Ecology and Environment ›› 2024, Vol. 33 ›› Issue (8): 1298-1305.DOI: 10.16258/j.cnki.1674-5906.2024.08.014
• Research Article [Environmental Science] • Previous Articles Next Articles
CHEN Wenzhe1,2(), HUANG Qiuxiang3, MENG Fande1,2,4,*(
), GAO Jinyan1,2, LI Min5, ZHANG Enjun3, YUAN Guodong4,*(
)
Received:
2024-04-26
Online:
2024-08-18
Published:
2024-09-25
陈文哲1,2(), 黄秋香3, 孟凡德1,2,4,*(
), 高金妍1,2, 李敏5, 张恩俊3, 袁国栋4,*(
)
通讯作者:
孟凡德。E-mail: 作者简介:
陈文哲(1999年生),女,硕士研究生,主要从事土壤重金属污染修复研究。E-mail: 1653501838@qq.com
基金资助:
CLC Number:
CHEN Wenzhe, HUANG Qiuxiang, MENG Fande, GAO Jinyan, LI Min, ZHANG Enjun, YUAN Guodong. Impacts of Oxalic and Tartaric Acids on Arsenic Desorption from a Paddy Soil[J]. Ecology and Environment, 2024, 33(8): 1298-1305.
陈文哲, 黄秋香, 孟凡德, 高金妍, 李敏, 张恩俊, 袁国栋. 草酸和酒石酸对稻田土壤中砷解吸行为的影响研究[J]. 生态环境学报, 2024, 33(8): 1298-1305.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.08.014
样品 | pH | 黏粒 | 粉粒 | 砂粒 | 有机碳 | As | 灰分 | 羧基 | 酚羟基 | 比表面积/ (m2∙g−1) |
---|---|---|---|---|---|---|---|---|---|---|
w/% | w/(mg∙kg−1) | w/% | b/(mol∙kg−1) | |||||||
S1 | 5.99 | 15.8 | 61.8 | 22.4 | 1.01% | 319.53 | ‒ | ‒ | ‒ | ‒ |
BC | 7.98 | ‒ | ‒ | ‒ | 69.58 | ‒ | 20.85 | 0.46 | 0.15 | 85.70 |
Table 1 The basic properties of soil and biochar
样品 | pH | 黏粒 | 粉粒 | 砂粒 | 有机碳 | As | 灰分 | 羧基 | 酚羟基 | 比表面积/ (m2∙g−1) |
---|---|---|---|---|---|---|---|---|---|---|
w/% | w/(mg∙kg−1) | w/% | b/(mol∙kg−1) | |||||||
S1 | 5.99 | 15.8 | 61.8 | 22.4 | 1.01% | 319.53 | ‒ | ‒ | ‒ | ‒ |
BC | 7.98 | ‒ | ‒ | ‒ | 69.58 | ‒ | 20.85 | 0.46 | 0.15 | 85.70 |
土壤 | 有机酸 | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|---|
qm/(mg∙kg−1) | kL | R2 | n | kF | R2 | |||
S1 | OA | 462.23 | 0.004 | 0.964 | 1.022 | 1.68 | 0.962 | |
TA | 34.12 | 0.015 | 0.946 | 1.232 | 0.66 | 0.935 | ||
S1-BC | OA | ‒ | ‒ | ‒ | 0.904 | 2.04 | 0.987 | |
TA | 27.51 | 0.033 | 0.990 | 1.563 | 1.50 | 0.986 |
Table 2 Parameters of desorption isotherms for As in S1 and S1-BC
土壤 | 有机酸 | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|---|
qm/(mg∙kg−1) | kL | R2 | n | kF | R2 | |||
S1 | OA | 462.23 | 0.004 | 0.964 | 1.022 | 1.68 | 0.962 | |
TA | 34.12 | 0.015 | 0.946 | 1.232 | 0.66 | 0.935 | ||
S1-BC | OA | ‒ | ‒ | ‒ | 0.904 | 2.04 | 0.987 | |
TA | 27.51 | 0.033 | 0.990 | 1.563 | 1.50 | 0.986 |
[1] | ADELEKE R, NWANGBURUKA C, OBOIRIEN B, 2017. Origins, roles and fate of organic acids in soils: A review[J]. South African Journal of Botany, 108: 393-406. |
[2] | ALOZIE N, HEANEY N, LIN C, 2018. Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids[J]. Science of the Total Environment, 630: 1188-1194. |
[3] |
ASH C, TEJNECKÝ V, BORŮVKA L, et al., 2016. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil[J]. Journal of Contaminant Hydrology, 187: 18-30.
DOI PMID |
[4] | BISWAS A, BESOLD J, SJÖSTEDT C, et al., 2019. Complexation of arsenite, arsenate, and monothioarsenate with oxygen-containing functional groups of natural organic matter: An XAS study[J]. Environmental Science & Technology, 53(18): 10723-10731. |
[5] | CHI Y H, PENG L, TAM N F-Y, et al., 2022. Effects of fly ash and steel slag on cadmium and arsenic accumulation in rice grains and soil health: A field study over four crop seasons in Guangdong, China[J]. Geoderma, 419: 115879. |
[6] | CAPORALE A, VIOLANTE A, 2016. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments[J]. Current Pollution Reports, 2: 15-27. |
[7] | FENG Z J, FAN Z L, SONG H P, et al., 2021. Biochar induced changes of soil dissolved organic matter: The release and adsorption of dissolved organic matter by biochar and soil[J]. Science of the Total Environment, 783: 147091. |
[8] | HEANEY N, UKPONG E, LIN C X, 2020. Low-molecular-weight organic acids enable biochar to immobilize nitrate[J]. Chemosphere, 240: 124872. |
[9] | HUANG B, YUAN Z J, LI D Q, et al., 2020. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: A review[J]. Environmental Science: Processes & Impacts, 22(8): 1596-1615. |
[10] | HUANG Y T, WANG M, MAO X F, et al., 2015. Concentrations of inorganic arsenic in milled rice from China and associated dietary exposure assessment[J]. Journal of Agricultral and Food Chemistry, 63(50): 10838-10845. |
[11] |
JIANG H, LI T Q, HAN X, et al., 2012. Effects of pH and low molecular weight organic acids on competitive adsorption and desorption of cadmium and lead in paddy soils[J]. Environmental Monitoring and Assessment, 184(10): 6325-6335.
DOI PMID |
[12] |
JIANG O Y, LI L Y, DUAN G L, et al., 2023. Root exudates increased arsenic mobility and altered microbial community in paddy soils[J]. Journal of Environmental Sciences, 127: 410-420.
DOI PMID |
[13] | KAYA C, UĞURLAR F, ASHRAF M, et al., 2024. Microbial consortia-mediated arsenic bioremediation in agricultural soils: Current status, challenges, and solutions[J]. Science of The Total Environment, 917: 170297. |
[14] | KICIŃSKA A, POMYKAŁA R, IZQUIERDO‐DIAZ M, 2022. Changes in soil pH and mobility of heavy metals in contaminated soils[J]. European Journal of Soil Science, 73(1): e13203. |
[15] |
LI G, KHAN S, IBRAHIM M, et al., 2018. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium[J]. Journal of Hazardous Materials, 348: 100-108.
DOI PMID |
[16] | LIANG M Y, GUO H M, XIU W, 2022. Effects of low molecular weight organic acids with different functional groups on arsenate adsorption on birnessite[J]. Journal of Hazardous Materials, 436: 129108. |
[17] | LIU Z Y, YANG R, XIANG X Y, et al., 2023. Enhancement of phytoextraction efficiency coupling Pteris vittata with low-dose biochar in arsenic-contaminated soil[J]. International Journal of Phytoremediation, 25(13): 1810-1818. |
[18] | LIU Z X, XU Z Y, XU L F, et al., 2022. Modified biochar: Synthesis and mechanism for removal of environmental heavy metals[J]. Carbon Research, 1: 8. |
[19] | MEI K, LIU J C, SHI R, et al., 2020. The migrated behavior and bioavailability of arsenic in mangrove sediments affected by pH and organic acids[J]. Marine Pollution Bulletin, 159: 111480. |
[20] | MENG F D, HUANG Q X, CAI Y B, et al., 2022. Effects of biowaste-derived biochar on the dynamic behavior of cadmium fractions in soils[J]. Environmental Science and Pollution Research, 29(39): 59043-59051. |
[21] | MENG F D, HUANG Q X, CAI Y B, et al., 2023. A comparative assessment of humic acid and biochar altering cadmium and arsenic fractions in a paddy soil[J]. Journal of Soils and Sediments, 23(2): 845-855. |
[22] | MENG F D, HUANG Q X, LARSON S L, et al., 2021. The adsorption characteristics of uranium (VI) from aqueous solution on leonardite and leonardite-derived humic acid: A comparative study[J]. Langmuir, 37(43): 12557-12567. |
[23] |
ONIRETI O O, LIN C X, QIN J H, 2017. Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils[J]. Chemosphere, 170: 161-168.
DOI PMID |
[24] | PIGNA M, CAPORALE A G, CAVALCA L, et al., 2015. Arsenic in the soil environment: Mobility and phytoavailability[J]. Environmental Engineering Science, 32(7): 551-563. |
[25] | RAJU N J, 2022. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies[J]. Environmental Research, 203(14): 111782. |
[26] | ROCHA D R, BARBER X, JORDÁN-VIDAL M M, et al., 2022. Multivariate analysis with XRD sata as a fingerprinting technique to study burned soils[J]. Minerals, 12(11): 1402. |
[27] |
ROKONUZZAMAN M, LI W C, MAN Y B, et al., 2022. Arsenic accumulation in rice: Sources, human health impact and probable mitigation approaches[J]. Rice Science, 29(4): 309-327.
DOI |
[28] | VIOLANTE A, COZZOLINO V, PERELOMOV L, et al., 2010. Mobility and bioavailability of heavy metals and metalloids in soil environments[J]. Journal of Soil Science and Plant Nutrition, 10(3): 268-292. |
[29] | WANG P C, PENG H, LIU J L, et al., 2020. Effects of exogenous dissolved organic matter on the adsorption-desorption behaviors and bioavailabilities of Cd and Hg in a plant-soil system[J]. Science of the Total Environment, 728: 138252. |
[30] | WANG Z, HAN R X, MUHAMMAD A, et al., 2022. Correlative distribution of DOM and heavy metals in the soils of the Zhangxi watershed in Ningbo city, east of China[J]. Environmental Pollution, 299: 118811. |
[31] | XU W P, LIU C S, ZHU J M, et al., 2022. Adsorption of cadmium on clay-organic associations in different pH solutions: The effect of amphoteric organic matter[J]. Ecotoxicology and Environmental Safety, 236: 113509. |
[32] | XIAO L, WU J H, LI W H, et al., 2023. Mineral coating enhances the carbon sequestration capacity of biochar derived from Paulownia biowaste[J]. Agronomy, 13(9): 2361. |
[33] | ZHANG X F, ELSAYED I, NAVARATHNA C, et al., 2019. Biohybrid hydrogel and aerogel from self-assembled nanocellulose and nanochitin as a high-efficiency adsorbent for water purification[J]. ACS Applied Materials & Interfaces, 11(50): 46714-46725. |
[34] | 关连珠, 周景景, 张昀, 等, 2013. 不同来源生物炭对砷在土壤中吸附与解吸的影响[J]. 应用生态学报, 24(10): 2941-2946. |
GUAN L Z, ZHOU J J, ZHANG Y, et al., 2013. Effects of biochars produced from different sources on arsenic adsorption and desorption in soil[J]. Chinese Journal of Applied Ecology, 24(10): 2941-2946. | |
[35] | 剧永望, 马露冉, 毛佳璇, 等, 2023. 秸秆生物炭吸附/钝化土壤重金属的过程机理与影响因素[J]. 生态毒理学报, 18(5): 13-30. |
JU Y W, MA L R, MAO J X, et al., 2023. Mechanisms and influencing factors for soil heavy metals adsorption/passivation by straw biochar[J]. Asian Journal of Ecotoxicology, 18(5): 13-30. | |
[36] | 李鸿博, 钟怡, 张昊楠, 等, 2020. 生物炭修复重金属污染农田土壤的机制及应用研究进展[J]. 农业工程学报, 36(13): 173-185. |
LI H B, ZHONG Y, ZHANG H N, et al., 2020. Mechanism for the application of biochar in remediation of heavy metal contaminated farmland and its research advances[J]. Transactions of the Chinese Society of Agricultural Engineering, 36(13): 173-185. | |
[37] | 李廷强, 杨肖娥, 2004. 土壤中水溶性有机质及其对重金属化学与生物行为的影响[J]. 应用生态学报, 15(6): 1083-1087. |
LI T Q, YANG X E, 2004. Soil dissolved organic matter and its effect on chemical and biological behaviors of soil heavy metals[J]. Chinese Journal of Applied Ecology, 15(6): 1083-1087. | |
[38] | 生态环境部, 国家市场监督管理局, 2018. 土壤环境质量农用地土壤污染风险管控标准 (试行): GB 15618—2018[S]. 中国环境出版集团. |
Ministry of Ecology and Environment, State Administration for Market Regulation, 2018. Soil environment quality risk control standard for soilcontamination of agriculture land: GB 15618—2018[S]. Beijing: China Environmental Science Press. | |
[39] | 杨帆, 徐洋, 崔勇, 等, 2017. 近30年中国农田耕层土壤有机质含量变化[J]. 土壤学报, 54(5): 1047-1056. |
YANG F, XU Y, CUI Y, et al., 2017. Variation of soil organic matter content in croplands of China over the last three decades[J]. Acta Pedologica Sinica, 54(5): 1047-1056. | |
[40] | 张鹏飞, 董颖博, 林海, 等, 2023. 江西某铜矿废石堆周边土壤对重金属的吸附-解吸行为[J]. 金属矿山, 52(2): 239-246. |
ZHANG P F, DONG Y B, LIN H, et al., 2023. Adsorption and desorption behavior of heavy metals on soils around a copper mine waste dump in Jiangxi Province[J]. Metal Mine, 52(2): 239-246. | |
[41] |
张伟明, 修立群, 吴迪, 等, 2021. 生物炭的结构及其理化特性研究回顾与展望[J]. 作物学报, 47(1): 1-18.
DOI |
ZHANG W M, XIU L Q, WU D, et al., 2021. Review of biochar structure and physicochemical properties[J]. Acta Agronomica Sinica, 47(1): 1-18. | |
[42] |
张晓峰, 方利平, 李芳柏, 等, 2020. 水稻全生育期内零价铁与生物炭钝化土壤镉砷的协同效应与机制[J]. 生态环境学报, 29(7): 1455-1465.
DOI |
ZHANG X F, FANG L P, LI F B, et al., 2020. Synergistic passivating effects and mechanisms of zero valent iron and biochar on cadmium and arsenic in paddy soil over a whole growth period of rice[J]. Ecology and Environmental Sciences, 29(7): 1455-1465. |
[1] | LU Cong. Removal Effect and Mechanism of DBDPE in Sediments by Biochar-loaded Nano-zero-valent Iron [J]. Ecology and Environment, 2024, 33(8): 1279-1288. |
[2] | WANG Shiping, LI Mei, AN Ya, QIN Haoli. The Effect of Magnesium Modification on Enhancing Cadmium Adsorption Capacity of Wheat Straw Biochar: A Surface Complexation Modeling Approach [J]. Ecology and Environment, 2024, 33(4): 617-625. |
[3] | XIAO Jiang, LI Xiaogang, ZHAO Bo, CHEN Yan, CHEN Guangcai. Effect of Micro/nano Scale Phosphorus-enriched Biochar on Cu and Pb Stabilization in Soil-Salix jiangsuensis ‘172’ System [J]. Ecology and Environment, 2024, 33(3): 439-449. |
[4] | LI Gaofan, XU Wenzhuo, WEI Haoming, YAN Zaisheng, YOU Jia, JIANG Helong, HUANG Juan. Preparation of 3D Porous Biochar Adsorbent and Its Adsorption Behavior for Phenanthrene [J]. Ecology and Environment, 2024, 33(2): 261-271. |
[5] | CONG Xin, CAO Ping, WANG Xiaobo. Degradation of Pentachlorobiphenyl in Soil Using Persulfate Activated by Biochar-supported Nano Zero-valent Iron [J]. Ecology and Environment, 2024, 33(2): 282-290. |
[6] | ZHOU Hongguang, GAN Yanping, WU Dequan, YANG Yanmei, ZHANG Yang, WANG Luyao. Regulation of Arsenic Transport and Transformation in Contaminated Sediment by FeMnMg-LDH under Flooding-drying Conditions [J]. Ecology and Environment, 2023, 32(7): 1249-1262. |
[7] | ZHU Yiwen, YIN Dan, HU Min, DU Yanhong, HONG Zebin, CHENG Kuan, YU Huanyun. Research Progress on Coupling of Nitrogen Cycle and Arsenic Speciation Transformation in Paddy Soil [J]. Ecology and Environment, 2023, 32(7): 1344-1354. |
[8] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[9] | YANG Yu, DENG Renjian, LONG Pei, HUANG Zhongjie, Ren Bozhi, WANG Zhenghua. Isolation and Identification of Arsenic-oxidizing Bacterium Pseudomonas sp. AO-1 and Its Oxidation Properties for As(Ⅲ) [J]. Ecology and Environment, 2023, 32(3): 619-626. |
[10] | YIN Haojun, LONG Mingliang, LIU Wei, NI Chunlin, LI Fangbai, WU Yundang. Dissolved Oxygen Concentration Regulates Arsenic Reduction in Aeromonas hydrophila: Effects and Mechanisms [J]. Ecology and Environment, 2023, 32(2): 381-387. |
[11] | LI Zhuoxuan, PENG Ziran, HE Wenhui, WEI Ruilu, GAO Linxi. Response Surface Optimization and Adsorption Mechanism of Sheep Manure Charcoal on Nitrogen and Phosphorus Adsorption Conditions [J]. Ecology and Environment, 2023, 32(12): 2216-2227. |
[12] | ZHAO Dandan, LI Wenjian, JIANG Lixia, SHAN Rui, CHEN Dezhen, YUAN Haoran, CHEN Yong. Progress in the Preparation and Performance of Biochar-based Photocatalysts [J]. Ecology and Environment, 2023, 32(11): 2019-2029. |
[13] | SU Dan, LUO Qiaobing, DONG Yushan, YANG Caixia, WANG Xin. Strengthening Effect of Mixed Biochar on Microbial Remediation of PAHs Contaminated Soil in Cold Areas [J]. Ecology and Environment, 2023, 32(11): 1942-1951. |
[14] | CHEN Guihong. Remediation of Cadmium Contaminated Soil by Sulfur/Silicon Doped Biochar [J]. Ecology and Environment, 2023, 32(10): 1854-1860. |
[15] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn