | |
[61] | 刘学军, 沙志鹏, 宋宇, 等, 2021. 我国大气氨的排放特征、减排技术与政策建议[J]. 环境科学研究, 34(1): 149-157. |
LIU X J, SHA Z P, SONG Y, et al., 2021. China’s atmospheric ammonia emission characteristics, mitigation options and policy recommendations[J]. Research of Environmental Sciences, 34(1): 149-157. | |
[62] | 孟德友, 2021. 农业及城市典型挥发源氨排放和氨态氮同位素源谱特征[D]. 南京: 南京信息工程大学. |
MENG D Y, 2021. Ammonia emission and ammonia nitrogen isotope characteristics of typical agricultural and urban volatile sources[D]. Nanjing: Nanjing University of Information Science and Technology. | |
[63] | 王陈婧, 2019. 北京城区站点大气氨逐时变化特征分析及基于氮稳定同位素的来源解析[D]. 北京: 中国农业大学. |
WANG C J, 2019. Online monitoring of ambient ammonia and source apportionment based on nitrogen isotope in an urban site in Beijing[D]. Beijing: China Agricultural University. | |
[64] | 韦莲芳, 段菁春, 谭吉华, 等, 2015. 北京春季大气中氨的气粒相转化及颗粒态铵采样偏差研究[J]. 中国科学: 地球科学, 45(2): 216-226. |
WEI L F, DUAN Q C, TAN J H, et al., 2015. Gas-to-particle conversion of atmospheric ammonia and sampling artifacts of ammonium in spring of Beijing[J]. Science China: Earth Sciences, 45(2): 216-226. |
[1] | MENG Jie, ZHU Xingyu, XU Mingyue, RONG Lingyun, WU Chuanfu, WANG Qunhui. Experimental Study and Modeling Analysis on the Removal of Simulated Ammonia Containing Odor by Decomposed Cow Manure Residue [J]. Ecology and Environmental Sciences, 2025, 34(6): 922-930. |
[2] | REN Chenjian, HAO Ruixia, ZHANG Yang, HAN Lijuan, WEI Yuxing, CHAI Lu. The Release Characteristics of Ammonia Nitrogen from River Sediments Driven by Hydrodynamic Forces [J]. Ecology and Environmental Sciences, 2025, 34(6): 931-940. |
[3] | WANG Yang, LI Fan, YAN Xiao, MEI Yan, LI Pei, HUANG Lin, ZHAO Junjie. Influence of Three-Dimensional Urban Morphology on Winter Aerosol Patterns in High-Density Mountainous City: A Case Study of Chongqing’s Central Urban Area [J]. Ecology and Environmental Sciences, 2025, 34(1): 56-66. |
[4] | LI Li, ZHAO Qiuyue, HAN Junzan, LI Huipeng. Agricultural Ammonia Emission Inventory and Characteristics in Yancheng City from 2013 to 2021 [J]. Ecology and Environmental Sciences, 2025, 34(1): 67-76. |
[5] | WU Xinyu, KANG Jiahui, DU Xiaoyun, SHEN Qikun, FENG Sijie, MENG Fanlei, PAN Yuepeng, LIU Xuejun, XU Wen. Study on Characteristics of Cropland Ammonia Emissions and Its Near-source Deposition in Typical Small Watershed of Plateau Lake [J]. Ecology and Environmental Sciences, 2024, 33(8): 1236-1244. |
[6] | WANG Wei, WU Junqi. Research on the Influence of Entrance Forms on Indoor Aerosol Dispersion in Public Buildings [J]. Ecology and Environmental Sciences, 2024, 33(8): 1227-1235. |
[7] | YU Fangming, YUAN Yue, ZENG Meng, TANG Shuting, LI Yi. Variations on the Ammonia Oxidizers under Different Nitrogen Fertilization Regimes in Heavy Metal-contaminated Soil [J]. Ecology and Environmental Sciences, 2024, 33(5): 771-780. |
[8] | ZHANG Miao, WANG Guixia, WANG Changwei, HE Yanyun, XU Yanfang, LI Qi, XU Yang, ZHANG Junxiao, ZHANG Guiqin. Characteristics and Source Analysis of Black Carbon Pollution Changes in Ji’nan City [J]. Ecology and Environmental Sciences, 2024, 33(4): 560-572. |
[9] | LÜ Jinling, YOU Ke, HE Bin, LIU Shuang, LIANG Shaomin, GUO Zhanling. Study on the Correlation between Ammonia Volatilization and near Surface Ammonia Concentration during the Maize Basal Fertilizer Period [J]. Ecology and Environmental Sciences, 2024, 33(3): 399-407. |
[10] | HUANG Yirong, XIONG Qiulin, XIONG Zhengkun, CHEN Wenbo, LI Changhong, SHA Hongyu. The Spatiotemporal Prediction of Air Pollutants in the Poyang Lake Ecological Economic Zone Based on CNN-LSTM [J]. Ecology and Environmental Sciences, 2024, 33(12): 1891-1901. |
[11] | WEN Ni, WANG Chongyang, CHEN Xingda, CHEN Shuisen, ZHOU Xia, YU Guorong. High-Resolution Remote Sensing Estimation of Ammonia Nitrogen Concentrations in Coastal Urban River Networks Based on Machine Learning Models [J]. Ecology and Environmental Sciences, 2024, 33(11): 1737-1747. |
[12] | ZHAO Qiong, HU Xi, ZHANG Wei, ZHANG Zengkai, XUE Wenbo, ZHAO Jing. Assessment the Environmental Effect of Small Coal-fired Boilers Upgrading in Beijing-Tianjin-Hebei [J]. Ecology and Environmental Sciences, 2024, 33(10): 1554-1562. |
[13] | JIANG Boqi, FU Tian, CHENG Yixuan, SU Zongzong, SHEN Jiandong, YU Jincheng, YU Xingna. Characteristics of Ozone Pollution and Its Influencing Factors in Shenyang [J]. Ecology and Environmental Sciences, 2024, 33(1): 72-79. |
[14] | WANG Wei, DAI Mengmeng. Spatial Morphology of Street Canyons Based on the Spatial and Temporal Distribution of Particulate Matter: Taking Tongan Street in Hefei City as an Example [J]. Ecology and Environmental Sciences, 2023, 32(9): 1632-1643. |
[15] | XU Xiaoyun, RAO Zhihan, JIANG Hongbin, ZHANG Wei, CHEN Chao, YANG Yongan, HU Yanli, WEI Haichuan. Pollution Characteristics and Formation Potential for O3 and SOA of Ambient VOCs in Suining Industrial Zone in Summer [J]. Ecology and Environmental Sciences, 2023, 32(5): 956-968. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn