Ecology and Environment ›› 2024, Vol. 33 ›› Issue (11): 1768-1781.DOI: 10.16258/j.cnki.1674-5906.2024.11.011
• Research Article [Environmental Science] • Previous Articles Next Articles
TANG Shuya1,2,3,4(), WANG Chunhui1,3,4, SONG Jing1,4,*(
), LI Gang1,3,4
Received:
2024-04-22
Online:
2024-11-18
Published:
2024-12-06
Contact:
SONG Jing
唐舒娅1,2,3,4(), 王春辉1,3,4, 宋靖1,4,*(
), 李刚1,3,4
通讯作者:
宋靖
作者简介:
唐舒娅(1999年生),女,硕士研究生,从事区域土壤环境质量与安全研究。E-mail: sytang@iue.ac.cn
基金资助:
CLC Number:
TANG Shuya, WANG Chunhui, SONG Jing, LI Gang. Characteristics and Risk Assessment of Soil Heavy Metal Pollution in the Xiangshan Bay Area[J]. Ecology and Environment, 2024, 33(11): 1768-1781.
唐舒娅, 王春辉, 宋靖, 李刚. 环象山港区域土壤重金属污染特征及风险评估[J]. 生态环境学报, 2024, 33(11): 1768-1781.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.11.011
土地利用类型 | pH | w(SOM)/(g·kg-1) | MC/% | w(NH4+-N)/(mg·kg-1) | w(NO3--N)/(mg·kg-1) | w(TN)/(g·kg-1) |
---|---|---|---|---|---|---|
耕地 | 5.70±0.940b | 47.2±12.3b | 20.3±4.51a | 54.2±18.1b | 58.4±25.6a | 3.04±0.490a |
林地 | 5.03±0.330c | 58.6±16.4a | 19.2±4.04a | 68.2±23.5a | 17.6±7.90b | 3.07±0.570a |
建设用地 | 6.60±0.820a | 44.0±11.0b | 16.1±2.56b | 45.0±15.2c | 36.5±17.6a | 2.95±0.390a |
Table 1 Physical and chemical indicators of topsoil
土地利用类型 | pH | w(SOM)/(g·kg-1) | MC/% | w(NH4+-N)/(mg·kg-1) | w(NO3--N)/(mg·kg-1) | w(TN)/(g·kg-1) |
---|---|---|---|---|---|---|
耕地 | 5.70±0.940b | 47.2±12.3b | 20.3±4.51a | 54.2±18.1b | 58.4±25.6a | 3.04±0.490a |
林地 | 5.03±0.330c | 58.6±16.4a | 19.2±4.04a | 68.2±23.5a | 17.6±7.90b | 3.07±0.570a |
建设用地 | 6.60±0.820a | 44.0±11.0b | 16.1±2.56b | 45.0±15.2c | 36.5±17.6a | 2.95±0.390a |
Er | RI | 污染评价 |
---|---|---|
Er<40 | RI<60 | 轻微 |
40≤Er<80 | 60≤RI<130 | 中等 |
80≤Er<160 | 130≤RI<250 | 强 |
160≤Er<320 | RI>250 | 很强 |
Er ≥320 | 极强 |
Table 2 Assessment of heavy metal ecological risks based on single and comprehensive index
Er | RI | 污染评价 |
---|---|---|
Er<40 | RI<60 | 轻微 |
40≤Er<80 | 60≤RI<130 | 中等 |
80≤Er<160 | 130≤RI<250 | 强 |
160≤Er<320 | RI>250 | 很强 |
Er ≥320 | 极强 |
土地利用类型 | 统计因子 | Cu | Zn | As | Cr | Ni | Pb | Cd | Mn |
---|---|---|---|---|---|---|---|---|---|
耕地 (n=89) | 最大值 | 81.6 | 183 | 32.4 | 214 | 146 | 122 | 0.51 | 2.05×103 |
最小值 | 7.16 | 55.8 | 1.49 | 10.5 | 4.64 | 22.5 | 0.08 | 94.2 | |
中位数 | 22.2 | 96.9 | 18.8 | 33.9 | 12.4 | 38.7 | 0.2 | 484 | |
平均值 | 24.6 | 100 | 17.4 | 44.9 | 20.6 | 42.7 | 0.21 | 554 | |
标准差 | 10.4 | 27.0 | 8.40 | 32.2 | 20.4 | 15.9 | 0.08 | 338 | |
变异系数 | 42.3 | 27.0 | 48.2 | 71.8 | 98.8 | 37.2 | 39.2 | 61.0 | |
林地 (n=55) | 最大值 | 44.2 | 244 | 30.4 | 113 | 73.7 | 138 | 0.72 | 1.71×103 |
最小值 | 4.70 | 33.3 | 1.32 | 5.03 | 2.65 | 19.8 | 0.06 | 115 | |
中位数 | 12.1 | 82.1 | 16.8 | 25.3 | 10.6 | 31.3 | 0.15 | 502 | |
平均值 | 14.2 | 92.7 | 15.5 | 28.5 | 12.9 | 41.1 | 0.18 | 616 | |
标准差 | 9.53 | 41.5 | 7.37 | 20.6 | 11.1 | 25.3 | 0.1 | 377 | |
变异系数 | 66.9 | 44.8 | 47.4 | 72.3 | 86.0 | 61.4 | 57.7 | 61.2 | |
建设用地 (n=72) | 最大值 | 126 | 664 | 34.9 | 110 | 42.7 | 254 | 0.9 | 1.59×103 |
最小值 | 7.45 | 47.5 | 3.43 | 9.51 | 5.00 | 18.2 | 0.06 | 152 | |
中位数 | 18.6 | 99.0 | 14.2 | 35.5 | 16.5 | 35.7 | 0.16 | 773 | |
平均值 | 21.6 | 120 | 14.6 | 39.2 | 17.5 | 46.3 | 0.2 | 811 | |
标准差 | 15.9 | 85.2 | 8.25 | 18.1 | 7.08 | 36.9 | 0.15 | 286 | |
变异系数 | 73.4 | 71.2 | 56.6 | 46.2 | 40.4 | 79.7 | 73.7 | 35.3 | |
三门湾沿岸背景值*1) | 23.6 | 84.7 | 9.50 | 71.9 | 32.3 | 31.6 | 0.11 | ‒ | |
宁波市土壤背景值** 2) | 23.1 | 86.6 | 5.75 | 56.1 | 20.7 | 36.2 | 0.16 | 571 | |
全国土壤背景值***3) | 22.6 | 74.2 | 11.2 | 61.0 | 26.9 | 26.0 | 0.1 | 583 |
Table 3 Descriptive statistics of heavy metal concentrations in soils under different land use types g·kg-1
土地利用类型 | 统计因子 | Cu | Zn | As | Cr | Ni | Pb | Cd | Mn |
---|---|---|---|---|---|---|---|---|---|
耕地 (n=89) | 最大值 | 81.6 | 183 | 32.4 | 214 | 146 | 122 | 0.51 | 2.05×103 |
最小值 | 7.16 | 55.8 | 1.49 | 10.5 | 4.64 | 22.5 | 0.08 | 94.2 | |
中位数 | 22.2 | 96.9 | 18.8 | 33.9 | 12.4 | 38.7 | 0.2 | 484 | |
平均值 | 24.6 | 100 | 17.4 | 44.9 | 20.6 | 42.7 | 0.21 | 554 | |
标准差 | 10.4 | 27.0 | 8.40 | 32.2 | 20.4 | 15.9 | 0.08 | 338 | |
变异系数 | 42.3 | 27.0 | 48.2 | 71.8 | 98.8 | 37.2 | 39.2 | 61.0 | |
林地 (n=55) | 最大值 | 44.2 | 244 | 30.4 | 113 | 73.7 | 138 | 0.72 | 1.71×103 |
最小值 | 4.70 | 33.3 | 1.32 | 5.03 | 2.65 | 19.8 | 0.06 | 115 | |
中位数 | 12.1 | 82.1 | 16.8 | 25.3 | 10.6 | 31.3 | 0.15 | 502 | |
平均值 | 14.2 | 92.7 | 15.5 | 28.5 | 12.9 | 41.1 | 0.18 | 616 | |
标准差 | 9.53 | 41.5 | 7.37 | 20.6 | 11.1 | 25.3 | 0.1 | 377 | |
变异系数 | 66.9 | 44.8 | 47.4 | 72.3 | 86.0 | 61.4 | 57.7 | 61.2 | |
建设用地 (n=72) | 最大值 | 126 | 664 | 34.9 | 110 | 42.7 | 254 | 0.9 | 1.59×103 |
最小值 | 7.45 | 47.5 | 3.43 | 9.51 | 5.00 | 18.2 | 0.06 | 152 | |
中位数 | 18.6 | 99.0 | 14.2 | 35.5 | 16.5 | 35.7 | 0.16 | 773 | |
平均值 | 21.6 | 120 | 14.6 | 39.2 | 17.5 | 46.3 | 0.2 | 811 | |
标准差 | 15.9 | 85.2 | 8.25 | 18.1 | 7.08 | 36.9 | 0.15 | 286 | |
变异系数 | 73.4 | 71.2 | 56.6 | 46.2 | 40.4 | 79.7 | 73.7 | 35.3 | |
三门湾沿岸背景值*1) | 23.6 | 84.7 | 9.50 | 71.9 | 32.3 | 31.6 | 0.11 | ‒ | |
宁波市土壤背景值** 2) | 23.1 | 86.6 | 5.75 | 56.1 | 20.7 | 36.2 | 0.16 | 571 | |
全国土壤背景值***3) | 22.6 | 74.2 | 11.2 | 61.0 | 26.9 | 26.0 | 0.1 | 583 |
重金属 | 因子载荷 | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
Cu | 0.81 | -0.02 | -0.40 | -0.02 |
Zn | 0.67 | 0.52 | -0.18 | 0.09 |
As | 0.41 | -0.38 | -0.11 | 0.79 |
Cr | 0.77 | -0.51 | 0.01 | -0.29 |
Ni | 0.76 | -0.54 | 0.07 | -0.27 |
Pb | 0.26 | 0.68 | -0.05 | -0.06 |
Cd | 0.53 | 0.68 | 0.03 | -0.03 |
Mn | 0.54 | 0.13 | 0.79 | 0.15 |
特征值 | 3.09 | 1.92 | 0.83 | 0.82 |
方差贡献率/% | 38.6 | 24.0 | 10.4 | 10.2 |
累积方差贡献率/% | 38.6 | 62.5 | 72.9 | 83.1 |
Table 4 Results of principal component analysis of soil heavy metals
重金属 | 因子载荷 | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
Cu | 0.81 | -0.02 | -0.40 | -0.02 |
Zn | 0.67 | 0.52 | -0.18 | 0.09 |
As | 0.41 | -0.38 | -0.11 | 0.79 |
Cr | 0.77 | -0.51 | 0.01 | -0.29 |
Ni | 0.76 | -0.54 | 0.07 | -0.27 |
Pb | 0.26 | 0.68 | -0.05 | -0.06 |
Cd | 0.53 | 0.68 | 0.03 | -0.03 |
Mn | 0.54 | 0.13 | 0.79 | 0.15 |
特征值 | 3.09 | 1.92 | 0.83 | 0.82 |
方差贡献率/% | 38.6 | 24.0 | 10.4 | 10.2 |
累积方差贡献率/% | 38.6 | 62.5 | 72.9 | 83.1 |
土地利用类型 | 项目 | Cu | Zn | As | Cr | Ni | Pb | Cd | Mn |
---|---|---|---|---|---|---|---|---|---|
耕地 (n=89) | 最大值 | 17.7 | 2.11 | 56.4 | 7.65 | 14.1 | 16.9 | 95.5 | 3.59 |
最小值 | 1.55 | 0.64 | 2.59 | 0.37 | 0.45 | 3.10 | 15.0 | 0.16 | |
中位数 | 5.31 | 1.16 | 30.3 | 1.60 | 1.99 | 5.90 | 40.14 | 0.97 | |
平均值 | 4.81 | 1.12 | 32.6 | 1.21 | 1.20 | 5.34 | 37.2 | 0.85 | |
标准差 | 2.25 | 0.31 | 14.6 | 1.15 | 1.97 | 2.20 | 15.7 | 0.59 | |
风险等级 | S | S | S | S | S | S | M | S | |
林地 (n=55) | 最大值 | 9.56 | 2.82 | 52.9 | 4.03 | 7.12 | 19.0 | 135 | 2.99 |
最小值 | 1.02 | 0.38 | 2.29 | 0.18 | 0.26 | 2.73 | 10.5 | 0.20 | |
中位数 | 3.08 | 1.07 | 27.0 | 1.02 | 1.25 | 5.68 | 34.1 | 1.08 | |
平均值 | 2.62 | 0.95 | 29.2 | 0.90 | 1.02 | 4.32 | 28.4 | 0.88 | |
标准差 | 2.06 | 0.48 | 12.8 | 0.73 | 1.07 | 3.49 | 19.7 | 0.66 | |
风险等级 | S | S | S | S | S | S | S | S | |
建设用地 (n=72) | 最大值 | 27.4 | 7.67 | 60.7 | 3.91 | 4.13 | 35.0 | 1.70×103 | 2.79 |
最小值 | 1.61 | 0.55 | 5.96 | 0.34 | 0.48 | 2.52 | 10.7 | 0.27 | |
中位数 | 4.67 | 1.38 | 25.4 | 1.40 | 1.69 | 6.39 | 37.8 | 1.42 | |
平均值 | 4.03 | 1.14 | 24.7 | 1.26 | 1.60 | 4.93 | 29.6 | 1.35 | |
标准差 | 3.43 | 0.98 | 14.4 | 0.65 | 0.68 | 5.09 | 27.8 | 0.50 | |
风险等级 | S | S | S | S | S | S | S | S |
Table 5 Single factor potential ecological risk index (Er) of soil heavy metals
土地利用类型 | 项目 | Cu | Zn | As | Cr | Ni | Pb | Cd | Mn |
---|---|---|---|---|---|---|---|---|---|
耕地 (n=89) | 最大值 | 17.7 | 2.11 | 56.4 | 7.65 | 14.1 | 16.9 | 95.5 | 3.59 |
最小值 | 1.55 | 0.64 | 2.59 | 0.37 | 0.45 | 3.10 | 15.0 | 0.16 | |
中位数 | 5.31 | 1.16 | 30.3 | 1.60 | 1.99 | 5.90 | 40.14 | 0.97 | |
平均值 | 4.81 | 1.12 | 32.6 | 1.21 | 1.20 | 5.34 | 37.2 | 0.85 | |
标准差 | 2.25 | 0.31 | 14.6 | 1.15 | 1.97 | 2.20 | 15.7 | 0.59 | |
风险等级 | S | S | S | S | S | S | M | S | |
林地 (n=55) | 最大值 | 9.56 | 2.82 | 52.9 | 4.03 | 7.12 | 19.0 | 135 | 2.99 |
最小值 | 1.02 | 0.38 | 2.29 | 0.18 | 0.26 | 2.73 | 10.5 | 0.20 | |
中位数 | 3.08 | 1.07 | 27.0 | 1.02 | 1.25 | 5.68 | 34.1 | 1.08 | |
平均值 | 2.62 | 0.95 | 29.2 | 0.90 | 1.02 | 4.32 | 28.4 | 0.88 | |
标准差 | 2.06 | 0.48 | 12.8 | 0.73 | 1.07 | 3.49 | 19.7 | 0.66 | |
风险等级 | S | S | S | S | S | S | S | S | |
建设用地 (n=72) | 最大值 | 27.4 | 7.67 | 60.7 | 3.91 | 4.13 | 35.0 | 1.70×103 | 2.79 |
最小值 | 1.61 | 0.55 | 5.96 | 0.34 | 0.48 | 2.52 | 10.7 | 0.27 | |
中位数 | 4.67 | 1.38 | 25.4 | 1.40 | 1.69 | 6.39 | 37.8 | 1.42 | |
平均值 | 4.03 | 1.14 | 24.7 | 1.26 | 1.60 | 4.93 | 29.6 | 1.35 | |
标准差 | 3.43 | 0.98 | 14.4 | 0.65 | 0.68 | 5.09 | 27.8 | 0.50 | |
风险等级 | S | S | S | S | S | S | S | S |
项目 | RI | 占比/% | |||||
---|---|---|---|---|---|---|---|
最小值 | 最大值 | 均值 | 轻微风险 | 中等风险 | 强风险 | ||
耕地 | 42.3 | 152 | 87.4 | 10.1 | 84.3 | 5.62 | |
林地 | 20.3 | 207 | 74.3 | 27.3 | 70.9 | 1.82 | |
建设用地 | 28.0 | 204 | 80.1 | 30.6 | 62.5 | 6.94 |
Table 6 Comprehensive potential ecological risk Index (RI) of heavy metals in soil of different land uses
项目 | RI | 占比/% | |||||
---|---|---|---|---|---|---|---|
最小值 | 最大值 | 均值 | 轻微风险 | 中等风险 | 强风险 | ||
耕地 | 42.3 | 152 | 87.4 | 10.1 | 84.3 | 5.62 | |
林地 | 20.3 | 207 | 74.3 | 27.3 | 70.9 | 1.82 | |
建设用地 | 28.0 | 204 | 80.1 | 30.6 | 62.5 | 6.94 |
[1] |
AHMAD W, ALHARTHY R D, ZUBAIR M, et al., 2021. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk[J]. Scientific Reports, 11(1): 17006.
DOI PMID |
[2] |
AN Q, WU Y, WANG J, et al., 2010. Assessment of dissolved heavy metal in the Yangtze River estuary and its adjacent sea, China[J]. Environmental Monitoring and Assessment, 164(1-4): 173-187.
DOI PMID |
[3] | BARSOVA N, YAKIMENKO O, TOLPESJTA I, et al., 2019. Current state and dynamics of heavy metal soil pollution in Russian Federation: A review[J]. Environmental Pollution, 249: 200-207. |
[4] | BROWN S G, EBERLY S, PAATERO P, et al., 2015. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results[J]. Science of the Total Environment, 518-519: 626-635. |
[5] |
FU Z S, XI S H, 2020. The effects of heavy metals on human metabolism[J]. Toxicology Mechanisms and Methods, 30(3): 167-176.
DOI PMID |
[6] |
GAO X, CHEN C A, 2012. Heavy metal pollution status in surface sediments of the coastal Bohai Bay[J]. Water Research, 46(6): 1901-1911.
DOI PMID |
[7] | GRANT C A, SHEPPARD S C, 2008. Fertilizer impacts on cadmium availability in agricultural soils and crops[J]. Human and Ecological Risk Assessment, 14(2): 210-228. |
[8] |
HU W Y, WANG H F, DONG L R, et al., 2018. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach[J]. Environmental Pollution, 237: 650-661.
DOI PMID |
[9] | ISLAM M S, AHMED M K, AL-MAMUN M H, et al., 2019. Sources and Ecological Risks of Heavy Metals in Soils Under Different Land Uses in Bangladesh[J]. Pedosphere, 29(5): 665-675. |
[10] | KIRAN, BHARTI R, SHARMA R, 2022. Effect of heavy metals: An overview[J]. Materials Today: Proceedings, 51(Part 1): 880-885. |
[11] |
LIU M, CHEN J B, SUN X S, et al., 2019. Accumulation and transformation of heavy metals in surface sediments from the Yangtze River estuary to the East China Sea shelf[J]. Environmental Pollution, 245: 111-121.
DOI PMID |
[12] | LÜ J S, LIU Y, ZHANG Z L, et al., 2015. Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach[J]. Journal of Soils and Sediments, 15(1): 163-178. |
[13] | NI J Y, YUAN C, ZHENG J, et al., 2022. Distributions, contamination level and ecological risk of heavy metals in surface sediments from intertidal zone of the Sanmen Bay, East China[J]. Journal of Sea Research, 190: 102302. |
[14] |
RAJA R, NAYAK A K, RAO K S, et al., 2014. Effect of fly ash deposition on photosynthesis, growth and yield of rice[J]. Bulletin of Environmental Contamination and Toxicology, 93(1): 106-112.
DOI PMID |
[15] | SU C W, SONG Y, UMAR M, 2021. Financial aspects of marine economic growth: From the perspective of coastal provinces and regions in China[J]. Ocean & Coastal Management, 204: 105550. |
[16] | WANG C L, ZOU X Q, FENG Z Y, et al., 2018. Distribution and transport of heavy metals in estuarine - inner shelf regions of the East China Sea[J]. Science of the Total Environment, 644: 298-305. |
[17] | WANG R, ZHANG C, HUANG X T, et al., 2020. Distribution and source of heavy metals in the sediments of the coastal East China sea: Geochemical controls and typhoon impact[J]. Environmental Pollution, 260: 113936. |
[18] |
XIAO R, GUO D, ALI A, et al., 2019. Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China[J]. Environmental Pollution, 248: 349-357.
DOI PMID |
[19] | YANG S Y, HE M J, ZHI Y Y, et al., 2019. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities[J]. Environment International, 133(Part B): 105239. |
[20] | ZHAI B, ZHANG X L, WANG L B, et al., 2021. Concentration distribution and assessment of heavy metals in surface sediments in the Zhoushan Islands coastal sea, East China Sea[J]. Marine Pollution Bulletin, 164: 112096. |
[21] | ZHANG A G, WANG L L, ZHAO S L, et al., 2017. Heavy metals in seawater and sediments from the northern Liaodong Bay of China: Levels, distribution and potential risks[J]. Regional Studies in Marine Science, 11: 32-42. |
[22] | ZHANG M, SUN X, XU J L, 2020. Heavy metal pollution in the East China Sea: A review[J]. Marine Pollution Bulletin, 159: 111473. |
[23] |
ZHAO B, WANG X, JIN H, et al., 2018. Spatiotemporal variation and potential risks of seven heavy metals in seawater, sediment, and seafood in Xiangshan Bay, China (2011-2016)[J]. Chemosphere, 212: 1163-1171.
DOI PMID |
[24] | ZHUANG W, ZHOU F X, 2021. Distribution, source and pollution assessment of heavy metals in the surface sediments of the Yangtze River Estuary and its adjacent East China Sea[J]. Marine Pollution Bulletin, 164: 112002. |
[25] | 陈明, 王琳玲, 曹柳, 等, 2023. 基于PMF模型的某铅锌冶炼城市降尘重金属污染评价及来源解析[J]. 环境科学, 44(6): 3450-3462. |
CHEN M, WANG L L, CAO L, et al., 2023. Pollution assessment and source analysis of heavy metals in atmospheric deposition in a lead-zinc smelting city Based on PMF model[J]. Environmental Science, 44(6): 3450-3462. | |
[26] | 崔莹, 2015. 元素分析仪测定土壤, 沉积物样品碳氮含量的影响因素及数据校正[J]. 分析测试技术与仪器, 21(3): 176-179. |
CUI Y, 2015. Effect factor and data calculation of carbon and nitrogen content of soil and sediment determined by element analyzer[J]. Analysis and Testing Technology and Instruments, 21(3): 176-179. | |
[27] | 陈志凡, 化艳旭, 徐薇, 等, 2020. 基于正定矩阵因子分析模型的城郊农田重金属污染源解析[J]. 环境科学学报, 40(1): 276-283. |
CHEN Z F, HUA Y X, XU W, et al., 2020. Analysis of heavy metal pollution sources in suburban farmland based on positive definite matrix factor model[J]. Acta Scientiae Circumstantiae, 40(1): 276-283. | |
[28] | 代恒美, 杨力, 郭子毓, 等, 2022. 喀斯特山区某磷化工厂周边农田土壤重金属污染及健康风险评价[J]. 环境与健康杂志, 39(2): 71-77. |
DAI H M, YANG L, GUO Z Y, et al., 2022. Heavy metal pollution and health risk assessment of farmland soil around a phosphating plant in karst mountainous area[J]. Journal of Environment and Health, 39(2): 71-77. | |
[29] |
狄乾斌, 徐礼祥, 2020. 中国海洋经济创新发展的时空差异[J]. 资源与产业, 22(3): 65-73.
DOI |
DI Q B, XU L X, 2020. Temporal-spatial variance of innovative development of China’s marine economy[J]. Resources & Industries, 22(3): 65-73. | |
[30] | 董岩翔, 郑文, 周建华, 2007. 浙江省土壤地球化学背景值[M]. 北京: 地质出版社. |
DONG Y X, ZHENG W, ZHOU J H, 2007. Soil geochemical background in Zhejiang[M]. Beijing: Geology Press. | |
[31] | 冯辉强, 2010. 象山港生态环境修复治理探讨[J]. 海洋开发与管理, 27(9): 54-57. |
FENG H Q, 2010. Discussion on ecological environment restoration and management of Xiangshan Port[J]. Ocean Development and Management, 27(9): 54-57. | |
[32] | 冯乙晴, 刘灵飞, 肖辉林, 等, 2017. 深圳市典型工业区土壤重金属污染特征及健康风险评价[J]. 生态环境学报, 26(6): 1051-1058. |
FENG Y Q, LIU L F, XIAO H L, et al., 2017. Pollution characteristics and health risk assessment of heavy metals in soil of typical industrial district of Shenzhen[J]. Ecology and Environment Sciences, 26(6): 1051-1058. | |
[33] | 侯青叶, 杨忠芳, 余涛, 2020. 中国土壤地球化学参数[M]. 北京: 地质出版社. |
HOU Q Y, YANG Z F, YU T, 2020. Soil geochemical parameters in China[M]. Beijing: Geology Press. | |
[34] | 黄勇, 段续川, 袁国礼, 等, 2022. 北京市延庆区土壤重金属元素地球化学特征及其来源分析[J]. 现代地质, 36(2): 634-644. |
HUANG Y, DUAN X C, YUAN G L, et al., 2022. Geochemistry and source identification of heavy metals in the top and subsoil of yanqing district in Beijing[J]. Geoscience, 36(2): 634-644. | |
[35] | 中华人民共和国环境保护部, 2016. 土壤和沉积物12种金属元素的测定王水提取-电感耦合等离子体质谱法: HJ 803—2016[S]. 北京: 中国环境科学出版社: 1-10. |
Ministry of Environmental Protection of the People's Republic of China, 2016. Soil and sediment-Determination of aqua regia extracts of 12 metal elements-Inductively coupled plasma mass spectrometry: HJ 803—2016[S]. Beijing: China Environmental Science Press: 1-10. | |
[36] | 李超群, 田宗平, 曹健, 等, 2016. 锰矿石在非冶金工业领域的应用[J]. 中国锰业, 34(6): 91-95. |
LI C Q, TIAN Z P, CAO J, et al., 2016. An application of manganese ore in non-metallurgy[J]. China’s Manganese Industry, 34(6): 91-95. | |
[37] | 李梦婷, 沈城, 吴健, 等, 2021. 快速城市化区域不同用地类型土壤重金属含量分布特征及生态风险[J]. 环境科学, 42(10): 4889-4896. |
LI M T, SHEN C, WU J, et al., 2021. Content and ecological risks of heavy metals in soil with different land uses in a rapidly urbanizing area[J]. Environmental Science, 42(10): 4889-4896. | |
[38] | 李其林, 王显军, 2004. 汽车尾气对土壤和蔬菜中铅含量的影响[J]. 生态环境, 13(1): 17-18. |
LI Q L, WANG X J, 2004. Influence of vehicle exhaust on the contents of Pb in soil and vegetables[J]. Ecology and Environment, 13(1): 17-18. | |
[39] | 梁家辉, 田亦琦, 费杨, 等, 2023. 华北典型工矿城镇土壤重金属来源解析及潜在生态风险评价[J]. 环境科学, 44(10): 5657-5665. |
LIANG J H, TIAN Y Q, FEI Y, et al., 2023. Source Apportionment and potential ecological risk assessment of soil heavy metals in typical industrial and mining towns in North China[J]. Environmental Science, 44(10): 5657-5665. | |
[40] | 吕红亮, 周霞, 张文新, 等, 2021. 基于土地利用变化的长江经济带生态风险研究[J]. 北京师范大学学报(自然科学版), 57(4): 517-523. |
LÜ H L, ZHOU X, ZHANG W X, et al., 2021. Ecological risks associated with changes in land use in the Yangtze River Economic Belt[J]. Journal of Beijing Normal University (Natural Science), 57(4): 517-523. | |
[41] |
吕建树, 2021. 烟台海岸带土壤重金属定量源解析及空间预测[J]. 地理学报, 76(3): 713-725.
DOI |
LÜ J S, 2021. Source apportionment and spatial prediction of heavy metals in soils of Yantai coastal zone[J]. Acta Geographica Sinica, 76(3): 713-725.
DOI |
|
[42] | 吕伟伟, 姚昕, 张保华, 等, 2019. 基于地统计学分析的太湖颗粒态和溶解态氮、磷营养盐时空分布特征及来源分析[J]. 环境科学, 40(2): 590-602. |
LÜ W W, YAO X, ZHANG B H, et al., 2019. Temporal-spatial distribution of nitrogen and phosphorus nutrients in Lake Taihu based on geostatistical analysis[J]. Environmental Science, 40(2): 590-602. | |
[43] | 司海青, 姚艳敏, 王德营, 等, 2015. 含水率对土壤有机质含量高光谱估算的影响[J]. 农业工程学报, 31(9): 114-120. |
SI H Q, YAO Y M, WANG D Y, et al., 2015. Hyperspectral prediction of soil organic matter contents under different soil moisture contents[J]. Transactions of the CSAE, 31(9): 114-120. | |
[44] | 田元, 曹珂, 印萍, 等, 2023. 三门湾沿岸土壤潜在有毒元素分布、来源及环境风险评价[J]. 海洋地质前沿, 39(6): 32-45. |
TIAN Y, CAO K, YIN P, et al., 2023. Distribution, sources and environmental risk assessment on potential toxic elements in soils along coast of Sanmen Bay[J]. Marine Geology Frontiers, 39(6): 32-45. | |
[45] | 陶真鹏, 徐宗恒, 丁俊楠, 等, 2022. 基于不同方法的林下土壤有机质含量测定[J]. 科学技术与工程, 22(10): 3892-3901. |
TAO Z P, XU Z H, DING J N, et al., 2022. Determination of soil organic matter content under forest based on different methods[J]. Science Technology and Engineering, 22(10): 3892-3901. | |
[46] | 王磊, 汪文东, 刘懂, 等, 2020. 象山港流域入湾河流水体中重金属风险评价及其来源解析[J]. 环境科学, 41(7): 3194-3203. |
WANG L, WANG W D, LIU D, et al., 2020. Risk Assessment and source analysis of heavy metals in the river of a typical bay watershed[J]. Environmental Science, 41(7): 3194-3203. | |
[47] | 肖凯琦, 徐宏根, 甘杰, 等, 2024. 湘西南部地区土壤重金属污染溯源分析及环境质量评价[J]. 环境科学, 45(3): 1760-1768. |
XIAO K Q, XU H G, GAN J, et al., 2024. Traceability analysis and environmental quality assessment of soil heavy metal pollution in southwest Hunan Province[J]. Environmental Science, 45(3): 1760-1768. | |
[48] | 徐磊, 管继云, 巴永, 等, 2024. 云南中高山丘陵区土壤重金属元素空间分布格局及驱动机制[J]. 中国地质, 51(1): 304-326. |
XU L, GUAN J Y, BA Y, et al., 2024. Spatial distribution pattern and driving mechanism of heavy metal elements in soils in middle-alpine hilly region, Yunnan Province[J]. Geology in China, 51(1): 304-326. | |
[49] | 徐争启, 倪师军, 庹先国, 等, 2008. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 31(2): 112-115. |
XU Z Q, NI S J, TUO X G, et al., 2008. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 31(2): 112-115. | |
[50] | 杨振宇, 廖超林, 邹炎, 等, 2023. 湘东北典型河源区土壤重金属分布特征、来源解析及潜在生态风险评价[J]. 环境科学, 44(9): 5288-5298. |
YANG Z Y, LIAO C L, ZOU Y, et al., 2023. Distribution characteristics, source analysis and potential ecological risk assessment of soil heavy metals in typical river source areas of Northeastern Hunan Province[J]. Environmental Science, 44(9): 5288-5298. | |
[51] | 尹昌霞, 马仁锋, 毛菁旭, 2021. 滨海地区三生空间冲突的时空评测及优化[J]. 上海国土资源, 42(2): 78-84. |
YIN C X, MA R F, MAO J X, 2021. Spatial-temporal evaluation and optimization of spatial conflictin ecologicalproduction-living spaces of coastal region[J]. Shanghai Land & Resources, 42(2): 78-84. | |
[52] | 中华人民共和国国土资源部, 2014. 多目标区域地球化学调查规范(1꞉250000): DZ/T 0258—2014[S]. 北京: 中国标准出版社: 3-7. |
Ministry of Land and Resources of the People's Republic of China, 2014. Specifications of multi-purpose regional geochemical survey (1꞉250000): DZ/T 0258—2014[S]. Beijing: Standards Press of China: 3-7. | |
[53] | 中华人民共和国国土资源部, 2016. 土地质量地球化学评价规范: DZ/T 0295—2016[S]. 北京: 地质出版社: 5-15 |
Ministry of Land and Resources of the People's Republic of China, 2016. Determination of land Quality Geochemical Evaluation: DZ/T 0295—2016[S]. Beijing: Geological Publishing House: 5-15 | |
[54] | 朱立安, 曾清苹, 柳勇, 等, 2020. 佛山城市典型森林群落土壤重金属分布、流通及枯落物富集特征[J]. 生态学报, 40(13): 4659-4669. |
ZHU L A, CENG Q P, LIU Y, et al., 2020. Heavy metals distribution and circulation in soils and their enrichment characteristics by litter in urban typical forest communities in Foshan, China[J]. Acta Ecological Sinica, 40(13): 4659-4669. | |
[55] | 朱强, 马丽, 马强, 等, 2012. 不同浸提剂以及保存方法对土壤矿质氮测定的影响[J]. 中国生态农业学报, 20(2): 138-143. |
ZHU Q, MA L, MA Q, et al., 2012. Content of soil mineral nitrogen as influenced by sample extraction and preservation[J]. Chinese Journal of Eco-Agriculture, 20(2): 138-143. |
[1] | LIU Dongyi, QU Yonghua, FENG Yaowei, QU Ran. Research on Chromium Ion Content Inversion of GF-5 Satellite Images Based on Grid Search Optimization CatBoost Model [J]. Ecology and Environment, 2024, 33(9): 1460-1470. |
[2] | WU Wenwei, SHEN Cheng, SHA Chenyan, LIN Kuangfei, WU Jian, XIE Yuqing, ZHOU Xuan. Soil Heavy Metal Enrichment Characteristics, Risk Assessment, and Source Analysis in Redevelopment Areas during Urban Industrial Plots [J]. Ecology and Environment, 2024, 33(5): 791-801. |
[3] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[4] | HUANG Guofeng, HE Bin, XIE Zhiyi, LIU Jun, WANG Anhou, LIAO Tong, WANG Bojin, HAO Beibei. Impact of Agricultural Pollution on Water Environment and Its Spatial Differentiation pattern in Guangdong Province [J]. Ecology and Environment, 2023, 32(12): 2207-2215. |
[5] | XU Ming, ZHANG Fuying, SUN Lulu, ZHOU Zengxing, LIN Chaoba, ZHU Xuezhu. Pollution Characteristics, Source Analysis and Correlation of Biological Factors of Polycyclic Aromatic Hydrocarbons in Soils of Industrial Areas in Beijing-Tianjin-Hebei Region [J]. Ecology and Environment, 2023, 32(11): 1952-1963. |
[6] | XIAO Jieyun, ZHOU Wei, SHI Peiqi. Hyperspectral Inversion of Soil Heavy Metals [J]. Ecology and Environment, 2023, 32(1): 175-182. |
[7] | SHI Wenjing, ZHOU Hanpeng, SUN Tao, HUANG Jintao, YANG Wenhuan, LI Weiping. Research on Priority Control Factors and Health Risk Assessment of Heavy Metal Pollution in Soil Around Mining Areas [J]. Ecology and Environment, 2022, 31(8): 1616-1628. |
[8] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environment, 2022, 31(8): 1629-1636. |
[9] | ZHU Li, YAN Huaizhong, SUN Youmin, FAN Jing, LIU Guanghui, ZHNG Guiqin. Characteristics and Source Identification of Dust Precipitates in A Typical Heavy Industry Area in Shandong [J]. Ecology and Environment, 2022, 31(7): 1393-1399. |
[10] | SHI Jianfei, JIN Zhengzhong, ZHOU Zhibin, WANG Xin. Evaluation of Heavy Metal Pollution in the Soil Around A Typical Tailing Reservoir in Irtysh River Basin [J]. Ecology and Environment, 2022, 31(5): 1015-1023. |
[11] | YANG Xianfang, CHEN Zhao, ZHENG Lin, WAN Zhiwei, CHEN Yonglin, WANG Yuandong. Characteristics and Network of Soil Bacterial Communities in Different Land Use Types in Rare Earth Mining Areas [J]. Ecology and Environment, 2022, 31(4): 793-801. |
[12] | LIU Di, SU Chao, ZHANG Hong, QIN Guanyu. Pollution Characteristics and Risk Assessment of Heavy Metal Pollution in A Typical Coal-based Industrial Cluster Zone [J]. Ecology and Environment, 2022, 31(2): 391-399. |
[13] | LIU Zhijian, DONG Yuanhua, ZHANG Xiu, QING Chengshi. Contamination and Ecological Risk Assessment of Heavy Metals in the Soil of Agricultural Land in Weining Plain, Northwest China [J]. Ecology and Environment, 2022, 31(11): 2216-2224. |
[14] | REN Lijiang, ZHANG Yan, ZHANG Xin, SHAN Zexuan, ZHANG Chengqian. Pollution Characteristics and Health Risk Assessment of Heavy Metals in Surface Water in Guanzhong Section of the Weihe River Basin [J]. Ecology and Environment, 2022, 31(1): 131-141. |
[15] | SHI Huibin, HUANG Yi, CHENG Xin, LI Ting, HE Min, WANG Jinjin. Pollution Characteristics and Sources of Carbonaceous Components in PM2.5 during Winter in Chengdu [J]. Ecology and Environment, 2021, 30(7): 1420-1427. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn