Ecology and Environment ›› 2024, Vol. 33 ›› Issue (2): 291-300.DOI: 10.16258/j.cnki.1674-5906.2024.02.013
• Research Article [Environmental Sciences] • Previous Articles Next Articles
JIANG Runhai1(), WEN Shaofu1, ZHU Chengqiang1, ZHANG Mei1, YANG Runling1, WANG Chunxue2, HOU Xiuli1,*(
)
Received:
2023-10-18
Online:
2024-02-18
Published:
2024-04-03
江润海1(), 温绍福1, 朱城强1, 张梅1, 杨润玲1, 王春雪2, 侯秀丽1,*(
)
通讯作者:
侯秀丽。E-mail: 作者简介:
江润海(1997年生),男,硕士研究生,研究方向为土壤重金属污染修复。E-mail: m15519322764@163.com
基金资助:
CLC Number:
JIANG Runhai, WEN Shaofu, ZHU Chengqiang, ZHANG Mei, YANG Runling, WANG Chunxue, HOU Xiuli. Research on the Promotion of Maize Growth and Immobilization of Pb in the Rhizosphere by Pb-tolerant Phosphate Solubilizing Bacteria in Pb-contaminated Mining Areas[J]. Ecology and Environment, 2024, 33(2): 291-300.
江润海, 温绍福, 朱城强, 张梅, 杨润玲, 王春雪, 侯秀丽. 铅污染矿区中耐铅解磷菌对玉米的促生及根际铅的固化效应[J]. 生态环境学报, 2024, 33(2): 291-300.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.02.013
生理生化实验指标 | 结果 |
---|---|
接触酶 | + |
氧化酶 | − |
丙二酸 | + |
柠檬酸盐 | + |
葡萄 | + |
D-山梨醇 | + |
甲基红 | + |
V-P | − |
吲哚 | + |
铁载体 | + |
革兰氏染色 | − |
Table 1 Physiological and biochemical identification of strains
生理生化实验指标 | 结果 |
---|---|
接触酶 | + |
氧化酶 | − |
丙二酸 | + |
柠檬酸盐 | + |
葡萄 | + |
D-山梨醇 | + |
甲基红 | + |
V-P | − |
吲哚 | + |
铁载体 | + |
革兰氏染色 | − |
生长因子 | 质量浓度/(mg·L−1) |
---|---|
吲哚-3-乙酸 | 49.5±0.81 |
乙酸 | 1 364±147 |
乳酸 | 25.6±0.66 |
酒石酸 | 40.1±4.03 |
草酸 | 50.2±3.47 |
Table 2 The concentration of secretions from the strain
生长因子 | 质量浓度/(mg·L−1) |
---|---|
吲哚-3-乙酸 | 49.5±0.81 |
乙酸 | 1 364±147 |
乳酸 | 25.6±0.66 |
酒石酸 | 40.1±4.03 |
草酸 | 50.2±3.47 |
土壤铅 形态 | 处理 | ||||
---|---|---|---|---|---|
CK | T1 | T2 | T3 | T4 | |
水溶态 | 3.32±0.01c | 3.34±0.00b | 3.39±0.02a | 3.34±0.00b | 3.34±0.00b |
可交换态 | 168±0.05b | 175±3.61b | 152±1.05d | 155±0.98cd | 157±0.95c |
碳酸盐结合态 | 431±1.88b | 459±1.64a | 455±10.91a | 407±7.00c | 410±7.76c |
铁锰氧化物结合态 | 1 046±46.48c | 1 138±13.41ab | 1 183±33.44a | 1 129±26.10ab | 1 089±17.32bc |
强有机结合态 | 240±2.57d | 308±2.12c | 382±29.90a | 335±12.91bc | 341±2.91b |
腐殖酸结合态 | 7.44±0.09b | 7.35±0.13b | 8.17±0.01a | 8.14±0.01a | 8.19±0.23a |
残渣态 | 70.2±3.09d | 69.0±3.23d | 94.1±2.51b | 86.2±2.06c | 99.3±1.00a |
Table 3 The impact of strain on soil lead forms mg·kg?1
土壤铅 形态 | 处理 | ||||
---|---|---|---|---|---|
CK | T1 | T2 | T3 | T4 | |
水溶态 | 3.32±0.01c | 3.34±0.00b | 3.39±0.02a | 3.34±0.00b | 3.34±0.00b |
可交换态 | 168±0.05b | 175±3.61b | 152±1.05d | 155±0.98cd | 157±0.95c |
碳酸盐结合态 | 431±1.88b | 459±1.64a | 455±10.91a | 407±7.00c | 410±7.76c |
铁锰氧化物结合态 | 1 046±46.48c | 1 138±13.41ab | 1 183±33.44a | 1 129±26.10ab | 1 089±17.32bc |
强有机结合态 | 240±2.57d | 308±2.12c | 382±29.90a | 335±12.91bc | 341±2.91b |
腐殖酸结合态 | 7.44±0.09b | 7.35±0.13b | 8.17±0.01a | 8.14±0.01a | 8.19±0.23a |
残渣态 | 70.2±3.09d | 69.0±3.23d | 94.1±2.51b | 86.2±2.06c | 99.3±1.00a |
[1] |
ABDU N, ABDULLAHI A A, ABDULKADIR A, 2017. Heavy metals and soil microbes[J]. Environmental Chemistry Letters, 15(1): 65-84.
DOI |
[2] |
ALLAM N N, AHMED E, 2018. Mycorrhizal symbiosis phosphorus fertilization effects on Zea mays growth and heavy metals uptake[J]. International Journal of Phytoremediation, 20(9): 869-875.
DOI URL |
[3] |
ARMANDEH M, MAHMOUDI N, FALLAH NOSRATABAD A R, 2022. Screening and evaluation of phosphate-solubilizing bacteria isolated from aquaculture ponds in a step-by-step strategy as potential biofertilizer[J]. Journal Applied Microbiology, 133(3): 1581-1596.
DOI URL |
[4] |
ARROYO-HERRERA I, ROMÁN-PONCE B, RESÉNDIZ-MARTÍNEZ L A, et al., 2021. Heavy-metal resistance mechanisms developed by bacteria from lerma-chapala basin[J]. Archives of Microbiology, 203(4): 1807-1823.
DOI |
[5] | ARWENYO B, VARCO J J, ANDREW D, et al., 2022. Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate[J]. Chemosphere, 292(4): 133355. 1-133355.10. |
[6] |
ATUCHIN V V, ASYAKINA L K, SERAZETDINOVA Y R, et al., 2023. Microorganisms for bioremediation of soils contaminated with heavy metals[J]. Microorganisms, 11(4): 864.
DOI URL |
[7] |
BACON J R, DAVIDSON C M, 2008. Is there a future for sequential chemical extraction?[J]. Analyst, 133(1): 25-46.
PMID |
[8] |
BAO L N, CUI Y, WU H W, et al., 2023. Breeding, biosorption characteristics, and mechanism of a lead-resistant strain[J]. Toxics, 11(5): 412.
DOI URL |
[9] |
CAO R W, ZHANG Y L, JU Y H, et al., 2023. Exopolysaccharide-producing bacteria enhanced Pb immobilization and influenced the microbiome composition in rhizosphere soil of pakchoi (Brassica chinensis L.)[J]. Frontiers in Microbiology, 14: 1117312.
DOI URL |
[10] |
CAO X, MA L Q, SINGH S P, et al., 2008. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions[J]. Environmental Pollution, 152(1): 184-192.
PMID |
[11] |
CHEN H B, FENG Y, YANG X, et al., 2022. Assessing simultaneous immobilization of lead and improvement of phosphorus availability through application of phosphorus-rich biochar in a contaminated soil: A pot experiment[J]. Chemosphere, 296: 133891.
DOI URL |
[12] |
CHEN H M, ZHANG J W, TANG L Y, et al., 2019. Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria[J]. Environment International, 127: 395-401.
DOI PMID |
[13] |
CUI Y, ZHAO Y J, CAI R, et al., 2023. Isolation and identification of a phosphate-solubilizing pantoea dispersa with a saline-alkali tolerance and analysis of its growth-promoting effects on silage maize under saline-alkali field conditions[J]. Current Microbiology, 80(9): 291.
DOI |
[14] |
DERYA E, 2020. Potential plant growth-promoting bacteria with heavy metal resistance[J]. Current Microbiology, 77: 3861-3868.
DOI PMID |
[15] |
EL-MEIHY M R, ABOU-ALY E H, YOUSSEF M A, et al., 2019. Efficiency of heavy metals-tolerant plant growth promoting bacteria for alleviating heavy metals toxicity on sorghum[J]. Environmental and Experimental Botany, 162: 295-301.
DOI URL |
[16] |
ELGHARABLY A, 2020. Effects of rock phosphate added with farm yard manure or sugar juice residues on wheat growth and uptake of certain nutrients and heavy metals[J]. Journal of Soils and Sediments, 20(11): 3931-3940.
DOI |
[17] | OBURGER E, JONES D L, WENZEL W W, et al., 2011. Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil[J]. Plant & Soil, 341(1-2): 363-382. |
[18] |
FU H C, ZHANG B, YANG J, et al., 2018. Cadmium and lead speciation as affected by soil amendments in calcareous soil[J]. Environmental Engineering Science, 35(9): 937-942.
DOI URL |
[19] |
GOSWAMI D, THAKKER N J, DHANDHUKIA C P, 2015. Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from l-tryptophan (Trp) using HPTLC[J]. Journal of Microbiological Methods, 110: 7-14.
DOI PMID |
[20] |
KASCHL A, RÖMHELD V, CHEN Y, 2002. Cadmium binding by fractions of dissolved organic matter and humic substances from municipal solid waste compost[J]. Journal of Environment Quality, 31(6): 1885-1892.
DOI URL |
[21] |
JIAO G H, HUANG Y, DAI H, et al., 2023. Responses of rhizosphere microbial community structure and metabolic function to heavy metal coinhibition[J]. Environmental Geochemistry and Health, 45(8): 6177-6198.
DOI PMID |
[22] |
LI L L, CHEN R B, ZUO Z Y, et al., 2020. Evaluation and improvement of phosphate solubilization by an isolated bacterium Pantoea agglomerans ZB[J]. World Journal of Microbiology and Biotechnology, 36(2): 27.
DOI |
[23] |
LIN Y X, ZHANG H, LI P R, et al., 2022. The bacterial consortia promote plant growth and secondary metabolite accumulation in Astragalus mongholicus under drought stress[J]. BMC Plant Biology, 22(1): 475-475.
DOI |
[24] |
LIU H Q, LU X B, LI Z H, et al., 2021. The role of root-associated microbes in growth stimulation of plants under saline conditions[J]. Land Degradation & Development, 32(13): 3471-3486.
DOI URL |
[25] |
MARTINS C I O, DE T L D C A, FERREIRA C J J B, et al., 2021. Technical feasibility of using suboptimal irrigation in maize cropping[J]. Crop and Pasture Science, 72(5): 348-360.
DOI URL |
[26] |
MEHDI B, ALI H A, ALI A P, et al., 2022. Enriching periphyton with phosphate-solubilizing microorganisms improves the growth and concentration of phosphorus and micronutrients of rice plant in calcareous paddy soil[J]. Rhizosphere, 24: 100590.
DOI URL |
[27] |
PATTEN C L, GLICK B R, 2002. Role of pseudomonas putida indoleacetic acid in development of the host plant root system[J]. Applied and Environmental Microbiology, 68(8): 3795-3801.
DOI PMID |
[28] |
PIOTR K, URSULA B F, MARCIN G, et al., 2022. Mixed growth of Salix species can promote phosphate-solubilizing bacteria in the roots and rhizosphere[J]. Frontiers in Microbiology, 13: 1006722.
DOI URL |
[29] | QIAN C X, YU X N, ZHENG T W, et al., 2022. Review on bacteria fixing CO2 and bio-mineralization to enhance the performance of construction materials[J]. Journal of CO2 Utilization, 55: 101849. |
[30] |
QIN S M, ZHANG H Y, HE Y H, et al., 2023. Improving radish phosphorus utilization efficiency and inhibiting Cd and Pb uptake by using heavy metal-immobilizing and phosphate-solubilizing bacteria[J]. The Science of The Total Environment, 868: 161685.
DOI URL |
[31] |
RASHID A, SCHUTTE J B, ULERY A, et al., 2023. Heavy metal contamination in agricultural soil: Environmental pollutants affecting crop health[J]. Agronomy, 13(6): 1521.
DOI URL |
[32] |
SARANYA K, SUNDARAMANICKAM A, MANUPOORI S, et al., 2022. Screening of multi-faceted phosphate-solubilising bacterium from seagrass meadow and their plant growth promotion under saline stress condition[J]. Microbiol Research, 261: 127080.
DOI URL |
[33] |
SERRANO S, PEGGY A. O’DAY, VLASSOPOULOS D, et al., 2009. A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils[J]. Geochimica et Cosmochimica Acta, 73(3): 543-558.
DOI URL |
[34] |
STIJN S, JOS V, ROSELINE R, 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling[J]. Fems Microbiol Reviews, 31(4): 425-448.
DOI URL |
[35] |
SULEIMANOVA A, BULMAKOVA D, SOKOLNIKOVA L, et al., 2023. Phosphate solubilization and plant growth promotion by Pantoea brenneri soil isolates[J]. Microorganisms, 11(5): 1136.
DOI URL |
[36] |
TIAN Z J, LI G W, TANG W Z, et al., 2022. Role of Sedum alfredii and soil microbes in the remediation of ultra-high content heavy metals contaminated soil[J]. Agriculture, Ecosystems and Environment, 339: 108090.
DOI URL |
[37] |
VERBEECK M, HIEMSTRA T, THIRY Y, et al., 2017. Soil organic matter reduces the sorption of arsenate and phosphate: A soil profile study and geochemical modelling[J]. European Journal of Soil Science, 68(5): 678-688.
DOI URL |
[38] |
XIANG M T, LI Y, YANG J Y, et al., 2021. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops[J]. Environmental Pollution, 278(2): 116911.
DOI URL |
[39] |
YANG P X, MA L, CHEN M H, 2012. Phosphate solubilizing ability and phylogenetic diversity of bacteria from P-rich soils around Danchi lake drainage area of China[J]. Pedosphere, 22(5): 707-716.
DOI URL |
[40] |
ZHANG M, GAO C X, XU L, et al., 2022. Melatonin and indole-3-acetic acid synergistically regulate plant growth and stress resistance[J]. Cells, 11(20): 3250-3250.
DOI URL |
[41] |
YU X N, JIANG N J, YANG Y, et al., 2023. Heavy metals remediation through bio-solidification: Potential application in environmental geotechnics[J]. Ecotoxicology and Environmental Safety, 263: 115305.
DOI URL |
[42] |
ZHENG J D, XIE X G, LI C Y, et al., 2023. Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi[J]. International Journal of Phytoremediation, 25(12): 1596-1613.
DOI URL |
[43] | 东秀珠, 蔡妙英, 2001. 常见细菌系统鉴定手册[M]. 北京: 科学出版. |
DONG X Z, CAI M Y, 2021. Bacterial System Identification Manual[M]. Beijing: Science Press. | |
[44] | 蒋喜艳, 张述习, 尹西翔, 等, 2021. 土壤-作物系统重金属污染及防治研究进展[J]. 生态毒理学报, 16(6): 150-160. |
JIANG X Y, ZHANG S X, YIN X X, et al., 2021. Research progress on heavy metals pollution and its control in soil-crop system[J]. Asian Journal of Ecotoxicology, 16(6): 150-160. | |
[45] | 费杨, 阎秀兰, 李永华, 2018. 铁锰双金属材料在不同pH条件下对土壤As和重金属的稳定化作用[J]. 环境科学, 39(3): 1430-1433. |
FEI Y, YAN X L, LI Y H, 2018. Stabilization effects of Fe-Mn binary oxide on arsenic and heavy metal Co-contaminated soils under different pH conditions[J]. Environmental Science, 39(3): 1430-1433. | |
[46] | 李丹, 李俊华, 何婷, 等, 2015. 不同改良剂对石灰性镉污染土壤的镉形态和小白菜镉吸收的影响[J]. 农业环境科学学报, 34(9): 1679-1685. |
LI D, LI J H, HE T, et al., 2015. Effects of different amendments on soil Cd forms and Cd uptake by Chinese cabbage in Cd-contaminated calcareous soils[J]. Journal of Agro-Environment Science, 34(9): 1679-1685. | |
[47] | 李娜, 夏瑜, 何绪文, 等, 2021. 基于Tessier法的土壤中不同形态镉的转化及其影响因素研究进展[J]. 土壤通报, 52(6): 1505-1512. |
LI N, XIA Y, HE C W, et al., 2021. Research progress of Cd form transformation and the effective environmental factors in soil based on Tessier analysis[J]. Chinese Journal of Soil Science, 52(6): 1505-1512. | |
[48] | 林小兵, 陈燕, 周利军, 等, 2022. 石灰用量和培养时间对红壤镉形态转化的影响[J]. 科学技术与工程, 22(5): 2130-2139. |
LIN X B, CHEN Y, ZHOU L J, et al., 2022. Effects of lime dosage and cultivation time on forms transformation of cadmium in red soil[J]. Science Technology and Engineering, 22(5): 2130-2139. | |
[49] |
蔺宝珺, 杨文权, 赵帅, 等, 2022. 高寒草甸植物根际溶磷菌的筛选鉴定及其溶磷与促生效果[J]. 草地学报, 30(11): 3132-3139.
DOI |
LIN B J, YANG W Q, ZHAO S, et al., 2022. Screening and identification of phosphate-solubilizing bacteria in plant rhizosphere of alpine meadow and their effects on phosphate-solubilizing and plant growth promotion[J]. Acta Agrestia Sinica, 30(11): 3132-3139. | |
[50] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 2000. Soil agrochemical analysis method[M]. Beijing: China Agricultural Science and Technology Press. | |
[51] | 彭明章, 2021. 鱼台地区表层土壤重金属元素形态特征及控制因素[J]. 冶金管理 (17): 118-119. |
PENG M Z, 2021. Morphological characteristics and controlling factors of heavy metal elements in the surface soil of Yutai District[J]. Metallurgical Management (17): 118-119. | |
[52] | 石天池, 杨建锋, 杨保国, 等, 2022. 宁夏北部农耕地土壤中硒的质量含量及形态、价态分析[J]. 宁夏大学学报(自然科学版), 43(1): 62-67. |
SHI T C, YANG J F, YANG B G, et al., 2022. Analysis on selenium content, form and valence in farmland soil of northern Ningxia[J]. Journal of Ningxia University (Natural Science Edition), 43(1): 62-67. | |
[53] | 王君, 范延辉, 尚帅, 等, 2022. 一株根际解磷菌的筛选鉴定及溶磷促生作用[J]. 中国土壤与肥料 (6): 195-203. |
WANG J, FAN Y H, SHANG S, et al., 2022. Isolation and identification of a rhizosphere phosphate-solubilizing strain and its plant growth promotion[J]. Soil and Fertilizer Sciences in China (6): 195-203. | |
[54] | 王宏燕, 韩凯鑫, 冯丽荣, 等, 2023. 耐盐解磷菌筛选鉴定及生理特性研究[J]. 东北农业大学学报, 54(5): 28-37. |
WANG H Y, HAN K X, FENG L R, et al., 2023. Screening and identification of salt-resistant phosphorus bacteria and its physiological characteristics[J]. Journal of Northeast Agricultural University, 54(5): 28-37. | |
[55] | 张金秀, 湛方栋, 王灿, 等, 2020. AMF对铅锌矿区农田土壤部分理化性质、玉米生长和镉铅含量的影响[J]. 农业资源与环境学报, 37(5): 727-735. |
ZHANG J X, ZHAN F D, WANG C, et al., 2020. Effects of arbuscular mycorrhizal fungi on soil physical and chemical properties, maize growth, cadmium, and lead content of farmland from a lead-zinc mine area[J]. Journal of Agricultural Resources and Environment, 37(5): 727-735. |
[1] | YANG Zhengqiao, ZOU Qi, WEI Hang, ZHOU Kai, CHEN Zhiliang. Research Progress on the Adaptation and Regulation Mechanism of Micro-organisms in Metal Tailings [J]. Ecology and Environment, 2024, 33(1): 156-166. |
[2] | LIU Bingyu, WANG Yipei, YAO Zuofang, YANG Gairen, XU Xiaonan, DENG Yusong, HUANG Yuhan. Risk Assessment and Safe Consumption Analysis of Heavy Metals under Different Planting Patterns of Biogas Slurry [J]. Ecology and Environment, 2023, 32(8): 1507-1515. |
[3] | WANG Ning, LIU Xiaodong, GAN Xianhua, SU Yuqiao, WU Guozhang, HUANG Fangfang, ZHANG Weiqiang. Water Quality Effect in Precipitation by Typical Forests in Subtropical Region of China [J]. Ecology and Environment, 2023, 32(8): 1365-1375. |
[4] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[5] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[6] | XIAO Jieyun, ZHOU Wei, SHI Peiqi. Hyperspectral Inversion of Soil Heavy Metals [J]. Ecology and Environment, 2023, 32(1): 175-182. |
[7] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[8] | LUO Songying, LI Qiuxia, QIU Jinkun, DENG Suyan, LI Yifeng, CHEN Bishan. Speciation Characteristics, Migration and Transformation of Heavy Metals in Mangrove Soil-plant System in Nansan Island [J]. Ecology and Environment, 2022, 31(7): 1409-1416. |
[9] | ZHU Li'an, ZHANG Huihua, CHENG Jiong, LI Ting, LIN ZI, LI Junjie. Potential Ecological Risk Pattern Analysis of Heavy Metals in Soil of Forestry Land in The Pearl River Delta [J]. Ecology and Environment, 2022, 31(6): 1253-1262. |
[10] | HUANG Min, ZHAO Xiaofeng, LIANG Rongxiang, WANG Pengzhong, DAI Anran, HE Xiaoman. Comparison of Three Chelating Agents to Remove the Cd and Cu in Contaminated Soil [J]. Ecology and Environment, 2022, 31(6): 1244-1252. |
[11] | PENG Hongli, TAN Haixia, WANG Ying, WEI Jianmei, FENG Yang. The Discrepancy of Heavy Metals Morphological Distribution in Soil and Its Associated Ecological Risk Evaluation under Different Planting Patterns [J]. Ecology and Environment, 2022, 31(6): 1235-1243. |
[12] | SHI Jianfei, JIN Zhengzhong, ZHOU Zhibin, WANG Xin. Evaluation of Heavy Metal Pollution in the Soil Around A Typical Tailing Reservoir in Irtysh River Basin [J]. Ecology and Environment, 2022, 31(5): 1015-1023. |
[13] | YU Fei, YE Caihong, XU Tiaozi, ZHANG Zhongrui, ZHU Hangyong, ZHANG Geng, HUA Lei, DENG Jianfeng, DING Xiaogang. Evaluation of Heavy Metal Pollution in Woodland Soil of Granite Area in Shaoguan City [J]. Ecology and Environment, 2022, 31(2): 354-362. |
[14] | LIU Di, SU Chao, ZHANG Hong, QIN Guanyu. Pollution Characteristics and Risk Assessment of Heavy Metal Pollution in A Typical Coal-based Industrial Cluster Zone [J]. Ecology and Environment, 2022, 31(2): 391-399. |
[15] | LIU Zhijian, DONG Yuanhua, ZHANG Xiu, QING Chengshi. Contamination and Ecological Risk Assessment of Heavy Metals in the Soil of Agricultural Land in Weining Plain, Northwest China [J]. Ecology and Environment, 2022, 31(11): 2216-2224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn