Ecology and Environment ›› 2024, Vol. 33 ›› Issue (10): 1554-1562.DOI: 10.16258/j.cnki.1674-5906.2024.10.007
• Research Article [Environmental Science] • Previous Articles Next Articles
ZHAO Qiong1(), HU Xi2,3,*(
), ZHANG Wei2,3, ZHANG Zengkai4, XUE Wenbo2, ZHAO Jing2,3
Received:
2024-05-14
Online:
2024-10-18
Published:
2024-11-15
Contact:
HU Xi
赵琼1(), 胡溪2,3,*(
), 张伟2,3, 张增凯4, 薛文博2, 赵静2,3
通讯作者:
胡溪
作者简介:
赵琼(1995年生),女,博士研究生,主要研究方向为能源环境政策分析与评价。E-mail: qiongzhao@tju.edu.cn
基金资助:
CLC Number:
ZHAO Qiong, HU Xi, ZHANG Wei, ZHANG Zengkai, XUE Wenbo, ZHAO Jing. Assessment the Environmental Effect of Small Coal-fired Boilers Upgrading in Beijing-Tianjin-Hebei[J]. Ecology and Environment, 2024, 33(10): 1554-1562.
赵琼, 胡溪, 张伟, 张增凯, 薛文博, 赵静. 京津冀区域燃煤小锅炉清洁改造环境效益评估[J]. 生态环境学报, 2024, 33(10): 1554-1562.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.10.007
燃料类型 | 平均低位发热量 | 本研究使用热值 |
---|---|---|
原煤 | 20.908×106 J∙kg−1 | 20.908×106 J∙kg−1 |
天然气 | 32.238×106-38.931×106 J∙m−3 | 35.587×106 J∙m−3 |
电力(当量) | 3.60×106 J∙kWh−1 | |
生物质 | 15.072×106 J∙kg−1 | |
稻杆 | 12.545×106 J∙kg−1 | |
大豆杆、棉花杆 | 15.89×106 J∙kg−1 | |
麦秆 | 14.635×106 J∙kg−1 | |
玉米杆 | 15.472×106 J∙kg−1 | |
薪柴 | 16.726×106 J∙kg−1 |
Table 1 The calorific value of different fuels
燃料类型 | 平均低位发热量 | 本研究使用热值 |
---|---|---|
原煤 | 20.908×106 J∙kg−1 | 20.908×106 J∙kg−1 |
天然气 | 32.238×106-38.931×106 J∙m−3 | 35.587×106 J∙m−3 |
电力(当量) | 3.60×106 J∙kWh−1 | |
生物质 | 15.072×106 J∙kg−1 | |
稻杆 | 12.545×106 J∙kg−1 | |
大豆杆、棉花杆 | 15.89×106 J∙kg−1 | |
麦秆 | 14.635×106 J∙kg−1 | |
玉米杆 | 15.472×106 J∙kg−1 | |
薪柴 | 16.726×106 J∙kg−1 |
锅炉 类型 | 锅炉规模/ (t∙h−1) | NOx减排量/ (kg∙t−1) | SO2减排量/ (kg∙t−1) | PM2.5减排量/ (kg∙t−1) | PM10减排量/ (kg∙t−1) | VOCS减排量/ (kg∙t−1) |
---|---|---|---|---|---|---|
燃煤小锅炉 | <1 | 1.90 (Meng et al., | 14.5 (Meng et al., | 9.7 (Meng et al., | 12.5 (Meng et al., | 0.6 (Wu et al., |
1-10 | 1.71 (王书肖等, | 5.8 (王书肖等, | 0.209 (王书肖等, | 0.1225 (李超等, | ||
10-20 | 2.13 (王书肖等, | 5.65 (王书肖等, | 0.49 (王书肖等, | 0.6 (Wu et al., | ||
20-35 | 2.38 (王书肖等, | 1.35 (王书肖等, | 0.059 (王书肖等, | |||
燃气小锅炉 | 1.46 (g∙m−3) (Wang et al., 2019) | |||||
生物质小锅炉 (生态环境部, | <1 | 1.07 | 0.4 | 0.67 | 1.24 | 1.13 |
1-35 | 2.79 | 0.7 | 0.95 | 1.12 | 1.13 |
Table 2 Emission factor
锅炉 类型 | 锅炉规模/ (t∙h−1) | NOx减排量/ (kg∙t−1) | SO2减排量/ (kg∙t−1) | PM2.5减排量/ (kg∙t−1) | PM10减排量/ (kg∙t−1) | VOCS减排量/ (kg∙t−1) |
---|---|---|---|---|---|---|
燃煤小锅炉 | <1 | 1.90 (Meng et al., | 14.5 (Meng et al., | 9.7 (Meng et al., | 12.5 (Meng et al., | 0.6 (Wu et al., |
1-10 | 1.71 (王书肖等, | 5.8 (王书肖等, | 0.209 (王书肖等, | 0.1225 (李超等, | ||
10-20 | 2.13 (王书肖等, | 5.65 (王书肖等, | 0.49 (王书肖等, | 0.6 (Wu et al., | ||
20-35 | 2.38 (王书肖等, | 1.35 (王书肖等, | 0.059 (王书肖等, | |||
燃气小锅炉 | 1.46 (g∙m−3) (Wang et al., 2019) | |||||
生物质小锅炉 (生态环境部, | <1 | 1.07 | 0.4 | 0.67 | 1.24 | 1.13 |
1-35 | 2.79 | 0.7 | 0.95 | 1.12 | 1.13 |
排放因子 来源 | 污染物减排量 | ||||
---|---|---|---|---|---|
NOx | SO2 | PM2.5 | PM10 | VOCS | |
Wang et al., | 66.69 | ||||
Cai et al., | 10.63 | ||||
Zhi et al., | 46.99 | 588.42 | 18.14 | ||
Zhao et al., | 48.55 | 371.98 | 63.47 | 111.11 | 19.10 |
王书肖等, | 43.14 | 179.42 | 6.47 | ||
Wang et al., | 17.67 | 223.34 | 185.38 | ||
Meng et al., | 49.18 | 461.10 | 308.55 | 397.57 | |
本研究 | 47.74 | 193.33 | 28.50 | 30.20 | 15.38 |
Table 3 Comparison of pollutant emission reduction based on different emission factor 103 t
排放因子 来源 | 污染物减排量 | ||||
---|---|---|---|---|---|
NOx | SO2 | PM2.5 | PM10 | VOCS | |
Wang et al., | 66.69 | ||||
Cai et al., | 10.63 | ||||
Zhi et al., | 46.99 | 588.42 | 18.14 | ||
Zhao et al., | 48.55 | 371.98 | 63.47 | 111.11 | 19.10 |
王书肖等, | 43.14 | 179.42 | 6.47 | ||
Wang et al., | 17.67 | 223.34 | 185.38 | ||
Meng et al., | 49.18 | 461.10 | 308.55 | 397.57 | |
本研究 | 47.74 | 193.33 | 28.50 | 30.20 | 15.38 |
[1] | CAI S Y, ZHU L, WANG S X, et al., 2019. Time-resolved intermediate-volatility and semivolatile organic compound emissions from household coal combustion in Northern China[J]. Environmental Science, Technology, 53(15): 9269-9278. |
[2] | DEDOUSSI I C, EASTHAM S D, MONIER E, et al., 2020. Premature mortality related to United States cross-state air pollution[J]. Nature, 578: 261-265. |
[3] | KALNAY E, KANAMITSU M, KISTLER R E, et al., 1996. The NCEP/NCAR 40-Year Reanalysis Project[J]. Bulletin of the American Meteorological Society, 77(3): 437-472. |
[4] | LIU H X, MAUZERALL D L, 2020. Costs of clean heating in China: Evidence from rural households in the Beijing-Tianjin-Hebei region[J]. Energy Economics, 90: 104844. |
[5] | LIU Z Y, LEI Y, XUE W B, et al., 2022. Mitigating China's ozone pollution with more balanced health benefits[J]. Environmental Science, Technology, 56(12): 7647-7656. |
[6] |
MENG W J, ZHONG Q R, CHEN Y L, et al., 2019. Energy and air pollution benefits of household fuel policies in northern China[J]. Proceedings of the National Academy of Sciences of the United States of America, 116(34): 16773-16780.
DOI PMID |
[7] | SONG C B, LIU B W, CHENG K, et al., 2023. Attribution of air quality benefits to clean winter heating policies in China: Combining machine learning with causal inference[J]. Environmental Science and Technology, 57(46): 17707-17717. |
[8] | TANG R, ZHAO J, LIU Y F, et al., 2022. Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030[J]. Nature Communications, 13(1): 1008. |
[9] | WANG J F, WANG S M, XU X Y, et al., 2023. The diminishing effects of winter heating on air quality in northern China[J]. Journal of Environmental Management, 325(Part B): 116536. |
[10] | WANG K, TONG Y L, YUE T, et al., 2021. Measure-specific environmental benefits of air pollution control for coal-fired industrial boilers in China from 2015 to 2017[J]. Environmental Pollution, 273: 116470. |
[11] | WANG S W, SU H, CHEN C C, et al., 2020. Natural gas shortages during the “coal-to-gas” transition in China have caused a large redistribution of air pollution in winter 2017[J]. Proceedings of the National Academy of Sciences of the United States of America, 117(49): 31018-31025. |
[12] | WANG S X, XING J, CHATANI S, et al., 2021. Verification of anthropogenic emissions of China by satellite and ground observations[J]. Atmospheric Environment, 45(35): 6347-6358. |
[13] | WU R R, BO Y, LI J, et al., 2016. Method to establish the emission inventory of anthropogenic volatile organic compounds in China and its application in the period 2008-2012[J]. Atmospheric Environment, 127: 244-254. |
[14] |
XUE Y F, TIAN H Z, YAN J, et al., 2016. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China[J]. Environmental Pollution, 213: 717-726.
DOI PMID |
[15] | ZHANG Q, ZHENG Y X, TONG D, et al., 2019. Drivers of improved PM2.5 air quality in China from 2013 to 2017[J]. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24463-24469. |
[16] | ZHANG W, ZHANG P F, ZHAO J, et al., 2024. The uneven distribution of health benefits and economic costs from clean heating in rural Northern China[J]. Science Bulletin, 69(12): 1852-1856. |
[17] | ZHAO B, WANG S X, WANG J D, et al., 2013. Impact of national NOx and SO2 control policies on particulate matter pollution in China[J]. Atmospheric Environment, 77: 453-463. |
[18] |
ZHI G R, ZHANG Y Y, SUN J Z, et al., 2017. Village energy survey reveals missing rural raw coal in northern China: Significance in science and policy[J]. Environmental Pollution, 223: 705-712.
DOI PMID |
[19] | ZHOU M, LIU H X, PENG L Q, et al., 2022. Environmental benefits and household costs of clean heating options in northern China[J]. Nature Sustainability, 5(4): 329-338. |
[20] | ZHOU Y, ZI T, LANG J L, et al., 2020. Impact of rural residential coal combustion on air pollution in Shandong[J]. Chemosphere, 260: 127517. https://www.gov.cn/gongbao/content/2013/content_2496394.htm. |
[21] | 国务院, 2015. 2017年京津冀煤炭消费量将比2012年减少6300万吨[EB/OL]. [2024-03-12]. https://www.gov.cn/xinwen/2015-01/14/content_2804197.htm. |
The State Council, 2015. Coal consumption in Beijing, Tianjin and Hebei in 2017 will be 63 million tons lower than in 2012[EB/OL]. [2024-03-12]. https://www.gov.cn/xinwen/2015-01/14/content_2804197.htm. | |
[22] | 国务院, 2023. 空气质量持续改善行动计划[EB/OL]. [2024-03-07]. https://www.gov.cn/zhengce/zhengceku/202312/content_6919001.htm. |
The State Council, 2023. Action Plan for continuous improvement of air quality[EB/OL]. [2024-03-07]. https://www.gov.cn/xinwen/2015-01/14/content_2804197.htm. | |
[23] | 贺克斌, 李雪玉, 2017. 中国散煤综合治理调研报告2017[R]. [2024-03-07]. http://www.nrdc.cn/Public/uploads/2022-03-17/6232a7b4a94ab.pdf. |
HE K B, LI X Y, 2017. China Dispersed Coal Governance Report 2017[R]. [2024-03-07]. http://www.nrdc.cn/Public/uploads/2022-03-17/6232a7b4a94ab.pdf. | |
[24] | 贺克斌, 李雪玉, 2018. 中国散煤综合治理调研报告2018[R]. [2024-03-07]. http://www.ccoalnews.com/attachment/201809/06/ca971cf2-dedd-4f5c-966d-17b93138db2b.pdf. |
HE K B, LI X Y, 2018. China Dispersed Coal Governance Report 2018[R]. [2024-03-07]. http://www.ccoalnews.com/attachment/201809/06/ca971cf2-dedd-4f5c-966d-17b93138db2b.pdf. | |
[25] | 雷宇, 2016. 散煤治理与大气污染防治[J]. 化工管理 (31): 33-34. |
LEI Y, 2016. Dispersed coal treatment and air pollution prevention and control[J]. Chemical Enterprise Management (31): 33-34. | |
[26] | 李超, 李兴华, 段雷, 等, 2009. 燃煤工业锅炉可吸入颗粒物的排放特征[J]. 环境科学, 30(3): 650-655. |
LI C, LI X H, DUAN L, et al., 2009. Emission characteristics of PM10 from coal-fired industrial boiler[J]. Environmental Science, 30(3): 650-655. | |
[27] | 李朋, 吴华成, 周卫青, 等, 2021. 京津冀 “以电代煤” 替代大气污染物排放清单[J]. 中国环境科学, 41(4): 1489-1497. |
LI P, WU H C, ZHOU W Q, et al., 2021. Emission inventory of atmospheric pollutants replaced by “coal-to-electricity” policy in Beijing-Tianjin-Hebei region[J]. China Environmental Science, 41(4): 1489-1497. | |
[28] |
李尧捷, 门亚泰, 罗智瀚, 等, 2024. 北方农村不同取暖方式家庭室内PM2.5污染差异及清洁取暖效果[J]. 地理学报, 79(1): 17-27.
DOI |
LI X J, MEN Y T, LUO Z H, et al., 2024. Variability in indoor PM2.5 from homes using different heating energies and impacts of clean heating in rural northern China[J]. Acta Geographica Sinica, 79(1): 17-27. | |
[29] | 能源基金会, 清华大学建筑节能研究中心, 2022. 农村清洁用能体系助力减污降碳及乡村振兴[R]. [2024-03-05]. https://www.efchina.org/Reports-zh/report-cemp-20220512-zh. |
Energy Foundation, Tsinghua University Building Energy Conservation research Center, 2022. Comprehensive report on the governance of dispersed coal in rural china[R]. [2024-03-05]. https://www.efchina.org/Reports-zh/report-cemp-20220512-zh. | |
[30] | 能源与动力, 2018. 4.4万台燃煤小锅炉遭淘汰 “2+26” 城市散煤替代获成效[EB/OL]. [2024-02-13]. https://www.sohu.com/a/215887739_ 100021359. |
Energy and power, 2018. 44,000 small coal-fired boilers were eliminated and the replacement of bulk coal in “2+26” cities achieved results. [EB/OL]. [2024-02-13]. https://www.sohu.com/a/215887739_100021359. | |
[31] | 王慧丽, 雷宇, 陈潇君, 等, 2015. 京津冀燃煤工业和生活锅炉的技术分布与大气污染物排放特征[J]. 环境科学研究, 28(10): 1510-1517. |
WANG H L, LEI Y, CHEN X J, et al., 2015. Technology distribution and air pollutant emissions from coal-fired boilers for industrial and residential use in Beijing-Tianjin-Hebei Area[J]. Research of Environmental Sciences, 28(10): 1510-1517. | |
[32] | 王堃, 左朋莱, 张晓曦, 等, 2023. 燃煤工业锅炉碳污排放变化及驱动因子分析[J]. 环境科学与技术, 46(5): 134-141. |
WANG K, ZUO P L, ZHANG X X, et al., 2023. Temporal variation of CO2 and air pollutant emission and lts driving factors of coal-fired industrial boiler[J]. Environmental Science & Technology, 46(5): 134-141. | |
[33] | 王书肖, 赵秀娟, 李兴华, 等, 2009. 工业燃煤链条炉细粒子排放特征研究[J]. 环境科学, 30(4): 963-968. |
WANG S X, ZHAO X J, LI X H, et al., 2009. Emission characteristics of fine particles from grate firing boilers[J]. Environmental Science, 30(4): 963-968. | |
[34] | 徐双喜, 张众志, 杜晓惠, 等, 2021. 京津冀及周边民用散煤燃烧控制对北京市PM2.5的影响[J]. 环境科学研究, 34(12): 2876-2886. |
XU S X, ZHANG Z Z, DU X H, et al., 2021. Impact of residential coal combustion control in Beiling-Tianjin-Hebei and surrounding region on PM2.5 in Beijing[J]. Research of Environmental Sciences, 34(12): 2876-2886. | |
[35] | 许艳玲, 易爱华, 薛文博, 2020. 基于模型模拟的成都市PM2.5污染来源解析[J]. 环境科学, 41(1): 50-56. |
XU Y L, YI A H, XUE W B, et al., 2020. Modeling studies of source contributions to PM2.5 in Chengdu, China[J]. Environmental Science, 41(1): 50-56. | |
[36] | 闫祯, 金玲, 陈潇君, 等, 2019. 京津冀地区居民采暖 “煤改电” 的大气污染物减排潜力与健康效益评估[J]. 环境科学研究, 32(1): 95-103. |
YAN Z, JIN L, CHEN X J, et al., 2019. Assessment of air pollutants emission reduction potential and health benefits for ’residential heating coal changing to electricity’ in the Beijing-Tianjin-Hebei Region[J]. Research of Environmental Sciences, 32(1): 95-103. | |
[37] | 张艳楠, 孙蕾, 张宏梅, 等, 2021. 分权式环境规制下城市群污染跨区域协同治理路径研究[J]. 长江流域资源与环境, 30(12): 2925-2937. |
ZHANG Y N, SUN L, ZHANG H M, et al., 2021. Research on collaborative governance path of cross regional pollution in urban agglomeration under decentralized environmental regulation[J]. Resources and Environment in the Yangtze Basin, 30(12): 2925-2937. | |
[38] | 张增凯, 路雨婷, 赵鹏宇, 等, 2021. 2019年京津冀重污染天气应急响应经济损失评估[J]. 中国环境科学, 41(7): 3399-3408. |
ZHANG Z K, LU Y T, ZHAO P Y, et al., 2021. The assessment of economic cost induced by emergency responses for heavy pollution weather within Jing-Jin-Ji area in 2019[J]. China Environmental Science, 41(7): 3399-3408. | |
[39] | 中华人民共和国生态环境部(原环境保护部), 2014a. 2013年中国环境状况公报[EB/OL]. [2024-02-05]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/201605/P020160526564151497131.pdf. |
Ministry of Ecology and Environment of the People’s Republic of China, 2014a. China’s environmental status bulletin 2013[EB/OL]. [2024-02-05]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/201605/P020160526564151497131.pdf. | |
[40] | 中华人民共和国生态环境部(原环境保护部), 2014b. 关于发布《大气可吸入颗粒物一次源排放清单编制技术指南(试行)》等5项技术指南的公告[EB/OL]. [2024-02-05]. https://www.mee.gov.cn/gkml/hbb/bgg/201501/t20150107_293955.htm. |
Ministry of Ecology and Environment of the People’s Republic of China, 2014b. Announcement on the issuance of 5 technical guidelines such as the “Technical guidelines for the preparation of primary source emission inventories of atmospheric inhalable particulate matter (trial implementation)” [EB/OL]. [2024-02-05]. https://www.mee.gov.cn/gkml/hbb/bgg/201501/t20150107_293955.htm. | |
[41] | 中华人民共和国生态环境部, 2022. 重污染天气消除攻坚行动方案[EB/OL]. [2024-02-05]. https://www.gov.cn/zhengce/zhengceku/2022-11/17/5727605/files/b64c7afbd47a4ed3a3322cbf4d2b87b5.pdf. |
Ministry of Ecology and Environment of the People’s Republic of China, 2014. Action plan for the elimination of heavy pollution and weather [EB/OL]. [2024-02-05]. https://www.gov.cn/zhengce/zhengceku/2022-11/17/5727605/files/b64c7afbd47a4ed3a3322cbf4d2b87b5.pdf. |
[1] | HOU Jinlong, MA Zhiqiang, YANG Cheng, GE Shuangshuang, HE Di, DONG Fan. Analysis of Spatio-temporal Variation of Vegetation Carbon Sources and Sinks in the Beijing-Tianjin-Hebei Region and Influencing Factors [J]. Ecology and Environment, 2024, 33(9): 1329-1338. |
[2] | HAO Jinhu, WEI Wei, LI Shengnan, MA Muyuan, LI Xiaoxia, YANG Hongguo, JIANG Qiyu, CHAI Peidong. GEE Based Evaluation of the Spatial-temporal Pattern and Drivers of Long-term Water Body in Beijing-Tianjin-Hebei [J]. Ecology and Environment, 2023, 32(3): 556-566. |
[3] | SUN Zheng, CAO Yafei, WANG Decai, LIU Feng, SONG Xiaodong, ZHANG Ganlin, WU Huayong. Spatial-temporal Evolution Characteristics and Trend Prediction of Electroplating Sites in the Beijing-Tianjin-Hebei Region over the Past 30 Years [J]. Ecology and Environment, 2023, 32(1): 183-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn