Ecology and Environment ›› 2025, Vol. 34 ›› Issue (3): 358-367.DOI: 10.16258/j.cnki.1674-5906.2025.03.003
• Papers on Carbon Cycling and Carbon Emission Reduction • Previous Articles Next Articles
SHEN Jialong1,2(), WU Lihong1,2, LI Linshuang1,2, ZHOU Yuanfang1,2, YANG Xiaomin1,2,*(
)
Received:
2024-09-01
Online:
2025-03-18
Published:
2025-03-24
申佳龙1,2(), 吴栎宏1,2, 李林霜1,2, 周远芳1,2, 杨孝民1,2,*(
)
通讯作者:
*杨孝民。E-mail: 作者简介:
申佳龙(1998年生),男,硕士,主要从生物地球化学循环研究。E-mail: 2459660332@qq.com
基金资助:
CLC Number:
SHEN Jialong, WU Lihong, LI Linshuang, ZHOU Yuanfang, YANG Xiaomin. Effects of Land Uses on Soil Organic Carbon Fractions and Their Carbon Sequestration in a Typical Karst Small Mountain Watershed[J]. Ecology and Environment, 2025, 34(3): 358-367.
申佳龙, 吴栎宏, 李林霜, 周远芳, 杨孝民. 典型喀斯特山地小流域土地利用类型对土壤有机碳组分及其固碳效应的影响[J]. 生态环境学报, 2025, 34(3): 358-367.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.03.003
土地利用类型 | 土壤深度/cm | pH | 电导率/(μS∙cm−1) | 溶解性总固体质量浓度/(mg∙L−1) | 土壤容重/(g∙cm−3) |
---|---|---|---|---|---|
耕地 | 0-20 | 5.30±0.05Ba | 117.57±49.01Aa | 58.80±24.49Aa | 1.09±0.02BCa |
20-40 | 5.43±0.38Ba | 63.43±10.23Aab | 31.73±5.12Aab | 1.20±0.01Aa | |
40-60 | 5.78±0.70ABa | 79.87±35.97Aab | 39.92±17.96Aab | 1.18±0.05Aa | |
60-80 | 5.98±1.01ABa | 61.40±11.45Bb | 31.70±5.75Bb | 1.18±0.11Aa | |
80-100 | 6.00±0.67Aa | 54.97±28.50Ab | 27.51±14.24Ab | 1.25±0.16Aa | |
荒地 | 0-20 | 6.08±0.44Aa | 36.33±6.73Bb | 18.13±3.36Bb | 1.28±0.05Aa |
20-40 | 6.59±0.26Aa | 157.83±85.35Aa | 79.00±42.74Aa | 1.28±0.06Aa | |
40-60 | 6.47±0.08Aa | 57.67±23.71Ab | 28.78±11.82Ab | 1.30±0.06Aa | |
60-80 | 6.79±0.21Aa | 49.77±8.73Bb | 24.88±4.45Bb | 1.22±0.09Aab | |
80-100 | 6.01±0.81Aa | 80.67±30.26Ab | 40.43±15.18Ab | 1.14±0.11Ab | |
灌丛林地 | 0-20 | 4.77±0.12Ca | 61.70±13.52Ba | 31.87±7.95Ba | 0.94±0.03Cb |
20-40 | 4.74±0.14Ca | 102.07±72.74Aa | 51.03±36.36Aa | 1.16±0.15Aa | |
40-60 | 4.70±0.20Ca | 145.17±88.58Aa | 72.60±44.28Aa | 1.15±0.02Aa | |
60-80 | 4.88±0.17Ca | 99.87±21.76Aa | 49.93±10.83Aa | 1.21±0.01Aa | |
80-100 | 4.90±0.28Aa | 155.67±102.68Aa | 77.87±51.35Aa | 1.16±0.13Aa | |
板栗林地 | 0-20 | 5.25±0.06Bab | 34.37±10.97Ba | 17.22±5.43Ba | 1.16±0.17ABa |
20-40 | 5.11±0.16BCab | 53.40±27.51Aa | 26.72±13.69Aa | 1.21±0.12Aa | |
40-60 | 5.32±0.33BCab | 146.50±149.21Aa | 73.27±74.77Aa | 1.18±0.15Aa | |
60-80 | 5.09±0.10BCb | 71.30±23.43ABa | 35.63±11.76ABa | 1.10±0.15Aa | |
80-100 | 5.58±0.44Aa | 53.40±39.83Aa | 38.37±2.58Aa | 1.19±0.13Aa |
Table 1 The soil pH, electrical conductivity, total dissolved solids, and bulk density in soils of different land uses
土地利用类型 | 土壤深度/cm | pH | 电导率/(μS∙cm−1) | 溶解性总固体质量浓度/(mg∙L−1) | 土壤容重/(g∙cm−3) |
---|---|---|---|---|---|
耕地 | 0-20 | 5.30±0.05Ba | 117.57±49.01Aa | 58.80±24.49Aa | 1.09±0.02BCa |
20-40 | 5.43±0.38Ba | 63.43±10.23Aab | 31.73±5.12Aab | 1.20±0.01Aa | |
40-60 | 5.78±0.70ABa | 79.87±35.97Aab | 39.92±17.96Aab | 1.18±0.05Aa | |
60-80 | 5.98±1.01ABa | 61.40±11.45Bb | 31.70±5.75Bb | 1.18±0.11Aa | |
80-100 | 6.00±0.67Aa | 54.97±28.50Ab | 27.51±14.24Ab | 1.25±0.16Aa | |
荒地 | 0-20 | 6.08±0.44Aa | 36.33±6.73Bb | 18.13±3.36Bb | 1.28±0.05Aa |
20-40 | 6.59±0.26Aa | 157.83±85.35Aa | 79.00±42.74Aa | 1.28±0.06Aa | |
40-60 | 6.47±0.08Aa | 57.67±23.71Ab | 28.78±11.82Ab | 1.30±0.06Aa | |
60-80 | 6.79±0.21Aa | 49.77±8.73Bb | 24.88±4.45Bb | 1.22±0.09Aab | |
80-100 | 6.01±0.81Aa | 80.67±30.26Ab | 40.43±15.18Ab | 1.14±0.11Ab | |
灌丛林地 | 0-20 | 4.77±0.12Ca | 61.70±13.52Ba | 31.87±7.95Ba | 0.94±0.03Cb |
20-40 | 4.74±0.14Ca | 102.07±72.74Aa | 51.03±36.36Aa | 1.16±0.15Aa | |
40-60 | 4.70±0.20Ca | 145.17±88.58Aa | 72.60±44.28Aa | 1.15±0.02Aa | |
60-80 | 4.88±0.17Ca | 99.87±21.76Aa | 49.93±10.83Aa | 1.21±0.01Aa | |
80-100 | 4.90±0.28Aa | 155.67±102.68Aa | 77.87±51.35Aa | 1.16±0.13Aa | |
板栗林地 | 0-20 | 5.25±0.06Bab | 34.37±10.97Ba | 17.22±5.43Ba | 1.16±0.17ABa |
20-40 | 5.11±0.16BCab | 53.40±27.51Aa | 26.72±13.69Aa | 1.21±0.12Aa | |
40-60 | 5.32±0.33BCab | 146.50±149.21Aa | 73.27±74.77Aa | 1.18±0.15Aa | |
60-80 | 5.09±0.10BCb | 71.30±23.43ABa | 35.63±11.76ABa | 1.10±0.15Aa | |
80-100 | 5.58±0.44Aa | 53.40±39.83Aa | 38.37±2.58Aa | 1.19±0.13Aa |
土地利用类型 | 土壤深度/ cm | 活性有机碳 质量分数/% | 惰性有机碳 质量分数/% | 总有机碳 质量分数/% |
---|---|---|---|---|
耕地 | 0-20 | 1.15±0.06Aa | 0.77±0.21Aa | 1.92±0.21Aa |
20-40 | 0.72±0.04Ab | 0.50±0.05Bb | 1.22±0.03Bb | |
40-60 | 0.51±0.05Ac | 0.43±0.17Bb | 0.94±0.16Bbc | |
60-80 | 0.43±0.12Ac | 0.34±0.11Ab | 0.78±0.24Ac | |
80-100 | 0.42±0.16Ac | 0.34±0.08Ab | 0.76±0.24Ac | |
荒地 | 0-20 | 1.40±1.05Aa | 0.84±0.14Aa | 2.24±0.97Aa |
20-40 | 0.69±0.25Aab | 0.64±0.10ABa | 1.33±0.34ABab | |
40-60 | 0.56±0.48Aab | 0.38±0.18Bb | 0.94±0.37Bbc | |
60-80 | 0.49±0.52Aab | 0.21±0.14Abc | 0.70±0.43Ac | |
80-100 | 0.25±0.01Ab | 0.12±0.05Bc | 0.37±0.04Bc | |
灌丛林地 | 0-20 | 1.12±0.22Aa | 1.07±0.18Aa | 2.19±0.29Aa |
20-40 | 0.89±0.21Aab | 1.03±0.35Aa | 1.92±0.44Aa | |
40-60 | 0.69±0.19Abc | 0.87±0.30Aab | 1.57±0.48Aab | |
60-80 | 0.47±0.31Ac | 0.51±0.22Abc | 0.98±0.51Abc | |
80-100 | 0.34±0.10Ac | 0.17±0.07Ac | 0.51±0.10ABc | |
板栗林地 | 0-20 | 0.93±0.15Aa | 0.74±0.27Aa | 1.67±0.34Aa |
20-40 | 0.65±0.23Aab | 0.63±0.25ABa | 1.28±0.47ABab | |
40-60 | 0.67±0.24Aab | 0.41±0.20Bab | 1.08±0.18ABb | |
60-80 | 0.47±0.12Abc | 0.45±0.18Aab | 0.92±0.30Abc | |
80-100 | 0.28±0.09Ac | 0.21±0.14ABb | 0.50±0.10ABc |
Table 2 The contents of liable organic carbon, and recalcitrant organic carbon, soil total organic carbon in soils of different land uses
土地利用类型 | 土壤深度/ cm | 活性有机碳 质量分数/% | 惰性有机碳 质量分数/% | 总有机碳 质量分数/% |
---|---|---|---|---|
耕地 | 0-20 | 1.15±0.06Aa | 0.77±0.21Aa | 1.92±0.21Aa |
20-40 | 0.72±0.04Ab | 0.50±0.05Bb | 1.22±0.03Bb | |
40-60 | 0.51±0.05Ac | 0.43±0.17Bb | 0.94±0.16Bbc | |
60-80 | 0.43±0.12Ac | 0.34±0.11Ab | 0.78±0.24Ac | |
80-100 | 0.42±0.16Ac | 0.34±0.08Ab | 0.76±0.24Ac | |
荒地 | 0-20 | 1.40±1.05Aa | 0.84±0.14Aa | 2.24±0.97Aa |
20-40 | 0.69±0.25Aab | 0.64±0.10ABa | 1.33±0.34ABab | |
40-60 | 0.56±0.48Aab | 0.38±0.18Bb | 0.94±0.37Bbc | |
60-80 | 0.49±0.52Aab | 0.21±0.14Abc | 0.70±0.43Ac | |
80-100 | 0.25±0.01Ab | 0.12±0.05Bc | 0.37±0.04Bc | |
灌丛林地 | 0-20 | 1.12±0.22Aa | 1.07±0.18Aa | 2.19±0.29Aa |
20-40 | 0.89±0.21Aab | 1.03±0.35Aa | 1.92±0.44Aa | |
40-60 | 0.69±0.19Abc | 0.87±0.30Aab | 1.57±0.48Aab | |
60-80 | 0.47±0.31Ac | 0.51±0.22Abc | 0.98±0.51Abc | |
80-100 | 0.34±0.10Ac | 0.17±0.07Ac | 0.51±0.10ABc | |
板栗林地 | 0-20 | 0.93±0.15Aa | 0.74±0.27Aa | 1.67±0.34Aa |
20-40 | 0.65±0.23Aab | 0.63±0.25ABa | 1.28±0.47ABab | |
40-60 | 0.67±0.24Aab | 0.41±0.20Bab | 1.08±0.18ABb | |
60-80 | 0.47±0.12Abc | 0.45±0.18Aab | 0.92±0.30Abc | |
80-100 | 0.28±0.09Ac | 0.21±0.14ABb | 0.50±0.10ABc |
Figure 1 Correlations between liable organic carbon and soil total organic carbon, and between recalcitrant organic carbon and soil total organic carbon
Figure 3 The total storage of liable organic carbon, recalcitrant organic carbon, soil total organic carbon within 0-100 cm soil depth under different land uses
Figure 4 The contribution of liable organic carbon and recalcitrant organic carbon to soil total organic carbon within 0-100 cm soil depth under different land uses
[1] | BAI Y X, ZHOU Y C, 2020. The main factors controlling spatial variability of soil organic carbon in a small karst watershed, Guizhou Province, China[J]. Geoderma, 357: 113938. |
[2] | BELAY-TEDLA A, ZHOU X H, SU B, et al., 2009. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping[J]. Soil Biology and Biochemistry, 41(1): 110-116. |
[3] | CHABBI A, LEHMANN J, CIAIS P, et al., 2017. Aligning agriculture and climate policy[J]. Nature Climate Change, 7(5): 307-309. |
[4] |
CHEN X B, HU Y J, XIA Y H, et al., 2021. Contrasting pathways of carbon sequestration in paddy and upland soils[J]. Global Change Biology, 27(11): 2478-2490.
DOI PMID |
[5] | CHENG X L, CHEN J Q, LUO Y Q, et al., 2008. Assessing the effects of short-term Spartina alterniflora invasion on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes[J]. Geoderma, 145(3-4): 177-184. |
[6] | COCHRAN R L, COLLINS H P, KENNEDY A, et al., 2007. Soil carbon pools and fluxes after land conversion in a semiarid shrub-steppe ecosystem[J]. Biology and Fertility of Soils, 43(4): 479-489. |
[7] | FEYISSA A, YANG F, FENG J, et al., 2020. Soil labile and recalcitrant carbon and nitrogen dynamics in relation to functional vegetation groups along precipitation gradients in secondary grasslands of South China[J]. Environmental Science and Pollution Research, 27(10): 10528-10540. |
[8] | KALHORO S A, XU X X, CHEN W Y, et al., 2017. Effects of different land-use systems on soil aggregates: A case study of the Loess Plateau (Northern China)[J]. Sustainability, 9(8): 1349. |
[9] |
LAL R, 2004. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 304(5677): 1623-1627.
DOI PMID |
[10] | LAL R, 2019. Accelerated soil erosion as a source of atmospheric CO2[J]. Soil and Tillage Research, 188: 35-40. |
[11] | LAN G Y, LIU C, WANG H, et al., 2021. The effect of land use change and soil redistribution on soil organic carbon dynamics in karst graben basin of China[J]. Journal of Soils and Sediments, 21: 2511-2524. |
[12] | LIU X, LI L H, QI Z M, et al., 2017. Land-use impacts on profile distribution of labile and recalcitrant carbon in the Ili River Valley, northwest China[J]. Science of the Total Environment, 586: 1038-1045. |
[13] | MAYES M A, HEAL K R, BRANDT C C, et al., 2012. Relation between soil order and sorption of dissolved organic carbon in temperate subsoils[J]. Soil Science Society of America Journal, 76(3): 1027-1037. |
[14] | PENG X Y, HUANG Y, DUAN X W, et al., 2023. Particulate and mineral-associated organic carbon fractions reveal the roles of soil aggregates under different land-use types in a karst faulted basin of China[J]. Catena, 220(Part B): 106721. |
[15] | POEPLAU C, DON A, SIX J, et al., 2018. Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils: A comprehensive method comparison[J]. Soil Biology and Biochemistry, 125: 10-26. |
[16] | QI S Z, GUO J M, JIA R, et al., 2020. Land use change induced ecological risk in the urbanized karst region of North China: A case study of Jinan city[J]. Environmental Earth Sciences, 79: 1-8. |
[17] | QIN Z L, YANG X M, SONG Z L, et al., 2021. Vertical distributions of organic carbon fractions under paddy and forest soils derived from black shales: Implications for potential of long-term carbon storage[J]. Catena, 198: 105056. |
[18] | ROVIRA P, ROMANYÀ J, DUGUY B, 2012. Long-term effects of wildfires on the biochemical quality of soil organic matter: A study on Mediterranean shrublands[J]. Geoderma, 179-180: 9-19. |
[19] | ROVIRA P, VALLEJO V R, 2002. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach[J]. Geoderma, 107(1-2): 109-141. |
[20] | ROVIRA P, VALLEJO V R, 2007. Labile, recalcitrant, and inert organic matter in Mediterranean forest soils[J]. Soil Biology and Biochemistry, 39(1): 202-215. |
[21] |
RUMPEL C, AMIRASLANI F, CHENU C, et al., 2020. The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy[J]. Ambio, 49: 350-360.
DOI PMID |
[22] | TENG M J, ZENG L X, XIAO W F, et al., 2017. Spatial variability of soil organic carbon in Three Gorges Reservoir area, China[J]. Science of the Total Environment, 599-600: 1308-1316. |
[23] | YANG X M, SONG Z L, VAN ZWIETEN L, et al., 2024. Significant accrual of soil organic carbon through long-term rice cultivation in paddy fields in China[J]. Global Change Biology, 30(3): e17213. |
[24] | 陈高起, 傅瓦利, 沈艳, 等, 2015. 岩溶区不同土地利用类型对土壤有机碳及其组分的影响[J]. 水土保持学报, 29(3): 123-129. |
CHEN G Q, FU W L, SHEN Y, et al., 2015. Effects of land use types on soil organic carbon and its fractions in karst area[J]. Journal of Soil and Water Conservation, 29(3): 123-129. | |
[25] | 陈坚淇, 贾亚男, 贺秋芳, 等, 2024. 不同土地利用类型对岩溶区土壤有机碳组分稳定性的影响[J]. 环境科学, 45(1): 335-342. |
CHEN J Q, JIA Y N, HE Q F, et al., 2024. Effect of land use on the stability of soil organic carbon in a karst region[J]. Environmental Science, 45(1): 335-342. | |
[26] | 程琨, 潘根兴, 2016. “千分之四全球土壤增碳计划” 对中国的挑战与应对策略[J]. 气候变化研究进展, 12(5): 457-464. |
CHENG K, PAN G X, 2016. “Four for mille initiative: soils for food security and climate” challenges and strategies for China’s action[J]. Climate Change Research, 12(5): 457-464. | |
[27] | 程志辉, 李法云, 荣湘民, 等, 2016. 辽河保护区不同土地利用方式下土壤的有机碳含量特征[J]. 湖南农业大学学报(自然科学版), 42(6): 670-675. |
CHENG Z H, LI F Y, RONG X M, et al., 2016. Characteristics of soil carbon pools under different land use patterns in reserve of Liaohe River[J]. Journal of Hunan Agricultural University (Natural Sciences), 42(6): 670-675. | |
[28] | 黄先飞, 周运超, 张珍明, 2017. 喀斯特石漠化区不同土地利用类型下土壤有机碳分布特征[J]. 水土保持学报, 31(5): 215-221. |
HUANG X F, ZHOU Y C, ZHANG Z M, 2017. Distribution characteristics of soil organic carbon under different land uses in a karst rocky desertification area[J]. Journal of Soil and Water Conservation, 31(5): 215-221. | |
[29] |
黄先飞, 周运超, 张珍明, 2018. 土地利用类型下土壤有机碳特征及影响因素——以后寨河喀斯特小流域为例[J]. 自然资源学报, 33(6): 1056-1067.
DOI |
HUANG X F, ZHOU Y C, ZHANG Z M, 2018. Characteristics and affecting factors of soil organic carbon under land uses: A case study in Houzhai River Basin[J]. Journal of Natural Resources, 33(6): 1056-1067. | |
[30] | 蒋莉沙, 甘凤玲, 谭晓红, 等, 2024. 岩层倾向对喀斯特槽谷区不同土地利用类型土壤分离能力的影响[J]. 水土保持学报, 38(3): 130-139. |
JIANG L S, GAN F L, TAN X H, et al., 2024. Effect of rock strata dip on soil detachment capacity of different land use types in karst trough valley area[J]. Journal of Soil and Water Conservation, 38(3): 130-139. | |
[31] | 蒋忠诚, 袁道先, 曹建华, 等, 2012. 中国岩溶碳汇潜力研究[J]. 地球学报, 33(2): 129-134. |
JIANG Z C, YUAN D X, CAO J H, et al., 2012. A study of carbon sink capacity of karst processes in China[J]. Acta Geoscientica Sinica, 33(2): 129-134. | |
[32] | 李令, 贺慧丹, 未亚西, 等, 2017. 三江源农牧交错区植被群落及土壤固碳持水能力对退耕还草措施的响应[J]. 草业科学, 34(10): 1999-2008. |
LI L, HE H D, WEI Y X, et al., 2017. Response of vegetation community structure, soil carbon sequestration, and water-holding capacity in returning farmland to grassland plots, in the agro-pastoral transitional zone in the Three Rivers Source Region[J]. Pratacultural Science, 34(10): 1999-2008. | |
[33] |
梁启鹏, 余新晓, 庞卓, 等, 2010. 不同林分土壤有机碳密度研究[J]. 生态环境学报, 19(4): 889-893.
DOI |
LIANG Q P, YU X X, PANG Z, et al., 2010. Study on soil organic carbon density of different forest types[J]. Ecology and Environmental Sciences, 19(4): 889-893. | |
[34] | 李睿, 江长胜, 郝庆菊, 2015. 缙云山不同土地利用类型下土壤团聚体中活性有机碳分布特征[J]. 环境科学, 36(9): 3429-3437. |
LI R, JIANG C S, HAO Q J, 2015. Impact of land utilization pattern on distributing characters of labile organic carbon in soil aggregates in Jinyun Mountain[J]. Environmental Science, 36(9): 3429-3437. | |
[35] | 李泽霞, 董彦丽, 马涛, 2020. 黄土区梯化坡地不同土地利用类型对土壤理化性质的影响[J]. 水土保持通报, 40(3): 43-49. |
LI Z X, DONG Y L, MA T, 2020. Effects of land use types on soil physical and chemical properties in terraced sloping land of loess areas[J]. Bulletin of Soil and Water Conservation, 40(3): 43-49. | |
[36] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 2000. Methods of soil and agrochemical analysis[M]. Beijing: China Agricultural Science and Technology Press. | |
[37] | 覃智莲, 杨孝民, 宋照亮, 等, 2020. 成土母质和土地利用类型对土壤有机碳化学组成的影响[J]. 土壤通报, 51(3): 621-629. |
QIN Z L, YANG X M, SONG Z L, et al., 2020. Effects of parent materials and land uses on soil organic carbon fractions[J]. Chinese Journal of Soil Science, 51(3): 621-629. | |
[38] | 申楷慧, 魏识广, 李林, 等, 2024. 漓江流域喀斯特森林土壤有机碳空间分布格局及其驱动因子[J]. 环境科学, 45(1): 323-334. |
SHEN K H, WEI S G, LI L, et al., 2024. Spatial distribution patterns of soil organic carbon in karst forests of the Lijiang River Basin and its driving factors[J]. Environmental Science, 45(1): 323-334. | |
[39] | 文丽, 李超, 程凯凯, 等, 2023. 不同农田模式下土壤有机碳、氮、磷及化学计量比的垂直分布特征[J]. 湖南农业科学 (2): 38-42. |
WEN L, LI C, CHENG K K, et al., 2023. Vertical distribution characteristics of soil organic carbon, nitrogen and phosphorus and their stoichiometric ratios in different types of cropland[J]. Hunan Agricultural Sciences (2): 38-42. | |
[40] | 王磊, 应蓉蓉, 石佳奇, 等, 2017. 土壤矿物对有机质的吸附与固定机制研究进展[J]. 土壤学报, 54(4): 805-818. |
WANG L, YING R R, SHI J Q, et al., 2017. Advancement in study on adsorption of organic matter on soil minerals and its mechanism[J]. Acta Pedologica Sinica, 54(4): 805-818. | |
[41] | 文雯, 周宝同, 汪亚峰, 等, 2015. 黄土高原羊圈沟小流域土地利用时空变化的土壤有机碳效应[J]. 生态学报, 35(18): 6060-6069. |
WEN W, ZHOU B T, WANG Y F, et al., 2015. Effects of spatio-temporal changes of land-use on soil organic carbon in Yangjuangou watershed in Loess Plateau, China[J]. Acta Ecologica Sinica, 35(18): 6060-6069. | |
[42] | 余佳琪, 刘博, 王勇, 等, 2024. 秸秆覆盖对坡耕地黑土土壤有机碳的影响[J/OL]. 吉林农业大学学报, 1-10 [2024-10-31]. https://link.cnki.net/urlid/22.1100.S.20240718.1526.009. |
YU J Q, LIU B, WANG Y, et al., 2024. Effects of straw mulching on soil organic carbon in black soil of sloping cultivated land[J/OL]. Journal of Jilin Agricultural University, 1-10 [2024-10-31]. https://link.cnki.net/urlid/22.1100.S.20240718.1526.009. | |
[43] | 张凤祥, 刘海涛, 2018. 土壤固碳能力受生态型土地整治工程的影响研究[J]. 绿色环保建材 (2): 172-173. |
ZHANG F X, LIU H T, 2018. Influence of ecological land consolidation project on soil carbon sequestration capacity[J]. Green Environmental Protection Building Materials (2): 172-173. | |
[44] | 左超, 罗彩云, 赵亮, 等, 2024. 不同土地利用类型对土壤惰性碳的影响[J]. 草原与草坪, 44(2): 96-105. |
ZUO C, LUO C Y, ZHAO L, et al., 2024. Effects of different land use methods on inert soil carbon[J]. Grassland and Turf, 44(2): 96-105. |
[1] | ZHOU Lele, WAN Xia, DING Liming, WEI Xingyu, WANG Jianping, CHEN Jing, LI Xin, FAN Min, LI Meng, YU Xiaobin. Study on the Spatial Distribution Characteristics of Carbon Emission-Sequestration and Carbon Supply-demand Ratio in Sichuan Province [J]. Ecology and Environment, 2025, 34(3): 368-379. |
[2] | LI Jianfu, HUANG Zhilin, HE Chengzhong, JIANG Xin, SONG Lin, LIU Jiaxin, CHEN Liding. Spatial Distribution and Key Factors Affecting Soil Organic Carbon Within the Karst Fault Basin in Eastern Yunnan, China [J]. Ecology and Environment, 2024, 33(9): 1339-1352. |
[3] | SHI Hanzhi, XIONG Zhenqian, CAO Yiran, WU Zhichao, WEN Dian, LI Furong, LI Dongqin, WANG Xu. Effect of Straw Returning to Field on Organic Carbon Fixation in Red Soil and Black Soil [J]. Ecology and Environment, 2024, 33(9): 1372-1383. |
[4] | LUO Qing, HE Qing, WU Huiqiu, KOU Liyue, FANG Xu, ZHANG Xinyu, LI Yuan, CHAI Yuting, ZHANG Ruisheng, DAI Wenju. Characteristics of Soil Organic Carbon Fractions in Liao River Estuary Wetland and Their Influencing Factors [J]. Ecology and Environment, 2024, 33(3): 333-340. |
[5] | LIN Dandan, BI Huaxing, ZHAO Danyang, GUAN Ning, HAN Jindan, GUO Yanjie. Soil Organic Carbon Fractions and Carbon Pool Characteristics of Robinia pseudoacacia Forests with Different Densities in the Loess Region of Western Shanxi Province [J]. Ecology and Environment, 2024, 33(3): 379-388. |
[6] | TANG Shuya, WANG Chunhui, SONG Jing, LI Gang. Characteristics and Risk Assessment of Soil Heavy Metal Pollution in the Xiangshan Bay Area [J]. Ecology and Environment, 2024, 33(11): 1768-1781. |
[7] | CHANG Boran, CHEN Rulan, WANG Biao, LAN Tian, DENG Lin, XUE Huiying. Characteristics of Soil Organic Carbon and Its Component Distribution in Different Forest Stand Types on Mount Zola in Southeastern Tibet [J]. Ecology and Environment, 2024, 33(10): 1495-1505. |
[8] | LI Chuanfu, ZHU Taochuan, MING Yufei, YANG Yuxuan, GAO Shu, DONG Zhi, LI Yongqiang, JIAO Shuying. Effect of Organic Fertilizer and Desulphurized Gypsum on Soil Aggregates and Organic Carbon and Its Fractions Contents in the Saline-alkali Soil of the Yellow River Delta [J]. Ecology and Environment, 2023, 32(5): 878-888. |
[9] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[10] | QIN Jiaqi, XIAO Zhirou, MING Angang, ZHU Hao, TENG Jinqian, LIANG Zeli, TAO Yi, QIN Lin. Effect of Monoculture and Mixed Plantation with Coniferous and Broadleaved Tree Species on Soil Microbial Carbon Cycle Functional Gene Abundance [J]. Ecology and Environment, 2023, 32(10): 1719-1731. |
[11] | XIAO Guoju, LI Xiujing, GUO Zhanqiang, HU Yanbin, WANG Jing. Effects of Soil Organic Carbon on Maize Growth and Water Use at the Eastern Foot of Helan Mountain in Ningxia [J]. Ecology and Environment, 2022, 31(9): 1754-1764. |
[12] | MA Huiying, LI Xinzhu, MA Xinyu, GONG Lu. Characteristics and Driving Factors of Soil Organic Carbon Fractions under Different Vegetation Types of the mid-Northern Piedmont of the Tianshan Mountains, Xinjiang [J]. Ecology and Environment, 2022, 31(6): 1124-1131. |
[13] | GONG Lingxuan, WANG Lili, ZHAO Jianning, LIU Hongmei, YANG Dianlin, ZHANG Guilong. Effects of Different Cover Crop Patterns on Soil Physicochemical Properties and Organic Carbon Mineralization in Tea Gardens [J]. Ecology and Environment, 2022, 31(6): 1141-1150. |
[14] | DU Xue, WANG Haiyan, ZOU Jiahe, MENG Hai, ZHAO Han, CUI Xue, DONG Qiqi. Distribution Characteristics and Influencing Factors of Soil Organic Carbon in Spruce-fir broad-leaved Mixed Forest on North Slope of Changbai Mountains [J]. Ecology and Environment, 2022, 31(4): 663-669. |
[15] | YANG Xianfang, CHEN Zhao, ZHENG Lin, WAN Zhiwei, CHEN Yonglin, WANG Yuandong. Characteristics and Network of Soil Bacterial Communities in Different Land Use Types in Rare Earth Mining Areas [J]. Ecology and Environment, 2022, 31(4): 793-801. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn