Ecology and Environment ›› 2025, Vol. 34 ›› Issue (3): 368-379.DOI: 10.16258/j.cnki.1674-5906.2025.03.004
• Papers on Carbon Cycling and Carbon Emission Reduction • Previous Articles Next Articles
ZHOU Lele1(), WAN Xia2, DING Liming2,*(
), WEI Xingyu2, WANG Jianping2, CHEN Jing2, LI Xin2, FAN Min1, LI Meng1, YU Xiaobin1
Received:
2024-09-04
Online:
2025-03-18
Published:
2025-03-24
Contact:
DING Liming
周乐乐1(), 万霞2, 丁黎明2,*(
), 魏星宇2, 王建平2, 陈静2, 李鑫2, 樊敏1, 黎猛1, 喻萧斌1
通讯作者:
丁黎明
作者简介:
周乐乐(2000年生),女,硕士研究生,从事区域生态系统管理与规划研究。E-mail: zll17378716769@163.com
基金资助:
CLC Number:
ZHOU Lele, WAN Xia, DING Liming, WEI Xingyu, WANG Jianping, CHEN Jing, LI Xin, FAN Min, LI Meng, YU Xiaobin. Study on the Spatial Distribution Characteristics of Carbon Emission-Sequestration and Carbon Supply-demand Ratio in Sichuan Province[J]. Ecology and Environment, 2025, 34(3): 368-379.
周乐乐, 万霞, 丁黎明, 魏星宇, 王建平, 陈静, 李鑫, 樊敏, 黎猛, 喻萧斌. 四川省碳排放-碳储存与碳供需比空间分布特征研究[J]. 生态环境学报, 2025, 34(3): 368-379.
数据类型 | 数据来源 | 数据信息 |
---|---|---|
四川省土地利用数据 及行政边界 | 中国科学院地理科学与资源研究网站 ( | 市(州)、区(县)边界四川省2023年土地利用数据 |
估算四川省第一产业 碳排放 | 《四川统计年鉴》(2023) | 化肥、农药、农膜等使用量;玉米、水稻、大豆和稻田的种植面积;马、羊、驴、骡等头数 |
估算四川省第二、 三产业碳排放 | 《四川统计年鉴》(2023) | 第二、三产业的终端能源消耗量,包括原煤、燃料油、洗煤、柴油、原油、汽油、煤油、焦炭、液化石油气、天然气 |
影响碳排放的 社会经济驱动因素 | 《四川统计年鉴》(2023) | 人口、GDP、城镇化率、人口密度、第一产业GDP、第二产业GDP、第三产业GDP、化肥施用量、农村用电量等 |
影响碳储存的 自然驱动因素 | 气温: 国家青藏高原科学数据中心( 降水量: 国家地球系统科学数据中心( 坡度: 国家地理空间数据云( NPP、NDVI: 中国科学院资源环境科学数据中心( | 气温、降水量、坡度、归一化差异植被指数、净初级生产力 |
Table 1 Data sources applied in this study
数据类型 | 数据来源 | 数据信息 |
---|---|---|
四川省土地利用数据 及行政边界 | 中国科学院地理科学与资源研究网站 ( | 市(州)、区(县)边界四川省2023年土地利用数据 |
估算四川省第一产业 碳排放 | 《四川统计年鉴》(2023) | 化肥、农药、农膜等使用量;玉米、水稻、大豆和稻田的种植面积;马、羊、驴、骡等头数 |
估算四川省第二、 三产业碳排放 | 《四川统计年鉴》(2023) | 第二、三产业的终端能源消耗量,包括原煤、燃料油、洗煤、柴油、原油、汽油、煤油、焦炭、液化石油气、天然气 |
影响碳排放的 社会经济驱动因素 | 《四川统计年鉴》(2023) | 人口、GDP、城镇化率、人口密度、第一产业GDP、第二产业GDP、第三产业GDP、化肥施用量、农村用电量等 |
影响碳储存的 自然驱动因素 | 气温: 国家青藏高原科学数据中心( 降水量: 国家地球系统科学数据中心( 坡度: 国家地理空间数据云( NPP、NDVI: 中国科学院资源环境科学数据中心( | 气温、降水量、坡度、归一化差异植被指数、净初级生产力 |
类别 | 碳源因子 | αI, i | 单位 | 参考来源 |
---|---|---|---|---|
农用物资与农地利用碳排放 | 柴油 | 0.593 | kg∙kg−1 | IPCC, |
农药 | 4.934 | kg∙kg−1 | 智静等, | |
农膜 | 5.180 | kg∙kg−1 | 伍芬琳等, | |
化肥 | 0.896 | kg∙kg−1 | West et al., | |
灌溉 | 266.480 | kg∙hm−2 | ||
农作物种植碳排放 | 玉米土壤 N2O排放 | 458.976 | kg∙hm−2 | 白建军, 邱子健等, IPCC, |
大豆土壤 N2O排放 | 139.578 | |||
稻田CH4排放 | 5.667 | |||
水稻土壤 N20排放 | 43.508 | |||
牲畜养殖碳排放 | 马 | 133.945 | kg∙(头∙年)−1 | |
驴、骡 | 74.338 | |||
山羊 | 35.259 | |||
绵羊 | 35.123 |
Table 2 Agricultural carbon emission coefficient and its sources
类别 | 碳源因子 | αI, i | 单位 | 参考来源 |
---|---|---|---|---|
农用物资与农地利用碳排放 | 柴油 | 0.593 | kg∙kg−1 | IPCC, |
农药 | 4.934 | kg∙kg−1 | 智静等, | |
农膜 | 5.180 | kg∙kg−1 | 伍芬琳等, | |
化肥 | 0.896 | kg∙kg−1 | West et al., | |
灌溉 | 266.480 | kg∙hm−2 | ||
农作物种植碳排放 | 玉米土壤 N2O排放 | 458.976 | kg∙hm−2 | 白建军, 邱子健等, IPCC, |
大豆土壤 N2O排放 | 139.578 | |||
稻田CH4排放 | 5.667 | |||
水稻土壤 N20排放 | 43.508 | |||
牲畜养殖碳排放 | 马 | 133.945 | kg∙(头∙年)−1 | |
驴、骡 | 74.338 | |||
山羊 | 35.259 | |||
绵羊 | 35.123 |
能源类型 | 碳排放系数(αi) | 能源折标煤系数(ηi) |
---|---|---|
煤 | 0.748 t∙t−1 | 0.714 kg∙kg−1 |
焦炭 | 0.113 t∙t−1 | 0.971 kg∙kg−1 |
原油 | 0.585 t∙t−1 | 1.429 kg∙kg−1 |
燃油 | 0.618 t∙t−1 | 1.429 kg∙kg−1 |
汽油 | 0.553 t∙t−1 | 1.471 kg∙kg−1 |
煤油 | 0.342 t∙t−1 | 1.471 kg∙kg−1 |
柴油 | 0.591 t∙t−1 | 1.457 kg∙kg−1 |
天然气 | 0.448 t∙t−1 | 13.30 t∙10−4 m3 |
电 | 2.213 t∙t−1 | 1.230 t∙10−4 kWh |
Table 3 Energy conversion coefficient and carbon emission coefficient of energy suppliers
能源类型 | 碳排放系数(αi) | 能源折标煤系数(ηi) |
---|---|---|
煤 | 0.748 t∙t−1 | 0.714 kg∙kg−1 |
焦炭 | 0.113 t∙t−1 | 0.971 kg∙kg−1 |
原油 | 0.585 t∙t−1 | 1.429 kg∙kg−1 |
燃油 | 0.618 t∙t−1 | 1.429 kg∙kg−1 |
汽油 | 0.553 t∙t−1 | 1.471 kg∙kg−1 |
煤油 | 0.342 t∙t−1 | 1.471 kg∙kg−1 |
柴油 | 0.591 t∙t−1 | 1.457 kg∙kg−1 |
天然气 | 0.448 t∙t−1 | 13.30 t∙10−4 m3 |
电 | 2.213 t∙t−1 | 1.230 t∙10−4 kWh |
土地利用类型 | Sk, a | Sk, b | Sk, d | Sk, s | 参考文献 |
---|---|---|---|---|---|
耕地 | 2.75 | 0 | 12.04 | 0 | 罗怀良, 文雯等, |
林地 | 29.1 | 19.41 | 32.1 | 2.82 | 罗怀良, |
草地 | 11.61 | 7.74 | 14.25 | 0.68 | 张秀等, |
水域 | 0 | 0 | 2.5 | 0 | 解宪丽等, |
建设用地 | 0 | 0 | 8.8 | 0 | Li et al., |
未利用地 | 2.63 | 1.75 | 7.52 | 0 | 李裕元等, |
Table 4 Values of carbon density for each land use types t?hm?2
土地利用类型 | Sk, a | Sk, b | Sk, d | Sk, s | 参考文献 |
---|---|---|---|---|---|
耕地 | 2.75 | 0 | 12.04 | 0 | 罗怀良, 文雯等, |
林地 | 29.1 | 19.41 | 32.1 | 2.82 | 罗怀良, |
草地 | 11.61 | 7.74 | 14.25 | 0.68 | 张秀等, |
水域 | 0 | 0 | 2.5 | 0 | 解宪丽等, |
建设用地 | 0 | 0 | 8.8 | 0 | Li et al., |
未利用地 | 2.63 | 1.75 | 7.52 | 0 | 李裕元等, |
变量 | 英文缩写 | 单位 | |
---|---|---|---|
影响碳排放的社会经济驱动因素 | 人口 | POP | 万人 |
城镇化率 | UR | ‒ | |
人口密度 | PD | ‒ | |
国内生产总值 | GDP | 亿元 | |
第一产业生产总值 | PI | 亿元 | |
第一产业在总GDP中的占比 | P_PI | ‒ | |
第二产业生产总值 | SI | 亿元 | |
第二产业在总GDP中的占比 | P_SI | ‒ | |
第三产业生产总值 | TI | 亿元 | |
第三产业在总GDP中的占比 | P_TI | ‒ | |
化肥施用量 | FAR | 104 t | |
农村用电量 | REC | 亿千瓦时 | |
耕地灌溉面积 | CIA | 103 km2 | |
影响碳储存的自然驱动因素 | 气温 | Tem | ℃ |
降水量 | Pre | mm | |
坡度 | Slope | m | |
归一化差异植被指数 | NDVI | ‒ | |
净初级生产力 | NPP | g∙m−2 |
Table 5 Influencing factor variables of carbon emission
变量 | 英文缩写 | 单位 | |
---|---|---|---|
影响碳排放的社会经济驱动因素 | 人口 | POP | 万人 |
城镇化率 | UR | ‒ | |
人口密度 | PD | ‒ | |
国内生产总值 | GDP | 亿元 | |
第一产业生产总值 | PI | 亿元 | |
第一产业在总GDP中的占比 | P_PI | ‒ | |
第二产业生产总值 | SI | 亿元 | |
第二产业在总GDP中的占比 | P_SI | ‒ | |
第三产业生产总值 | TI | 亿元 | |
第三产业在总GDP中的占比 | P_TI | ‒ | |
化肥施用量 | FAR | 104 t | |
农村用电量 | REC | 亿千瓦时 | |
耕地灌溉面积 | CIA | 103 km2 | |
影响碳储存的自然驱动因素 | 气温 | Tem | ℃ |
降水量 | Pre | mm | |
坡度 | Slope | m | |
归一化差异植被指数 | NDVI | ‒ | |
净初级生产力 | NPP | g∙m−2 |
[1] | ANSELIN L, 1995. Local indicators of spatial association—LISA[J]. Geographical Analysis, 27(2): 93-115. |
[2] | CASE M J, JOHNSON B G, BARTOWITZ K J, et al., 2021. Forests of the future: Climate change impacts and implications for carbon storage in the Pacific Northwest, USA[J]. Forest Ecology and Management, 482: 118886. |
[3] | HAO D H, Li G Z, Wang D R, 2012. Research on carbon emissions estimation and decomposition of industry in Hebei Province[J]. Advanced Materials Research, 518: 4941-4947. |
[4] | HUO T F, LI X H, CAI W G, et al., 2020. Exploring the impact of urbanization on urban building carbon emissions in China: Evidence from a provincial panel data model[J]. Sustainable Cities and Society, 56: 102068. |
[5] | Intergovernmental Panel on Climate Change. 2007. IPCC Guidelines for National Greenhouse Gas Inventories 1.1 Introductions[M]. Geneva: IPCC Press: 37-39. |
[6] | IPCC, 2019. Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems[R]. Geneva: Intergovernmental Panel on Climate Change. |
[7] | JANIZADEH S, PAL S C, SAHA A, et al., 2021. Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future[J]. Journal of Environmental Management, 298: 113551. |
[8] | LI J Y, LI S S, 2020. Energy investment, economic growth and carbon emissions in China—Empirical analysis based on spatial Durbin model[J]. Energy Policy, 140: 111425. |
[9] | LI K M, CAO J J, ADAMOWSKI J F, et al., 2021. Assessing the effects of ecological engineering on spatiotemporal dynamics of carbon storage from 2000 to 2016 in the Loess Plateau area using the InVEST model: A case study in Huining County, China[J]. Environmental Development, 39: 100641. |
[10] | LIANG X Y, FAN M, XIAO Y T, et al., 2022. Temporal-spatial characteristics of energy-based carbon dioxide emissions and driving factors during 2004-2019, China[J]. Energy, 261(Part A): 124965. |
[11] | MARQUARDT D W, 1970. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation[J]. Technometrics, 12(3): 591-612. |
[12] | PRIESS J A, DE KONING G H J, VELDKAMP A, 2001. Assessment of interactions between land use change and carbon and nutrient fluxes in Ecuador[J]. Agriculture, Ecosystems & Environment, 85(1-3): 269-279. |
[13] | SABATER-LIESA L, GINEBREDA A, BARCEL D, 2018. Shifts of environmental and phytoplankton variables in a regulated river: A spatial-driven analysis[J]. Science of the Total Environment, 642: 968-978. |
[14] |
WEST T O, MARLAND G, 2002. Net carbon flux from agricultural ecosystems: Methodology for full carbon cycle analyses[J]. Environmental Pollution, 116(3): 439-444.
PMID |
[15] | ZHANG C Y, ZHAO L, ZHANG H T, et al., 2022. Spatial-temporal characteristics of carbon emissions from land use change in Yellow River Delta region, China[J]. Ecological Indicators, 136: 108623. |
[16] | ZHANG Y Q, TANG Y H, JIANG J, et al., 2007. Characterizing the dynamics of soil organic carbon in grasslands on the Qinghai-Tibetan Plateau[J]. Science in China Series D: Earth Sciences, 50(1): 113-120. |
[17] | 白建军, 2014. 我国农业碳排放水平的区域差异和影响因素分析[D]. 无锡: 江南大学. |
BAI J J, 2014. Analysis of Regional Difference and Affecting Factors of China’s Agricultural Carbon Emission Level[D]. Wuxi: Jiangnan University. | |
[18] | 陈军华, 李乔楚, 2021. 成渝双城经济圈建设背景下四川省能源消费碳排放影响因素研究——基于LMDI模型视角[J]. 生态经济, 37(12): 30-36. |
CHEN J H, LI Q C, 2021. Research on the influencing factors of energy consumption carbon emission in Sichuan province under the background of the construction of Chengdu-Chongqing double city economic circle from the perspective of LMDI method[J]. Ecological Economy, 37(12): 30-36. | |
[19] |
邓吉祥, 刘晓, 王铮, 2014. 中国碳排放的区域差异及演变特征分析与因素分解[J]. 自然资源学报, 29(2): 189-200.
DOI |
DENG J X, LIU X, WANG Z, 2014. Characteristics analysis and factor decomposition based on the regional difference changes in China’s CO2 emission[J]. Journal of Natural Resources, 29(2): 189-200. | |
[20] | 范大莎, 杨旭, 吴相利, 等, 2017. 东北三省农田生态系统碳排放时空分异特征及驱动因素研究[J]. 环境科学学报, 37(7): 2797-2804. |
FAN D S, YANG X, WU X L, et al., 2017. Spatial-temporal differentiation of agro-ecosystem carbon emissions in northeast China and its driving factors[J]. Acta Scientiae Circumstantiae, 37(7): 2797-2804. | |
[21] | 方林, 李灿锋, 李浩杰, 等, 2022. 长江经济带土地利用碳排放时空效应及驱动力[J]. 草业科学, 39(12): 2539-2553. |
FANG L, LI C F, LI H J, et al., 2022. Analysis of the spatiotemporal effects and driving factors of land use carbon emissions in the Yangtze River Economic Belt[J]. Pratacultural Science, 39(12): 2539-2553. | |
[22] |
郝蕾, 翟涌光, 戚文超, 等, 2023. 2001-2020年内蒙古植被碳源/碳汇时空动态及对气候因子的响应[J]. 生态环境学报, 32(5): 825-834.
DOI |
HAO L, ZHAI Y G, QI W C, et al., 2023. Spatial-temporal dynamics of vegetation carbon sources/sinks in Inner Mongolia from 2001 to 2020 and its response to climate change[J]. Ecology and Environmental Sciences, 32(5): 825-834. | |
[23] | 黄汉志, 贾俊松, 刘淑婷, 等, 2023. 2000-2020年长江经济带碳汇时空演变及影响因素分析[J]. 环境科学研究, 36(8): 1564-1576. |
HUANG H Z, JIA J S, LIU S T, et al., 2023. Analysis of Spatial-Temporal Evolution and Influencing Factors of Carbon Sinksin Yangtze River Economic Belt from 2000 to 2020[J]. Research of Environmental Sciences, 36(8): 1564-1576. | |
[24] | 解宪丽, 孙波, 周慧珍, 等, 2004. 中国土壤有机碳密度和储量的估算与空间分布分析[J]. 土壤学报, 41(1): 35-43. |
XIE X L, SUN B, ZHOU H Z, et al., 2004. Organic carbon density and storage in soils of China and spatial analysis[J]. Acta Pedologica Sinica, 41(1): 35-43. | |
[25] | 靳珍, 赵璟, 2024. 西部地区城市群空间结构调整的经济增长效应: 基于动态空间计量模型的检验[J]. 西部经济管理论坛, 35(4): 38-53, 96. |
JIN Z, ZHAO J, 2024. The economic growth effect of the adjustment of urban agglomeration spatial structure in western China: A test based on dynamic spatial econometric model[J]. West Forum on Economy and Management, 35(4): 38-53, 96. | |
[26] | 柯钦华, 周俏薇, 庄宝怡, 等, 2024. 基于生态系统服务供需平衡的粤港澳大湾区生态安全格局构建[J]. 生态学报, 44(5): 1765-1779. |
KE Q H, ZHOU Q W, ZHUANG B Y, et al., 2024. Construction of ecological security pattern in Guangdong-Hong Kong-Macao Greater Bay Area based on the balance of ecosystem services supply and demand[J]. Acta Ecologica Sinica, 44(5): 1765-1779. | |
[27] | 赖力, 2010. 中国土地利用的碳排放效应研究[D]. 南京: 南京大学. |
LAI L, 2010. Carbon emission effect of land use in China[D]. Nanjing: Nanjing University. | |
[28] | 李国志, 李宗植, 2010. 中国二氧化碳排放的区域差异和影响因素研究[J]. 中国人口∙资源与环境, 20(5): 22-27. |
LI G Z, LI Z Z, 2010. Regional difference and influence factors of China’s carbon dioxide emissions[J]. China Population, Resources and Environment, 20(5): 22-27. | |
[29] | 李建豹, 张彩莉, 陈红梅, 等, 2024. 盐城市县域碳汇时空特征及其影响因素[J/OL]. 环境科学, 1-15 [2024-11-20]. https://doi.org/10.13227/j.hjkx.202404023. |
LI J B, ZHANG C L, CHEN H M, et al., 2024. Spatiotemporal Characteristics and Influencing Factors of Carbon Sinks at the County Level in Yancheng Cities[J/OL]. Environmental Science, 1-15 [2024-11-20]. https://doi.org/10.13227/j.hjkx.202404023. | |
[30] |
李若玮, 叶冲冲, 王毅, 等, 2021. 基于InVEST模型的青藏高原碳储量估算及其驱动力分析[J]. 草地学报, 29(S1): 43-51.
DOI |
LI R W, YE C C, WANG Y, et al., 2021. Carbon storage estimation and its drivering force analysis based on InVEST model in the Tibetan Plateau[J]. Acta Agrestia Sinica, 29(S1): 43-51. | |
[31] | 李裕元, 邵明安, 郑纪勇, 等, 2007. 黄土高原北部草地的恢复与重建对土壤有机碳的影响[J]. 生态学报, 27(6): 2279-2287. |
LI Y Y, SHAO M A, ZHENG J Y, et al., 2007. Impact of grassland recovery and reconstruction on soil organic carbon in the northern Loess Plateau[J]. Acta Ecologica Sinica, 27(6): 2279-2287. | |
[32] | 刘洋, 张军, 周冬梅, 等, 2021. 基于InVEST模型的疏勒河流域碳储量时空变化研究[J]. 生态学报, 41(10): 4052-4065. |
LIU Y, ZHANG J, ZHOU D M, et al., 2021. Temporal and spatial variation of carbon storage in the Shule River Basin based on InVEST model[J]. Acta Ecologica Sinica, 41(10): 4052-4065. | |
[33] | 罗怀良, 2014. 中国农田作物植被碳储量研究进展[J]. 生态环境学报, 23(4): 692-697. |
LUO H L, 2014. Advances on carbon storage in crops of China[J]. Ecology and Environmental Sciences, 23(4): 692-697. | |
[34] | 邱子健, 靳红梅, 高南, 等, 2022. 江苏省农业碳排放时序特征与趋势预测[J]. 农业环境科学学报, 41(3): 658-669. |
QIU Z J, JIN H M, GAO N, et al., 2021. Temporal characteristics and trend prediction of agricultural carbon emission in Jiangsu Province, China[J]. Journal of Agro-Environment Science, 41(3): 658-669. | |
[35] | 孙美荣, 张维诚, 2021. 森林生态学研究进展-气候变化下的森林碳水耦合[J]. 林业和草原机械, 2(6): 38-41, 26. |
SUN M R, ZHANG W C, 2021. Advances in forest ecology: Forest carbon-water coupling under climate change[J]. Forestry and Grassland Machinery, 2(6): 38-41, 26. | |
[36] |
王成武, 罗俊杰, 唐鸿湖, 2023. 基于InVEST模型的太行山沿线地区生态系统碳储量时空分异驱动力分析[J]. 生态环境学报, 32(2): 215-225.
DOI |
WANG C W, LUO J J, TANG H H, 2023. Analysis on the driving force of spatial and temporal differentiation of carbon storage in the Taihang Mountains Based on InVEST model[J]. Ecology and Environmental Sciences, 32(2): 215-225. | |
[37] | 王雅楠, 赵涛, 2016. 基于GWR模型中国碳排放空间差异研究[J]. 中国人口∙资源与环境, 26(2): 27-34. |
WANG Y N, ZHAO T, 2016. Study on spatial difference of carbon emissions in China based on GWR model[J]. China Population, Resources and Environment, 26(2): 27-34. | |
[38] | 文雯, 周宝同, 汪亚峰, 等, 2015. 黄土高原羊圈沟小流域土地利用时空变化的土壤有机碳效应[J]. 生态学报, 35(18): 6060-6069. |
WEN W, ZHOU B T, WANG Y F, et al., 2015. Effects of spatio-temporal changes of land-use on soil organic carbon in Yangjuangou watershed in Loess Plateau, China[J]. Acta Ecologica Sinica, 35(18): 6060-6069. | |
[39] | 伍芬琳, 李琳, 张海林, 等, 2007. 保护性耕作对农田生态系统净碳释放量的影响[J]. 生态学杂志 (12): 2035-2039. |
WU F L, LI L, ZHANG H L, et al., 2007. Impact of conservation tillage on net carbon emissions in farmland ecosystems[J]. Chinese Journal of Ecology (12): 2035-2039. | |
[40] |
吴胜义, 王飞, 徐干君, 等, 2022. 川西北高山峡谷区森林碳储量及空间分布研究——以四川洛须自然保护区为例[J]. 生态环境学报, 31(9): 1735-1744.
DOI |
WU S Y, WANG F, XU G J F, et al., 2022. Study on forest carbon storage and spatial distribution in the alpine gorge region of northwest Sichuan: Take Sichuan Luoxu Nature Reserve as an example[J]. Ecology and Environmental Sciences, 31(9): 1735-1744. | |
[41] | 阎晓, 2019. 西南地区农业碳排放的时空特征及影响因素[J]. 广东蚕业, 53(9): 32-36. |
YAN X, 2019. Spatiotemporal characteristics and influencing factors of agricultural carbon emissions in southwest China[J]. Guangdong Sericulture, 53(9): 32-36. | |
[42] | 杨庆媛, 2010. 土地利用变化与碳循环[J]. 中国土地科学, 24(10): 7-12. |
YANG Q Y, 2010. Land use changes and the carbon cycling[J]. China Land Science, 24(10): 7-12. | |
[43] | 义欣, 张正勇, 刘琳, 等, 2024. 聚类分析视角下的中国省域碳排放时空格局及驱动因素分析[J]. 生态学报, 44(11): 4558-4573. |
YI X, ZHANG Z Y, LIU L, et al., 2024. Spatiotemporal pattern and driving factors of carbon emissions in Chinese provinces from the perspective of cluster analysis[J]. Acta Ecologica Sinica, 44(11): 4558-4573. | |
[44] | 张凯琪, 陈建军, 侯建坤, 等, 2022. 耦合InVEST与GeoSOS-FLUS模型的桂林市碳储量可持续发展研究[J]. 中国环境科学, 42(6): 2799-2809. |
ZHANG K Q, CHEN J J, HOU J K, et al., 2022. Study on sustainable development of carbon storage in Guilin coupled with InVEST and GeoSOS-FLUS model[J]. China Environmental Science, 42(6): 2799-2809. | |
[45] | 张万刚, 2023. 气候变化对祁连山冻土区碳过程的影响及其生态环境效应[J]. 农业灾害研究, 13(8): 34-36. |
ZHANG W G, 2023. Impact of climate change on carbon process and its ecological environment effect in Qilian Mountains permafrost region[J]. Journal of Agricultural Catastrophology, 13(8): 34-36. | |
[46] | 张秀, 张璇, 崔磊, 等, 2024. 金沙江中游水电开发区生态系统服务综合功能时空变化与归因[J/OL]. 环境科学, 1-21 [2024-11-20]. https://doi.org/10.13227/j.hjkx.202402105. |
ZHANG X, ZHANG X, CUI L, et al., 2024. Comprehensive ecosystem service changes and their drivers in the middle reaches of Jinsha River[J/OL]. Environmental Science, 1-21 [2024-11-20]. https://doi.org/10.13227/j.hjkx.202402105. | |
[47] | 智静, 高吉喜, 2009. 中国城乡居民食品消费碳排放对比分析[J]. 地理科学进展, 28(3): 429-434. |
ZHI J, GAO J X, 2009. Analysis of carbon emission caused by food consumption in urban and rural inhabitants in China[J]. Progress in Geography, 28(3): 429-434.
DOI |
[1] | SHEN Jialong, WU Lihong, LI Linshuang, ZHOU Yuanfang, YANG Xiaomin. Effects of Land Uses on Soil Organic Carbon Fractions and Their Carbon Sequestration in a Typical Karst Small Mountain Watershed [J]. Ecology and Environment, 2025, 34(3): 358-367. |
[2] | TANG Shuya, WANG Chunhui, SONG Jing, LI Gang. Characteristics and Risk Assessment of Soil Heavy Metal Pollution in the Xiangshan Bay Area [J]. Ecology and Environment, 2024, 33(11): 1768-1781. |
[3] | YANG Xianfang, CHEN Zhao, ZHENG Lin, WAN Zhiwei, CHEN Yonglin, WANG Yuandong. Characteristics and Network of Soil Bacterial Communities in Different Land Use Types in Rare Earth Mining Areas [J]. Ecology and Environment, 2022, 31(4): 793-801. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 83
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 113
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn