Ecology and Environment ›› 2024, Vol. 33 ›› Issue (11): 1737-1747.DOI: 10.16258/j.cnki.1674-5906.2024.11.008
• Research Article [Environmental Science] • Previous Articles Next Articles
WEN Ni1,2,3(), WANG Chongyang2,3,*(
), CHEN Xingda3, CHEN Shuisen3, ZHOU Xia3, YU Guorong1,*(
)
Received:
2024-05-22
Online:
2024-11-18
Published:
2024-12-06
Contact:
WANG Chongyang,YU Guorong
文妮1,2,3(), 王重洋2,3,*(
), 陈星达3, 陈水森3, 周霞3, 于国荣1,*(
)
通讯作者:
王重洋,于国荣
作者简介:
文妮(1999年生),女(彝族),硕士研究生,研究方向为水环境遥感。E-mail: wenn6201@gmail.com
基金资助:
CLC Number:
WEN Ni, WANG Chongyang, CHEN Xingda, CHEN Shuisen, ZHOU Xia, YU Guorong. High-Resolution Remote Sensing Estimation of Ammonia Nitrogen Concentrations in Coastal Urban River Networks Based on Machine Learning Models[J]. Ecology and Environment, 2024, 33(11): 1737-1747.
文妮, 王重洋, 陈星达, 陈水森, 周霞, 于国荣. 基于机器学习模型的沿海城市河网水系氨氮质量浓度高分辨率遥感估算[J]. 生态环境学报, 2024, 33(11): 1737-1747.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.11.008
数据源及参考 | 波段 | 模型 | r2 | 样本数 | ρ/(mg·L-1) | 区域 |
---|---|---|---|---|---|---|
Sentinel-2 (Dong et al., | B3/B2 | y=0.296x2-0.224x-0.352 | 0.8510 | 70 | 0.004-0.355 | 丹江口水库 |
Sentinel-2 (Cao et al., | B4/(B5-B12) | y=0.0585×e-0.8332x | 0.7390 | 22 | 0.060-3.390 | 支脉河 |
Sentinel-2 (Tian et al., | B2, B3, B4, B5, B6, B7, B8, B8A | XGBoost | 0.8200 | 96 | 0.030-0.810 | 清林径水库 |
Sentinel-2 (郭荣幸等, | B8 | y=30.545x2-13.034x+1.525 | 0.6135 | 18 | 0.110-0.350 | 小浪底水库 |
Sentinel-2 (Shi et al., | B7/B1 | y=-2.633x3+9.269x2-10.16x+3.64 | 0.8024 | 120 | 0.025-0.400 | 淮河流域 |
Sentinel-2 (刘轩等, | B3/B2 | BPNN | 0.8770 | 70 | 0.001-0.067 | 丹江口水库 |
Sentinel-2 (Kuan et al., | B2, B3, B4, B5, B8 | BPNN | 0.7400 | 41 | 0.100-0.980 | 淮河流域 |
UAV (Chen et al., | (B3+B4)/B2, (B2+B3+B4)/B2, (B3+B4)/(B1+B2), (B2+B3+B4)/(B3+B4) | GA_XGBoost | 0.6940 | 87 | 0.165-1.620 | 南淝河 |
UAV; GF-1C (Chen et al., | B3/(B1+B4), B4/B3, (B2+B3+B4)/ (B1+B4), (B1+B2+B4)/(B2+B3), (B1+B2+B4)/ (B2+B3), (B2+B3)/B1+B2+B4), (B2+B3)/(B1+B4) | self-optimizing machine learning method | 0.7790 | 77 | 0.433-1.396 | 南淝河 |
SPOT-5 (Wang et al., | B1, B2, B3, B4 | GA-SVR | 0.9824 | 13 | 0.150-0.500 | 渭河 |
Landsat 8 (Zhang et al., | B1, B2, B3, B4, B5, B8, B9, B2/B3, B2/B4, B4/B3, B2/B5, (B3-B4)/(B3+B4), (B5-B4)/(B5+B4), (B5-B6)/(B5+B6), (B6-B7)/(B6+B7), (B3-B6)/(B3+B6) | ConvLSTM | 0.8800 | 138 | 0.010-0.380 | 东平湖 |
Landsat 8 (Li et al., | B1, B2, B3, B4, B5, B7 | ANN | 0.4400 | 67 | 0.030-1.210 | 南渡河 |
Landsat 8 (Song et al., | B1-B5, B4-B5, B6/B7, B3-B5, (B6-B7)/(B6+B7), B2-B5, (B3-B5)/(B3+B5), B5+B6 | RF | 0.7084 | 40 | 0.220-0.550 | 呼伦湖 |
Table 1 NH3-N inversion models in previous studies
数据源及参考 | 波段 | 模型 | r2 | 样本数 | ρ/(mg·L-1) | 区域 |
---|---|---|---|---|---|---|
Sentinel-2 (Dong et al., | B3/B2 | y=0.296x2-0.224x-0.352 | 0.8510 | 70 | 0.004-0.355 | 丹江口水库 |
Sentinel-2 (Cao et al., | B4/(B5-B12) | y=0.0585×e-0.8332x | 0.7390 | 22 | 0.060-3.390 | 支脉河 |
Sentinel-2 (Tian et al., | B2, B3, B4, B5, B6, B7, B8, B8A | XGBoost | 0.8200 | 96 | 0.030-0.810 | 清林径水库 |
Sentinel-2 (郭荣幸等, | B8 | y=30.545x2-13.034x+1.525 | 0.6135 | 18 | 0.110-0.350 | 小浪底水库 |
Sentinel-2 (Shi et al., | B7/B1 | y=-2.633x3+9.269x2-10.16x+3.64 | 0.8024 | 120 | 0.025-0.400 | 淮河流域 |
Sentinel-2 (刘轩等, | B3/B2 | BPNN | 0.8770 | 70 | 0.001-0.067 | 丹江口水库 |
Sentinel-2 (Kuan et al., | B2, B3, B4, B5, B8 | BPNN | 0.7400 | 41 | 0.100-0.980 | 淮河流域 |
UAV (Chen et al., | (B3+B4)/B2, (B2+B3+B4)/B2, (B3+B4)/(B1+B2), (B2+B3+B4)/(B3+B4) | GA_XGBoost | 0.6940 | 87 | 0.165-1.620 | 南淝河 |
UAV; GF-1C (Chen et al., | B3/(B1+B4), B4/B3, (B2+B3+B4)/ (B1+B4), (B1+B2+B4)/(B2+B3), (B1+B2+B4)/ (B2+B3), (B2+B3)/B1+B2+B4), (B2+B3)/(B1+B4) | self-optimizing machine learning method | 0.7790 | 77 | 0.433-1.396 | 南淝河 |
SPOT-5 (Wang et al., | B1, B2, B3, B4 | GA-SVR | 0.9824 | 13 | 0.150-0.500 | 渭河 |
Landsat 8 (Zhang et al., | B1, B2, B3, B4, B5, B8, B9, B2/B3, B2/B4, B4/B3, B2/B5, (B3-B4)/(B3+B4), (B5-B4)/(B5+B4), (B5-B6)/(B5+B6), (B6-B7)/(B6+B7), (B3-B6)/(B3+B6) | ConvLSTM | 0.8800 | 138 | 0.010-0.380 | 东平湖 |
Landsat 8 (Li et al., | B1, B2, B3, B4, B5, B7 | ANN | 0.4400 | 67 | 0.030-1.210 | 南渡河 |
Landsat 8 (Song et al., | B1-B5, B4-B5, B6/B7, B3-B5, (B6-B7)/(B6+B7), B2-B5, (B3-B5)/(B3+B5), B5+B6 | RF | 0.7084 | 40 | 0.220-0.550 | 呼伦湖 |
样本类型 | Sentinel-2 影像日期 | 采样时间 | 样本数 | NH3-N质量浓度/(mg·L-1) | 变异系数 | |||
---|---|---|---|---|---|---|---|---|
最大值 | 最小值 | 平均值 | 标准差 | |||||
模型校准 | 3月11日 8月8日 11月6日 11月11日 12月6日 12月11日 | 3月11‒12日 8月7‒9日 11月5‒7日 11月11‒12日 12月5‒6日 12月10日 | 102 | 6.210 | 0.034 | 0.881 | 1.104 | 1.253 |
模型验证 | 44 | 2.560 | 0.026 | 0.645 | 0.648 | 1.004 | ||
独立验证 | 33 | 3.730 | 0.081 | 0.629 | 0.670 | 1.065 | ||
趋势检验 | 8月8日 9月22日 10月17日 11月6日 11月11日 12月6日 | 8月13‒14日 9月6‒10日 10月14‒17日 11月8‒13日 12月10日 | 25 | 2.86 | 0.137 | 1.135 | 0.650 | 0.573 |
总计 | 8景 | 204 | 6.210 | 0.026 | 0.821 | 0.922 | 1.124 |
Table 2 NH3-N in-situ data and Sentinel imageries in 2019
样本类型 | Sentinel-2 影像日期 | 采样时间 | 样本数 | NH3-N质量浓度/(mg·L-1) | 变异系数 | |||
---|---|---|---|---|---|---|---|---|
最大值 | 最小值 | 平均值 | 标准差 | |||||
模型校准 | 3月11日 8月8日 11月6日 11月11日 12月6日 12月11日 | 3月11‒12日 8月7‒9日 11月5‒7日 11月11‒12日 12月5‒6日 12月10日 | 102 | 6.210 | 0.034 | 0.881 | 1.104 | 1.253 |
模型验证 | 44 | 2.560 | 0.026 | 0.645 | 0.648 | 1.004 | ||
独立验证 | 33 | 3.730 | 0.081 | 0.629 | 0.670 | 1.065 | ||
趋势检验 | 8月8日 9月22日 10月17日 11月6日 11月11日 12月6日 | 8月13‒14日 9月6‒10日 10月14‒17日 11月8‒13日 12月10日 | 25 | 2.86 | 0.137 | 1.135 | 0.650 | 0.573 |
总计 | 8景 | 204 | 6.210 | 0.026 | 0.821 | 0.922 | 1.124 |
名称 | 波长/nm | 空间分辨率/ m | 描述 | |
---|---|---|---|---|
S2A | S2B | |||
B1 | 443.9 | 442.3 | 60 | 气溶胶 |
B2 | 496.6 | 492.1 | 10 | 蓝色 |
B3 | 560 | 559 | 10 | 绿色 |
B4 | 664.5 | 665 | 10 | 红色 |
B5 | 703.9 | 703.8 | 20 | 红边1 |
B6 | 740.2 | 739.1 | 20 | 红边2 |
B7 | 728.5 | 779.7 | 20 | 红边3 |
B8 | 835.1 | 833 | 10 | 近红外 |
B8A | 864.8 | 864 | 20 | 红边4 |
B9 | 945 | 943.2 | 60 | 水汽 |
B10 | 1373.5 | 1376.9 | 60 | 卷云 |
B11 | 1613.7 | 1610.4 | 20 | 短波红外1 |
B12 | 2202.4 | 2185.7 | 20 | 短波红外2 |
Table 3 Sentinel-2 bands information
名称 | 波长/nm | 空间分辨率/ m | 描述 | |
---|---|---|---|---|
S2A | S2B | |||
B1 | 443.9 | 442.3 | 60 | 气溶胶 |
B2 | 496.6 | 492.1 | 10 | 蓝色 |
B3 | 560 | 559 | 10 | 绿色 |
B4 | 664.5 | 665 | 10 | 红色 |
B5 | 703.9 | 703.8 | 20 | 红边1 |
B6 | 740.2 | 739.1 | 20 | 红边2 |
B7 | 728.5 | 779.7 | 20 | 红边3 |
B8 | 835.1 | 833 | 10 | 近红外 |
B8A | 864.8 | 864 | 20 | 红边4 |
B9 | 945 | 943.2 | 60 | 水汽 |
B10 | 1373.5 | 1376.9 | 60 | 卷云 |
B11 | 1613.7 | 1610.4 | 20 | 短波红外1 |
B12 | 2202.4 | 2185.7 | 20 | 短波红外2 |
参照 | 反演模型 | 输入变量 | rc2 | σRMSEc/(mg·L-1) | σMAEc/(mg·L-1) | rv2 | σRMSEv/(mg·L-1) | σMAEv/(mg·L-1) |
---|---|---|---|---|---|---|---|---|
Dong et al., | y=0.25x2-0.62x+1.25 | B3/B2 | 0.0003 | 1.104 | 0.799 | -0.1256 | 0.688 | 0.594 |
郭荣幸等, | y=27.37x2-8.11x+1.25 | B8 | 0.0164 | 1.095 | 0.775 | -0.1960 | 0.709 | 0.618 |
Shi et al., | y=0.05x3-0.45x2+0.95x +0.42 | B7/B1 | 0.0235 | 1.091 | 0.783 | -0.1516 | 0.696 | 0.613 |
Tian et al., | XGBoost | B2‒B8A | 0.4907 | 0.788 | 0.533 | 0.2146 | 0.575 | 0.456 |
刘轩等, | BPNN | B3/B2 | 0.0001 | 1.105 | 0.802 | 0.0171 | 0.687 | 0.592 |
Kuan et al., | BPNN | B2‒B5, B8 | 0.1543 | 1.021 | 0.720 | 0.2473 | 0.584 | 0.491 |
Table 4 The results based on the previous NH3-N models
参照 | 反演模型 | 输入变量 | rc2 | σRMSEc/(mg·L-1) | σMAEc/(mg·L-1) | rv2 | σRMSEv/(mg·L-1) | σMAEv/(mg·L-1) |
---|---|---|---|---|---|---|---|---|
Dong et al., | y=0.25x2-0.62x+1.25 | B3/B2 | 0.0003 | 1.104 | 0.799 | -0.1256 | 0.688 | 0.594 |
郭荣幸等, | y=27.37x2-8.11x+1.25 | B8 | 0.0164 | 1.095 | 0.775 | -0.1960 | 0.709 | 0.618 |
Shi et al., | y=0.05x3-0.45x2+0.95x +0.42 | B7/B1 | 0.0235 | 1.091 | 0.783 | -0.1516 | 0.696 | 0.613 |
Tian et al., | XGBoost | B2‒B8A | 0.4907 | 0.788 | 0.533 | 0.2146 | 0.575 | 0.456 |
刘轩等, | BPNN | B3/B2 | 0.0001 | 1.105 | 0.802 | 0.0171 | 0.687 | 0.592 |
Kuan et al., | BPNN | B2‒B5, B8 | 0.1543 | 1.021 | 0.720 | 0.2473 | 0.584 | 0.491 |
指数 | 形式 | 指数 | 形式 |
---|---|---|---|
S1 | Bi | S18 | (Bi-Bj)/Bk |
S2 | Bi+Bj | S19 | (Bi×Bj)+Bk |
S3 | Bi-Bj | S20 | (Bi×Bj)-Bk |
S4 | Bi×Bj | S21 | Bi×Bj×Bk |
S5 | Bi/Bj | S22 | Bi×Bj/Bk |
S6 | (Bi+Bj)0.5 | S23 | Bi/Bj+Bk |
S7 | (Bi/Bj)0.5 | S24 | Bi/Bj-Bk |
S8 | (Bi×Bj)0.5 | S25 | Bi+1/Bj+1/Bk |
S9 | (Bi2+Bj2)0.5 | S26 | Bi-1/Bj+1/Bk |
S10 | (1/Bj+1/Bk) | S27 | Bi×(1/Bj+1/Bk) |
S11 | (1/Bj-1/Bk) | S28 | Bi/(1/Bj+1/Bk) |
S12 | Bi+Bj+Bk | S29 | Bi+1/Bj-1/Bk |
S13 | Bi+Bj-Bk | S30 | Bi-1/Bj-1/Bk |
S14 | (Bi+Bj)×Bk | S31 | Bi×(1/Bj-1/Bk) |
S15 | (Bi+Bj)/Bk | S32 | Bi/(1/Bj-1/Bk) |
S16 | Bi-Bj-Bk | S33 | (Bi-Bj)/(Bi+Bj) |
S17 | (Bi-Bj)×Bk | S34 | (Bi+Bj)/(Bk+Bm) |
Table 5 Band combinations
指数 | 形式 | 指数 | 形式 |
---|---|---|---|
S1 | Bi | S18 | (Bi-Bj)/Bk |
S2 | Bi+Bj | S19 | (Bi×Bj)+Bk |
S3 | Bi-Bj | S20 | (Bi×Bj)-Bk |
S4 | Bi×Bj | S21 | Bi×Bj×Bk |
S5 | Bi/Bj | S22 | Bi×Bj/Bk |
S6 | (Bi+Bj)0.5 | S23 | Bi/Bj+Bk |
S7 | (Bi/Bj)0.5 | S24 | Bi/Bj-Bk |
S8 | (Bi×Bj)0.5 | S25 | Bi+1/Bj+1/Bk |
S9 | (Bi2+Bj2)0.5 | S26 | Bi-1/Bj+1/Bk |
S10 | (1/Bj+1/Bk) | S27 | Bi×(1/Bj+1/Bk) |
S11 | (1/Bj-1/Bk) | S28 | Bi/(1/Bj+1/Bk) |
S12 | Bi+Bj+Bk | S29 | Bi+1/Bj-1/Bk |
S13 | Bi+Bj-Bk | S30 | Bi-1/Bj-1/Bk |
S14 | (Bi+Bj)×Bk | S31 | Bi×(1/Bj-1/Bk) |
S15 | (Bi+Bj)/Bk | S32 | Bi/(1/Bj-1/Bk) |
S16 | Bi-Bj-Bk | S33 | (Bi-Bj)/(Bi+Bj) |
S17 | (Bi-Bj)×Bk | S34 | (Bi+Bj)/(Bk+Bm) |
模型 | rc2 | σRMSEc/ (mg·L-1) | σMAEc/ (mg·L-1) | rv2 | σRMSEv/ (mg·L-1) | σMAEv/ (mg·L-1) |
---|---|---|---|---|---|---|
BC-FDR_XGBoost | 0.6872 | 0.617 | 0.385 | 0.5436 | 0.438 | 0.362 |
BC-FDR_RF | 0.5624 | 0.854 | 0.497 | 0.4237 | 0.494 | 0.414 |
BC-FDR_SVR | 0.1935 | 0.992 | 0.639 | 0.1795 | 0.590 | 0.479 |
Table 6 The results of the NH3-N inversion model in this study
模型 | rc2 | σRMSEc/ (mg·L-1) | σMAEc/ (mg·L-1) | rv2 | σRMSEv/ (mg·L-1) | σMAEv/ (mg·L-1) |
---|---|---|---|---|---|---|
BC-FDR_XGBoost | 0.6872 | 0.617 | 0.385 | 0.5436 | 0.438 | 0.362 |
BC-FDR_RF | 0.5624 | 0.854 | 0.497 | 0.4237 | 0.494 | 0.414 |
BC-FDR_SVR | 0.1935 | 0.992 | 0.639 | 0.1795 | 0.590 | 0.479 |
Sentinel-2反演结果 | 丰水期 | 枯水期 |
---|---|---|
平均值/(mg·L-1) | 0.552 | 0.795 |
质量浓度区间/(mg·L-1) | 0.182‒2.422 | 0.153‒2.510 |
Table 7 The variations of NH3-N concentrations during wet and dry seasons in Guangzhou
Sentinel-2反演结果 | 丰水期 | 枯水期 |
---|---|---|
平均值/(mg·L-1) | 0.552 | 0.795 |
质量浓度区间/(mg·L-1) | 0.182‒2.422 | 0.153‒2.510 |
[1] | CAO X, ZHANG J, MENG H B, et al., 2023. Remote sensing inversion of water quality parameters in the Yellow River Delta[J]. Ecological Indicators, 155: 110914. |
[2] | CHAWLA I, KARTHIKEYAN L, MISHRA A K, 2020. A review of remote sensing applications for water security: Quantity, quality, and extremes[J]. Journal of Hydrology, 585: 124826. |
[3] | CHEN J Y, CHEN S S, FU R, et al., 2021a. Remote sensing estimation of chlorophyll-A in case-II waters of coastal areas: Three-band model versus genetic algorithm-artificial neural networks model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 3640-3658. |
[4] | CHEN B T, MU X, CHEN P, et al., 2021b. Machine learning-based inversion of water quality parameters in typical reach of the urban river by UAV multispectral data[J]. Ecological Indicators, 133: 108434. |
[5] | CHEN P, WANG B, WU Y L, et al., 2023. Urban river water quality monitoring based on self-optimizing machine learning method using multi-source remote sensing data[J]. Ecological Indicators, 146: 109750. |
[6] | DONG G Q, HU Z Q, LIU X, et al., 2020. Spatio-Temporal variation of total nitrogen and ammonia nitrogen in the water source of the middle route of the south-to-north water diversion project[J]. Water, 12(9): 2615. |
[7] | DÖRNHÖFER K, OPPELT N, 2016. Remote sensing for lake research and monitoring-Recent advances[J]. Ecological Indicators, 64: 105-122. |
[8] | EJAZ U, KHAN S M, JEHANGIR S, et al., 2024. Integrated analytics and machine learning for water quality index assessment-Monitoring of industrial waste polluted stream[J]. Journal of Cleaner Production, 450: 141877. |
[9] | HAN D, CURRELL M J, CAO G, 2016. Deep challenges for China’s war on water pollution[J]. Environmental Pollution, 218: 1222-1233. |
[10] | KUAN H F, LI J, ZHANG X J, et al., 2020. Remote estimation of water quality parameters of medium-and small-sized inland rivers using Sentinel-2 imagery[J]. Water, 12(11): 3124. |
[11] | LI N, NING Z Y, CHEN M, et al., 2022. Satellite and machine learning monitoring of optically inactive water quality variability in a tropical river[J]. Remote Sensing, 14(21): 5466. |
[12] | LIU B, XI H J, LI T H, et al., 2023. Black-odorous water bodies annual dynamics in the context of climate change adaptation in Guangzhou City, China[J]. Journal of Cleaner Production, 414(11): 137781. |
[13] | LIU Y, WU X, QI W C, 2024. Assessing the water quality in urban river considering the influence of rainstorm flood: A case study of Handan city, China[J]. Ecological Indicators, 160: 111941. |
[14] | LO Y, FU L, LU T C, et al., 2023. Medium-sized lake water quality parameters retrieval using multispectral uav image and machine learning algorithms: A case study of the yuandang lake, China[J]. Drones, 7(4): 244. |
[15] | PAHLEVAN N, CHITTIMALLI S K, BALASUBRAMANIAN S V, et al., 2019. Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems[J]. Remote sensing of Environment, 220: 19-29. |
[16] | SAGAN V, PETERSON K T, MAIMAITIJIANG M, et al., 2020. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing[J]. Earth-Science Reviews, 205(3): 103187. |
[17] | SEO J Y, WON J G, LEE H S, et al., 2024. Probabilistic monitoring of meteorological drought impacts on water quality of major rivers in South Korea using copula models[J]. Water Research, 251: 121175. |
[18] | SHI X S, QIU Z F, HU Y J, et al., 2024. Monitoring the water quality distribution characteristics in the Huaihe River Basin based on the Sentinel-2 Satellite[J]. Water, 16(6): 860. |
[19] | SONG W, YINGLAN A, WANG Y T, et al., 2024. Study on remote sensing inversion and temporal-spatial variation of Hulun lake water quality based on machine learning[J]. Journal of Contaminant Hydrology, 260: 104282. |
[20] | TANG W Z, PEI Y S, ZHENG H, et al., 2022. Twenty years of China’s water pollution control: Experiences and challenges[J]. Chemosphere, 295: 133875. |
[21] | TIAN D, ZHAO X F, GAO L, et al., 2024. Estimation of water quality variables based on machine learning model and cluster analysis-based empirical model using multi-source remote sensing data in inland reservoirs, South China[J]. Environmental Pollution, 342: 123104. |
[22] | TIAN S, GUO H W, XU W, et al., 2023. Remote sensing retrieval of inland water quality parameters using Sentinel-2 and multiple machine learning algorithms[J]. Environmental Science and Pollution Research, 30(7): 18617-18630. |
[23] | TOMING K, KUTSER T, LAAS A, et al., 2016. First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery[J]. Remote Sensing, 8(8): 640. |
[24] | TOPP S N, PAVELSKY T M, JENSEN D, et al., 2020. Research trends in the use of remote sensing for inland water quality science: Moving towards multidisciplinary applications[J]. Water, 12(1): 169. |
[25] | WANG C Y, CHEN S S, LI D, et al., 2017. A Landsat-based model for retrieving total suspended solids concentration of estuaries and coasts in China[J]. Geoscientific Model Development, 10(12): 4347-4365. |
[26] | WANG C Y, LI W J, CHEN S S, et al., 2018. The spatial and temporal variation of total suspended solid concentration in Pearl River Estuary during 1987-2015 based on remote sensing[J]. Science of the Total Environment, 618: 1125-1138. |
[27] | WANG C Y, WANG D N, YANG J, et al., 2020. Suspended Sediment within Estuaries and along Coasts: A Review of Spatial and Temporal Variations based on Remote Sensing[J]. Journal of Coastal Research, 36(6): 1323-1331. |
[28] | WANG J B, ZHOU W Q, ZHAO M L, et al., 2023. Water quality assessment and pollution evaluation of surface water sources: The case of Weishan and Luoma Lakes, Xuzhou, Jiangsu Province, China[J]. Environmental Technology & Innovation, 32: 103397. |
[29] | WANG X L, FU L, HE C S, 2011. Applying support vector regression to water quality modelling by remote sensing data[J]. International Journal of Remote Sensing, 32(23): 8615-8627. |
[30] | ZHANG H W, XUE B L, WANG G Q, et al., 2022. Deep learning-based water quality retrieval in an impounded lake using landsat 8 imagery: An application in Dongping lake[J]. Remote Sensing, 14(18): 4505. |
[31] | 广州市生态环境局. 2019年广州市环境质量状况公报[EB/OL]. [2020-06-03]. https://sthjj.gz.gov.cn/zwgk/hjgb/index_5.html. |
Guangzhou Municipal Ecological Environment Bureau. 2019 Guangzhou Environmental Quality Report[EB/OL]. [2020-06-03]. https://sthjj.gz.gov.cn/zwgk/hjgb/index_5.html. | |
[32] | 高佳欣, 林昱坤, 涂耀仁, 等, 2023. 遥感反演技术应用于监测地表水体水质参数的现状与展望[J]. 遥感信息, 38(6): 1-14. |
GAO J L, LIN Y K, TU Y R, et al., 2023. Current status and prospects of remote sensing inversion technology applied to monitoring water quality parameters of surface water[J]. Remote Sensing Information, 38(6): 1-14. | |
[33] | 郭荣幸, 王超梁, 陈济民, 等, 2024. 基于Sentinel-2多光谱遥感影像的小浪底水质反演[J]. 人民黄河, 46(1): 93-96. |
GUO R X, WANG C L, CHEN J M, et al., 2024. Remote sensing inversion of water quality of Xiaolangdi Reservoir based on Sentinel-2 Multi-Spectral images[J]. Yellow River, 46(1): 93-96. | |
[34] | 刘轩, 赵同谦, 蔡太义, 等, 2021. 丹江口水库总氮、氨氮遥感反演及时空变化研究[J]. 农业资源与环境学报, 38(5): 829-838. |
LIU X, ZHAO T Q, CAI T Y, et al., 2021. Spatiotemporal monitoring of total nitrogen and ammonia nitrogen in Danjiangkou reservoir[J]. Journal of Agricultural Resources and Environment, 38(5): 829-838. | |
[35] | 王重洋, 周成虎, 陈水森, 等, 2021. 河口最大浑浊带研究的回顾与展望[J]. 科学通报, 66(18): 2328-2342. |
WANG C Y, ZHOU C H, CHEN S S, et al., 2021. Retrospect and perspective of the estuarine turbidity maximum zone researches[J]. Chinese Science Bulletin, 66(18): 2328-2342. | |
[36] | 王思梦, 秦伯强, 2023. 湖泊水质参数遥感监测研究进展[J]. 环境科学, 44(3): 1228-1243. |
WANG S M, QIN B Q, 2023. Research progress on remote sensing monitoring of lake water quality parameters[J]. Environmental Science, 44(3): 1228-1243. |
[1] | WANG Wei, XIA Yuxuan. Spatial Distribution Characteristics of PM2.5 in Urban Block Based on Remote Sensing Technology and Machine Learning: Taking Binhu New District of Hefei City as an Example [J]. Ecology and Environment, 2024, 33(9): 1426-1437. |
[2] | YANG Keming, PENG Lishun, ZHANG Yanhai, GU Xinru, CHEN Xinyang, JIANG Kegui. Research on Biomass Inversion of Multiple Vegetation Types on the Surface of Mining Areas [J]. Ecology and Environment, 2024, 33(7): 1027-1035. |
[3] | WANG Xuemei, YANG Xuefeng, ZHAO Feng, AN Baisong, HUANG Xiaoyu. Estimation of Aboveground Biomass in the Arid Oasis Based on the Machine Learning Algorithm [J]. Ecology and Environment, 2023, 32(6): 1007-1015. |
[4] | JIANG Peng, QIN Mei’ou, LI Rongping, MENG Ying, YANG Feiyun, WEN Rihong, SUN Pei, FANG Yuan. Seasonal Variability of GPP and Its Influencing Factors in the Typical Ecosystems in China [J]. Ecology and Environment, 2022, 31(4): 643-651. |
[5] | XIE Shaowen, GUO Xiaosong, YANG Fen, HUANG Qiang, CHEN Manjia, WEI Xinghu, LIU Chengshuai. Accumulation Characteristics, Geochemical Fractions Distribution and Ecological Risk of Heavy Metals in Soils of Urban Parks in Guangzhou, China [J]. Ecology and Environment, 2022, 31(11): 2206-2215. |
[6] | CHEN Yang, ZHANG Jinpu, QIU Xiaonuan, JU Hong, HUANG Jun. Characteristic of Ozone Pollution and Meteorological Factors Analysis in Guangzhou in 2021 [J]. Ecology and Environment, 2022, 31(10): 2028-2038. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn