Ecology and Environment ›› 2022, Vol. 31 ›› Issue (4): 793-801.DOI: 10.16258/j.cnki.1674-5906.2022.04.018
• Research Articles • Previous Articles Next Articles
YANG Xianfang1,4(), CHEN Zhao2,3, ZHENG Lin1,*(
), WAN Zhiwei4, CHEN Yonglin4, WANG Yuandong4
Received:
2021-12-06
Online:
2022-04-18
Published:
2022-06-22
Contact:
ZHENG Lin
杨贤房1,4(), 陈朝2,3, 郑林1,*(
), 万智巍4, 陈永林4, 王远东4
通讯作者:
郑林
作者简介:
杨贤房(1983年生),男,讲师,博士研究生,主要研究方向生态修复与土地利用。E-mail: 573492915@qq.com
基金资助:
CLC Number:
YANG Xianfang, CHEN Zhao, ZHENG Lin, WAN Zhiwei, CHEN Yonglin, WANG Yuandong. Characteristics and Network of Soil Bacterial Communities in Different Land Use Types in Rare Earth Mining Areas[J]. Ecology and Environment, 2022, 31(4): 793-801.
杨贤房, 陈朝, 郑林, 万智巍, 陈永林, 王远东. 稀土矿区不同土地利用类型土壤细菌群落特征及网络分析[J]. 生态环境学报, 2022, 31(4): 793-801.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.04.018
土壤理化性质 Physicochemical properties of soil | 土地利用类型 Land use types | ||||||
---|---|---|---|---|---|---|---|
裸地 Bare land | 玉米地 Corn field | 果园 Orchard | 蔬菜 Vegetables field | 稻田 Paddy field | 草地 Grassland | 林地 Forest field | |
pH | 4.35±0.21 | 6.26±0.29 | 4.40±0.35 | 5.18±0.41 | 5.42±0.22 | 4.59±0.14 | 4.57±0.25 |
w(TN)/(g∙kg-1) | 0.42±0.01 | 3.99±0.68 | 1.03±0.17 | 2.69±0.36 | 1.32±0.62 | 0.84±0.10 | 1.03±0.19 |
w(OM)/(g∙kg-1) | 1.29±0.12 | 31.34±0.27 | 14.04±1.79 | 33.2±0.84 | 13.26±2.65 | 2.76±0.30 | 6.75±0.75 |
w(TP)/(g∙kg-1) | 0.002±0 | 0.44±0.04 | 0.21±0.03 | 2.36±0.18 | 0.23±0.05 | 0.004±0 | 0.003±0 |
w(AP)/(g∙kg-1) | 0.001±0 | 0.01±0.01 | 0.01±0 | 0.32±0.02 | 0.01±0 | 0.001±0 | 0.001±0 |
w(NH3-N)/(mg∙kg-1) | 6.42±0.56 | 10.81±2.34 | 1.34±1.26 | 31.91±2.31 | 30.53±1.21 | 11.32±7.14 | 5.20±2.01 |
w(NO2-N)/(mg∙kg-1) | 19.7±0.34 | 1.97±0.26 | 2.51±0.13 | 44.1±7.79 | 2.01±0.17 | 15.5±4.76 | 2.56±1.12 |
w(As)/(mg∙kg-1) | 15.95±0.02 | 7.92±1.63 | 6.55±1.45 | 9.4±0.69 | 5.98±1.09 | 52.38±2.80 | 15.50±6.67 |
w(Cd)/(mg∙kg-1) | 0.21±0.02 | 0 | 0 | 0.14±0.02 | 0 | 0.63±0.06 | 0.26±0.01 |
w(Cu)/(mg∙kg-1) | 4.25±0.12 | 15.86±3.58 | 10.58±2.57 | 14.89±4.52 | 11.91±3.6 | 4.72±0.38 | 6.67±1.04 |
w(Mn)/(mg∙kg-1) | 152.98±4.60 | 368.93±75.31 | 329.81±175 | 440.61±150 | 266.5±126.4 | 329.48±15.60 | 213.13±39.5 |
w(Ni)/(mg∙kg-1) | 1.90±0.12 | 14.19±4.65 | 5.97±1.14 | 5.40±2.02 | 10.99±7.27 | 4.82±0.89 | 2.70±1.86 |
w(Pb)/(mg∙kg-1) | 59.09±1.60 | 64.47±20.30 | 89.46±9.42 | 64.07±9.65 | 72.45±10.01 | 120.01±7.90 | 191.11±84.4 |
w(Zn)/(mg∙kg-1) | 40.19±5.40 | 71.85±24.50 | 68.56±15.30 | 72.24±18.5 | 85.81±27.2 | 84.04±3.90 | 75.06±8.70 |
w(Cr)/(mg∙kg-1) | 4.25±0.06 | 48.56±12.3 | 28.94±11.30 | 21.76±8.08 | 36.34±17.86 | 23.68±1.23 | 5.86±4.47 |
综合污染指数 (PN) Composite pollution index (PN) | 1.61 | 1.57 | 2.08 | 1.60 | 1.71 | 4.75 | 4.35 |
Table 1 Analysis of soil physico-chemical properties of different land use types
土壤理化性质 Physicochemical properties of soil | 土地利用类型 Land use types | ||||||
---|---|---|---|---|---|---|---|
裸地 Bare land | 玉米地 Corn field | 果园 Orchard | 蔬菜 Vegetables field | 稻田 Paddy field | 草地 Grassland | 林地 Forest field | |
pH | 4.35±0.21 | 6.26±0.29 | 4.40±0.35 | 5.18±0.41 | 5.42±0.22 | 4.59±0.14 | 4.57±0.25 |
w(TN)/(g∙kg-1) | 0.42±0.01 | 3.99±0.68 | 1.03±0.17 | 2.69±0.36 | 1.32±0.62 | 0.84±0.10 | 1.03±0.19 |
w(OM)/(g∙kg-1) | 1.29±0.12 | 31.34±0.27 | 14.04±1.79 | 33.2±0.84 | 13.26±2.65 | 2.76±0.30 | 6.75±0.75 |
w(TP)/(g∙kg-1) | 0.002±0 | 0.44±0.04 | 0.21±0.03 | 2.36±0.18 | 0.23±0.05 | 0.004±0 | 0.003±0 |
w(AP)/(g∙kg-1) | 0.001±0 | 0.01±0.01 | 0.01±0 | 0.32±0.02 | 0.01±0 | 0.001±0 | 0.001±0 |
w(NH3-N)/(mg∙kg-1) | 6.42±0.56 | 10.81±2.34 | 1.34±1.26 | 31.91±2.31 | 30.53±1.21 | 11.32±7.14 | 5.20±2.01 |
w(NO2-N)/(mg∙kg-1) | 19.7±0.34 | 1.97±0.26 | 2.51±0.13 | 44.1±7.79 | 2.01±0.17 | 15.5±4.76 | 2.56±1.12 |
w(As)/(mg∙kg-1) | 15.95±0.02 | 7.92±1.63 | 6.55±1.45 | 9.4±0.69 | 5.98±1.09 | 52.38±2.80 | 15.50±6.67 |
w(Cd)/(mg∙kg-1) | 0.21±0.02 | 0 | 0 | 0.14±0.02 | 0 | 0.63±0.06 | 0.26±0.01 |
w(Cu)/(mg∙kg-1) | 4.25±0.12 | 15.86±3.58 | 10.58±2.57 | 14.89±4.52 | 11.91±3.6 | 4.72±0.38 | 6.67±1.04 |
w(Mn)/(mg∙kg-1) | 152.98±4.60 | 368.93±75.31 | 329.81±175 | 440.61±150 | 266.5±126.4 | 329.48±15.60 | 213.13±39.5 |
w(Ni)/(mg∙kg-1) | 1.90±0.12 | 14.19±4.65 | 5.97±1.14 | 5.40±2.02 | 10.99±7.27 | 4.82±0.89 | 2.70±1.86 |
w(Pb)/(mg∙kg-1) | 59.09±1.60 | 64.47±20.30 | 89.46±9.42 | 64.07±9.65 | 72.45±10.01 | 120.01±7.90 | 191.11±84.4 |
w(Zn)/(mg∙kg-1) | 40.19±5.40 | 71.85±24.50 | 68.56±15.30 | 72.24±18.5 | 85.81±27.2 | 84.04±3.90 | 75.06±8.70 |
w(Cr)/(mg∙kg-1) | 4.25±0.06 | 48.56±12.3 | 28.94±11.30 | 21.76±8.08 | 36.34±17.86 | 23.68±1.23 | 5.86±4.47 |
综合污染指数 (PN) Composite pollution index (PN) | 1.61 | 1.57 | 2.08 | 1.60 | 1.71 | 4.75 | 4.35 |
参数 Indices | α 多样性指数 Alpha diversity index | |||
---|---|---|---|---|
Ace指数 Ace index | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index | |
裸地 Bare land | 1074.70 | 1065.93 | 3.09 | 0.61 |
玉米地 Corn field | 3227.02 | 3212.19 | 10.79 | 0.99 |
果园 Orchard | 1574.79 | 1568.44 | 8.81 | 0.99 |
蔬菜地Vegetables field | 2266.58 | 2258.78 | 9.77 | 0.99 |
水稻田 Paddy field | 2414.05 | 2405.44 | 10.11 | 0.99 |
草地 Grassland | 1483.53 | 1478.72 | 8.42 | 0.99 |
林地 Forest field | 1452.32 | 1449.05 | 8.91 | 0.99 |
Table 2 Analysis of soil bacterial diversity in different land use types
参数 Indices | α 多样性指数 Alpha diversity index | |||
---|---|---|---|---|
Ace指数 Ace index | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index | |
裸地 Bare land | 1074.70 | 1065.93 | 3.09 | 0.61 |
玉米地 Corn field | 3227.02 | 3212.19 | 10.79 | 0.99 |
果园 Orchard | 1574.79 | 1568.44 | 8.81 | 0.99 |
蔬菜地Vegetables field | 2266.58 | 2258.78 | 9.77 | 0.99 |
水稻田 Paddy field | 2414.05 | 2405.44 | 10.11 | 0.99 |
草地 Grassland | 1483.53 | 1478.72 | 8.42 | 0.99 |
林地 Forest field | 1452.32 | 1449.05 | 8.91 | 0.99 |
参数 Parameters | 节点数Nodes | 连接数Links | 平均连通度 Average degree | 平均路径长度 Average Path distance | 平均聚类系数 Average clustering coefficient | 负相关比例 Negative correlation ratio | 模块数 Modules | 图密度 Graph density |
---|---|---|---|---|---|---|---|---|
裸地 Bare land | 29 | 104 | 3.54 | 3.58 | 0.44 | 8.80% | 5 | 0.12 |
植被 Vegetation | 29 | 106 | 3.66 | 3.37 | 0.46 | 15.1% | 5 | 0.13 |
耕地 Arable land | 32 | 219 | 6.84 | 2.35 | 0.58 | 37.5% | 3 | 0.22 |
Table 3 Characteristic parameters of the molecular ecological network
参数 Parameters | 节点数Nodes | 连接数Links | 平均连通度 Average degree | 平均路径长度 Average Path distance | 平均聚类系数 Average clustering coefficient | 负相关比例 Negative correlation ratio | 模块数 Modules | 图密度 Graph density |
---|---|---|---|---|---|---|---|---|
裸地 Bare land | 29 | 104 | 3.54 | 3.58 | 0.44 | 8.80% | 5 | 0.12 |
植被 Vegetation | 29 | 106 | 3.66 | 3.37 | 0.46 | 15.1% | 5 | 0.13 |
耕地 Arable land | 32 | 219 | 6.84 | 2.35 | 0.58 | 37.5% | 3 | 0.22 |
Indices 指数 | OTUs指数 OTUs index | Ace指数 Ace index | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|---|---|
pH | 0.86** | 0.87** | 0.87** | 0.59** | 0.24 |
TN | 0.78** | 0.78** | 0.78** | 0.55** | 0.28 |
TC | 0.71** | 0.72** | 0.72** | 0.57** | 0.28 |
TP | 0.35 | 0.35 | 0.35 | 0.30 | 0.16 |
AP | 0.21 | 0.21 | 0.21 | 0.21 | 0.12 |
NH3-N | 0.32 | 0.33 | 0.38 | 0.21 | 0.19 |
NO2-N | 0.25 | 0.27 | 0.31 | 0.29 | 0.11 |
As | -0.26 | -0.26 | -0.26 | -0.13 | 0.04 |
Cd | -0.30 | -0.30 | -0.30 | -0.15 | 0.01 |
Cr | 0.37* | 0.37* | 0.37* | 0.31 | 0.23 |
Cu | 0.63** | 0.63** | 0.63** | 0.46* | 0.19 |
Mn | 0.23 | 0.23 | 0.23 | 0.25 | 0.25 |
Ni | 0.58** | 0.58** | 0.58** | 0.43* | 0.24 |
Pb | -0.30 | -0.31 | -0.31 | 0.05 | 0.23 |
Zn | 0.08 | 0.08 | 0.08 | 0.33 | 0.43* |
Table 4 Correlation Analysis of soil bacterial diversity with physico-chemical properties and heavy metal content
Indices 指数 | OTUs指数 OTUs index | Ace指数 Ace index | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|---|---|
pH | 0.86** | 0.87** | 0.87** | 0.59** | 0.24 |
TN | 0.78** | 0.78** | 0.78** | 0.55** | 0.28 |
TC | 0.71** | 0.72** | 0.72** | 0.57** | 0.28 |
TP | 0.35 | 0.35 | 0.35 | 0.30 | 0.16 |
AP | 0.21 | 0.21 | 0.21 | 0.21 | 0.12 |
NH3-N | 0.32 | 0.33 | 0.38 | 0.21 | 0.19 |
NO2-N | 0.25 | 0.27 | 0.31 | 0.29 | 0.11 |
As | -0.26 | -0.26 | -0.26 | -0.13 | 0.04 |
Cd | -0.30 | -0.30 | -0.30 | -0.15 | 0.01 |
Cr | 0.37* | 0.37* | 0.37* | 0.31 | 0.23 |
Cu | 0.63** | 0.63** | 0.63** | 0.46* | 0.19 |
Mn | 0.23 | 0.23 | 0.23 | 0.25 | 0.25 |
Ni | 0.58** | 0.58** | 0.58** | 0.43* | 0.24 |
Pb | -0.30 | -0.31 | -0.31 | 0.05 | 0.23 |
Zn | 0.08 | 0.08 | 0.08 | 0.33 | 0.43* |
[1] |
BANERJEE S, SCHLAEPPI K, VANDER HEIJDEN M G A, 2018 Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 16(9): 567-576.
DOI URL |
[2] |
CREAMER R, HANNULA S E, VAN J P, et al., 2016. Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe[J]. Applied Soil Ecology, 97: 112-124.
DOI URL |
[3] |
FAN K K, DELGADO-BAQUERIZO M, GUO X S, et al., 2020, Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment[J]. Soil Biology & Biochemistry, DOI: 10.1016/j.soilbio.2019.107679.
DOI |
[4] |
HAO T W, XIANG P Y, MACKEY H R, et al., 2014. A review of biological sulfate conversions in wastewater treatment[J]. Water Research, 65: 1-21.
DOI URL |
[5] |
ILIOPOULOS D, MALIZOS K N, OIKONOMOU P, et al., 2008. Integrative micro RNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks[J]. Plos One, 3(11): e3740.
DOI URL |
[6] |
JI J, KAKADE A, YU Z S, et al., 2020. Anaerobic membrane bioreactors for treatment of emerging contaminants: A review[J]. Journal of Environmental Management, DOI: 10.1016/j.jenvman.2020.110913.
DOI |
[7] |
LIU J W, ZHU S Q, LIU X Y, et al., 2020. Spatiotemporal dynamics of the archaeal community in coastal sediments: Assembly process and co-occurrence relationship[J]. ISME Journal, 14(6): 1463-1478.
DOI URL |
[8] |
MGANGA K Z, RAZAVI B S, KUZYAKOV Y, 2016. Land use affects soil biochemical properties in Mt. Kilimanjaro region[J]. Catena, 141: 22-29.
DOI URL |
[9] |
RIME T, HARTMANN M, BRUNNER I, et al., 2015. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield[J]. Molecular Ecology, 24(5): 1091-1108.
DOI URL |
[10] |
ROMERO-FREIRE A, MINGUEZ L, PELLETIER M, et al., 2018. Assessment of baseline ecotoxicity of sediments from a prospective mining area enriched in light rare earth elements[J]. Science of The Total Environment, 612: 831-839.
DOI URL |
[11] |
TANG K, BASKARAN V, NeEMATI M, 2009. Bacteria of the sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries[J]. Biochemical Engineering Journal, 44(1):73-94.
DOI URL |
[12] | WANG H X, JIANG L Y, WU X W, et al., 2011. Isolation, identification and degradation characteristics of a sulfide-oxidizing bacterium[J]. Applied and Environmental Biology, 17(5): 706-710. |
[13] | WANG Z, LUO Y F, ZHENG C L, et al., 2020. Spatial distribution, source identification, and risk assessment of heavy metals in the soils from a mining region: a case study of Bayan Obo in northwestern China[J]. Human and Ecological Risk Assessment 6: 1-20. |
[14] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社. |
BAO S D, 2000. Soil agrochemical analysis[M] 3rd edition. Beijing: China Agricultural Press. | |
[15] | 陈朝阳, 2011. 南平市植烟土壤pH状况及其与土壤有效养分的关系[J]. 中国农学通报, 27(5): 149-153. |
CHEN C Y, 2011. The relationships of pH and available nutrient in Nanping Tobacco-growing soil[J]. Chinese Agricultural Science Bulletin, 27(5): 149-153. | |
[16] | 陈光哲, 姜星宇, 胡洋, 等, 2020. 不同营养程度湖泊中细菌群落组成及其分子生态网络特征[J]. 环境科学研究, 33(2): 375-384. |
CHEN G Z, JIANG X Y, HU Y, et al., 2020. Characteristics of bacterial communities and their co-occurrence networks in Lake Ecosystem with different trophic states[J]. Research of Environmental Sciences, 33(2): 375-384. | |
[17] | 陈俊松, 杨渐, 蒋宏忱, 2020. 湖泊硫循环微生物研究进展[J]. 微生物学报, 60(6): 1177-1191. |
CHEN J S, YANG J, JIANG H C, 2020. Research progress on microbes involved in lacustrine sulfurcycling[J]. Acta Microbiologica Sinica, 60(6): 1177-1191. | |
[18] | 陈熙, 刘以珍, 李金前, 等, 2016. 稀土尾矿土壤细菌群落结构对植被修复的响应[J]. 生态学报, 36(13): 3943-3950. |
CHEN X, LIU Y Z, LI J Q, et al., 2016. Response of a rare earth tailing soil bacterial community structure to vegetation restoration[J]. Acta Ecologica Sinica, 36(13): 3943-3950. | |
[19] | 黄健, 朱旭炎, 陆金, 等, 2019. 狮子山矿区不同土地利用类型对土壤微生物群落多样性的影响[J]. 环境科学, 40(12): 5550-5560. |
HUANG J, ZHU X Y, LU J, et al., 2019. Effects of Different Land Use Types on Microbial Community Diversity in the Shizishan mining Area[J]. Environmental Science, 40(12): 5550-5560. | |
[20] | 李冰, 李玉双, 魏建兵, 等, 2020. 不同土地利用方式对土壤细菌分子生态网络的影响[J]. 环境科学, 41(3): 1456-165. |
LI B, LI Y S, WEI J B, et al., 2020. Effects of different land use typess on the molecular ecological network of soil bacteria[J]. Environmental Science, 41(3): 1456-165. | |
[21] | 李大乐, 陈建文, 张红, 等, 2021. 铜污染对土壤细菌群落结构及重金属抗性基因的影响[J]. 环境科学学报, 41(3): 1082-1090. |
LI D L, CHEN J W, ZHANG H, et al., 2021. Effects of copper pollution on soil bacterial community structure and heavy metal resistance genes[J]. Acta Scientiae Circumstantiae, 41(3): 1082-1090. | |
[22] | 李启艳, 翁炳霖, 李宗勋, 等, 2019. 稀土矿废弃地植被恢复过程中土壤微生物演变[J]. 中国环境科学, 39(10): 4360-4368. |
LI Q Y, WEN B L, LI Z X, et al., 2019. Soil physicochemical characteristics and microbial evolution during vegetation restoration in ionic rare earth ore heap leaching waste land[J]. China Environmental Science, 39(10): 4360-4368. | |
[23] | 刘胜洪, 张雅君, 杨妙贤, 等, 2014. 稀土尾矿区土壤重金属污染与优势植物累积特征[J]. 生态环境学报, 23(6): 1042-1045. |
LIU S H, ZHANG Y J, YANG M X, et al., 2014. Heavy metal contamination of soil and concentration of dominant plants in rare earth mine tailing area[J]. Ecology and Environmental Sciences, 23(6): 1042-1045. | |
[24] | 任仲宇, 于原晨, 闫振丽, 等, 2016. 稀土矿开采过程中重金属铅活化过程分析[J]. 中国稀土学报, 34(2): 252-256. |
REN Z Y, YU Y C, YAN Z L, et al., 2016. Simulation study of activation of lead in extraction of ionic rare earth ore[J]. Journal of the Chinese Society of Rare Earth, 34(2): 252-256. | |
[25] | 师艳丽, 张萌, 姚娜, 等, 2020. 江西定南县离子型稀土尾矿周边水体氮污染状况与分布特征[J]. 环境科学研究, 33(1): 94-103. |
SHI Y L, ZHANG M, YAO N, et al., 2020. Water Pollution status and nitrogen pollution distribution patterns around ion absorbed rare earth tailings in Dingnan County, Jiangxi Province[J]. Research of Environmental Sciences, 33(1): 94-103. | |
[26] | 王丙烁, 黄益宗, 王农, 等, 2018. 镍污染土壤修复技术研究进展[J]. 农业环境科学学报, 37(11): 2392-2402. |
WANG B S, HUANG Y Z, WANG N, et al., 2018. Advances in research on remediation technology of nickel-contaminated soil[J]. Journal of AgroEnvironment Science, 37(11): 2392-2402. | |
[27] | 王继玥, 刘燕, 刘勇, 等, 2018. 基于高通量测序检测Pb污染对三叶草根际土壤细菌多样性的影响[J]. 环境科学研究, 31(1): 102-110. |
WANG J Y, LIU Y, LIU Y, et al., 2018. Effect of lead pollution on bacterial diversity in rhizosphere of clover based on high throughput sequencing[J]. Research of Environmental Sciences, 31(1): 102-110. | |
[28] | 王友生, 侯晓龙, 蔡丽平, 等, 2017. 稀土开采对土壤细菌群落组成与多样性的影响[J]. 中国环境科学, 37(8): 3089-3095. |
WANG Y S, HOU X L, CAI L P, et al., 2014. Impacts of rare earth mining on soil bacterial community composition and biodiversity[J]. China Environmental Science, 37(8): 3089-3095. | |
[29] | 杨尚东, 吴俊, 赵久成, 等, 2013. 番茄青枯病罹病植株和健康植株根际土壤理化性状及生物学特性的比较[J]. 中国蔬菜 (22): 64-69. |
YANG S D, WU J, ZHAO J C, et al., 2013. Physical, chemical and biological characteristics analysis of rhizosphere soils between infected plants of tomato bacterial wilt and non-infected plants[J]. China Vegetables 22: 64-69. | |
[30] | 于方明, 姚亚威, 谢冬煜, 等, 2020. 泗顶矿区6种土地利用类型土壤微生物群落结构特征[J]. 中国环境科学, 40(5): 2262-2269. |
YU F M, YAO Y W, XIE D Y, et al., 2020. Study on the soil microbial community structure associated with six land use in Siding mining area[J]. China Environmental Science, 40(5): 2262-2269. | |
[31] | 张旭博, 徐梦, 史飞, 2020. 藏东南林芝地区典型农业土地利用方式对土壤微生物群落特征的影响[J]. 农业环境科学学报, 39(2): 331-342. |
ZHANG X B, XU M, SHI F, 2020. Impact of typical agricultural land use on the characteristics of soil microbial communities in the Nyingchi region of southeastern Tibet[J]. Journal of AgroEnvironment Science, 39(2): 331-342. | |
[32] | 中华人民共和国生态环境部, 2016. 土壤和沉积物 12 种金属元素的测定王水提取-电感耦合等离子体质谱法[M]. 北京: 中国环境科学出版社: 1-19. |
Ministry of Environmental Protection of the People's Republic of China, 2016. Soil and sediment-Determination of aqua regia extracts of 12 metal elements-Inductively coupled plasma mass spectrometry[M]. Beijing: China Environmental Science Press: 1-19. | |
[33] | 周彩云, 张嵚, 赵小敏, 等, 2019. 赣南某原地浸析稀土尾矿复垦前后土壤质量变化[J]. 农业资源与环境学报, 36(1): 89-95. |
ZHOU C Y, ZHANG Q, ZHAO X M, et al., 2019. Soil quality changes of rare earth tailings before and after reclamation in south Jiangxi Province, China[J]. Journal of Agricultural Resources and Environment, 36(1): 89-95. |
[1] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[2] | FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil [J]. Ecology and Environment, 2023, 32(4): 776-783. |
[3] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[4] | QIN Hao, LI Mengai, GAO Jin, CHEN Kailong, ZHANG Yinbo, ZHANG Feng. Composition and Diversity of Soil Bacterial Communities in Shrub at Different Altitudes in Luya Mountain [J]. Ecology and Environment, 2023, 32(3): 459-468. |
[5] | XIAO Jieyun, ZHOU Wei, SHI Peiqi. Hyperspectral Inversion of Soil Heavy Metals [J]. Ecology and Environment, 2023, 32(1): 175-182. |
[6] | HAUNG Hong, ZHENG Xinyun, LI Yingdong, ZHAO Xu, YU Jinchen, WANG Zhenhua. A study on Enrichment of Heavy Metals in Sebastiscus marmoratus at Different Ages in Dachen Islands Sea Area [J]. Ecology and Environment, 2022, 31(9): 1885-1891. |
[7] | MA Chuang, WANG Yuyang, ZHOU Tong, WU Longhua. Enrichment Characteristics and Desorption Behavior of Cadmium and Zinc in Particulate Organic Matter of Polluted Soil [J]. Ecology and Environment, 2022, 31(9): 1892-1900. |
[8] | WANG Lixiao, LIU Jinxian, CHAI Baofeng. Response of Soil Bacterial Community and Nitrogen Cycle during the Natural Recovery of Abandoned Farmland in Subalpine of the North China [J]. Ecology and Environment, 2022, 31(8): 1537-1546. |
[9] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[10] | LI Ying, ZHANG Zhou, YANG Gaoming, ZU Yanqun, LI Bo, CHEN Jianjun. The Relationship between the Radial Oxygen Loss and the Iron Plaque on Root Surfaces to Wetland Plants Absorb Heavy Metals [J]. Ecology and Environment, 2022, 31(8): 1657-1666. |
[11] | CAI Guojun, YUAN Guixiang, FU Hui. Status and Trends on Ecological Networks Research: A Review Based on Bibliometric Analysis [J]. Ecology and Environment, 2022, 31(8): 1690-1699. |
[12] | LUO Songying, LI Qiuxia, QIU Jinkun, DENG Suyan, LI Yifeng, CHEN Bishan. Speciation Characteristics, Migration and Transformation of Heavy Metals in Mangrove Soil-plant System in Nansan Island [J]. Ecology and Environment, 2022, 31(7): 1409-1416. |
[13] | DONG Leheng, WANG Xugang, CHEN Manjia, WANG Zihao, SUN Lirong, SHI Zhaoyong, Wu Qiqi. Interaction of Iron Redox and Cu Activities in Calcareous Paddy Soil under Light and Dark Condition [J]. Ecology and Environment, 2022, 31(7): 1448-1455. |
[14] | PENG Hongli, TAN Haixia, WANG Ying, WEI Jianmei, FENG Yang. The Discrepancy of Heavy Metals Morphological Distribution in Soil and Its Associated Ecological Risk Evaluation under Different Planting Patterns [J]. Ecology and Environment, 2022, 31(6): 1235-1243. |
[15] | HUANG Min, ZHAO Xiaofeng, LIANG Rongxiang, WANG Pengzhong, DAI Anran, HE Xiaoman. Comparison of Three Chelating Agents to Remove the Cd and Cu in Contaminated Soil [J]. Ecology and Environment, 2022, 31(6): 1244-1252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn