Ecology and Environment ›› 2023, Vol. 32 ›› Issue (5): 1001-1006.DOI: 10.16258/j.cnki.1674-5906.2023.05.017
• Research Articles • Previous Articles
ZHU Yongle1(), TANG Jiaxi1,2,*(
), TAN Ting1, LI Yu1, XIANG Biao1
Received:
2022-11-19
Online:
2023-05-18
Published:
2023-08-09
Contact:
TANG Jiaxi
朱永乐1(), 汤家喜1,2,*(
), 谭婷1, 李玉1, 向彪1
通讯作者:
汤家喜
作者简介:
朱永乐(1997年生),男,硕士研究生,研究方向为环境污染与人体健康。E-mail: Zhu_lll@163.com
基金资助:
CLC Number:
ZHU Yongle, TANG Jiaxi, TAN Ting, LI Yu, XIANG Biao. Contaminant Characteristic of Per- and Poly-fluorinated Substances in Maize in the Surrounding of Fluorine Chemical Park[J]. Ecology and Environment, 2023, 32(5): 1001-1006.
朱永乐, 汤家喜, 谭婷, 李玉, 向彪. 氟化工园区周边玉米中全氟/多氟化合物的污染特征[J]. 生态环境学报, 2023, 32(5): 1001-1006.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.05.017
分类 | 化合物名称 | 英文名称 | 简称 | 分子式 | 分子量 |
---|---|---|---|---|---|
全氟羧酸 | 全氟丁酸 | Perfluorobutanoic acid | PFBA | CF3(CF2)2CO2H | 214.0 |
全氟戊酸 | Perfluoropentanoic acid | PFPeA | CF3(CF2)3CO2H | 264.1 | |
全氟己酸 | Perfluorohexanoic acid | PFHxA | CF3(CF2)4CO2H | 314.1 | |
全氟庚酸 | Perfluoroheptanoic acid | PFHpA | CF3(CF2)5CO2H | 364.1 | |
全氟辛酸 | Perfluorooctanoic acid | PFOA | CF3(CF2)6CO2H | 414.1 | |
全氟壬酸 | Perfluorononanoic acid | PFNA | CF3(CF2)7CO2H | 464.1 | |
全氟癸酸 | Perfluorodecanoic acid | PFDA | CF3(CF2)8CO2H | 514.1 | |
全氟十一烷酸 | Perfluoroundecanoic acid | PFUdA | CF3(CF2)9CO2H | 564.1 | |
全氟十二烷酸 | Perfluorododecanoic acid | PFDoA | CF3(CF2)10CO2H | 614.1 | |
全氟十三烷酸 | Perfluorotridecanoic acid | PFTrDA | CF3(CF2)11CO2H | 664.1 | |
全氟十四烷酸 | Perfluorotetradecanoic acid | PFTeDA | CF3(CF2)12CO2H | 714.1 | |
全氟十六烷酸 | Perfluorohexadecanoic acid | PFHxDA | CF3(CF2)14CO2H | 814.1 | |
全氟十八烷酸 | Perfluorooctadecanoic acid | PFODA | CF3(CF2)16CO2H | 914.1 | |
全氟磺酸 | 全氟丁烷磺酸 | Perfluorobutane sulfonate | PFBS | CF3(CF2)3SO3H | 300.1 |
全氟己烷磺酸 | Perfluorohexane sulfonate | PFHxS | CF3(CF2)5SO3H | 400.1 | |
全氟辛烷磺酸 | Perfluorooctane sulfonate | PFOS | CF3(CF2)7SO3H | 500.1 | |
全氟癸烷磺酸 | Perfluorodecane sulfonate | PFDS | CF3(CF2)9SO3H | 600.2 |
Table 1 Classification of 17 different individual-PFASs
分类 | 化合物名称 | 英文名称 | 简称 | 分子式 | 分子量 |
---|---|---|---|---|---|
全氟羧酸 | 全氟丁酸 | Perfluorobutanoic acid | PFBA | CF3(CF2)2CO2H | 214.0 |
全氟戊酸 | Perfluoropentanoic acid | PFPeA | CF3(CF2)3CO2H | 264.1 | |
全氟己酸 | Perfluorohexanoic acid | PFHxA | CF3(CF2)4CO2H | 314.1 | |
全氟庚酸 | Perfluoroheptanoic acid | PFHpA | CF3(CF2)5CO2H | 364.1 | |
全氟辛酸 | Perfluorooctanoic acid | PFOA | CF3(CF2)6CO2H | 414.1 | |
全氟壬酸 | Perfluorononanoic acid | PFNA | CF3(CF2)7CO2H | 464.1 | |
全氟癸酸 | Perfluorodecanoic acid | PFDA | CF3(CF2)8CO2H | 514.1 | |
全氟十一烷酸 | Perfluoroundecanoic acid | PFUdA | CF3(CF2)9CO2H | 564.1 | |
全氟十二烷酸 | Perfluorododecanoic acid | PFDoA | CF3(CF2)10CO2H | 614.1 | |
全氟十三烷酸 | Perfluorotridecanoic acid | PFTrDA | CF3(CF2)11CO2H | 664.1 | |
全氟十四烷酸 | Perfluorotetradecanoic acid | PFTeDA | CF3(CF2)12CO2H | 714.1 | |
全氟十六烷酸 | Perfluorohexadecanoic acid | PFHxDA | CF3(CF2)14CO2H | 814.1 | |
全氟十八烷酸 | Perfluorooctadecanoic acid | PFODA | CF3(CF2)16CO2H | 914.1 | |
全氟磺酸 | 全氟丁烷磺酸 | Perfluorobutane sulfonate | PFBS | CF3(CF2)3SO3H | 300.1 |
全氟己烷磺酸 | Perfluorohexane sulfonate | PFHxS | CF3(CF2)5SO3H | 400.1 | |
全氟辛烷磺酸 | Perfluorooctane sulfonate | PFOS | CF3(CF2)7SO3H | 500.1 | |
全氟癸烷磺酸 | Perfluorodecane sulfonate | PFDS | CF3(CF2)9SO3H | 600.2 |
[1] | ABDALLAH M A E, WEMKEN N, DRAGE D S, et al., 2020. Concentrations of perfluoroalkyl substances in human milk from Ireland: Implications for adult and nursing infant exposure[J]. Chemosphere, 246: 125724-125730. |
[2] | BAO J, LI C L, LIU Y, et al., 2020. Bioaccumulation of perfluoroalkyl substances in greenhouse vegetables with long-term groundwater irrigation near fluorochemical plants in Fuxin, China[J]. Environmental Research, 188: 109751. |
[3] |
BARGHI M, JIN X Z, LEE S, et al., 2018. Accumulation and exposure assessment of persistent chlorinated and fluorinated contaminants in Korean birds[J]. Science of the Total Environment, 645: 220-228.
DOI URL |
[4] |
BLAINE A C, RICH C D, SEDLACKO E M, et al., 2014. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils[J]. Environmental Science & Technology, 48(14): 7858-7865.
DOI URL |
[5] |
BROWN J B, CONDER J M, ARBLASTER J A, et al., 2020. Assessing human health risks from per- and polyfluoroalkyl substance (PFAS)-impacted vegetable consumption: A tiered modeling approach[J]. Environmental Science & Technology, 54(23): 15202-15214.
DOI URL |
[6] |
CHEN H, YAO Y M, ZHAO Z, et al., 2018. Multimedia distribution and transfer of per- and polyfluoroalkyl substances (PFASs) surrounding two fluorochemical manufacturing facilities in Fuxin, China[J]. Environmental Science & Technology, 52(15): 8263-8271.
DOI URL |
[7] | CHOO G, WANG W T, CHO H S, et al., 2020. Legacy and emerging persistent organic pollutants in the freshwater system: Relative distribution, contamination trends, and bioaccumulation[J]. Environment International, 135: 105377-105385. |
[8] | GAN C D, GAN Z W, CUI S F, et al., 2021. Agricultural activities impact on soil and sediment fluorine and perfluorinated compounds in an endemic fluorosis area[J]. Science of the Total Environment, 771: 144809-144817. |
[9] |
GHISI R, VAMERALI T, MANZETTI S, 2019. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review[J]. Environmental Research, 169: 326-341.
DOI PMID |
[10] |
GRAETZ S, JI M, HUNTER S, et al., 2020. Deterministic risk assessment of firefighting water additives to aquatic organisms[J]. Ecotoxicology, 29(9): 1377-1389.
DOI |
[11] |
KONG X Z, LIU W X, HE W, et al., 2018. Multimedia fate modeling of perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS) in the shallow lake Chaohu, China[J]. Environmental Pollution, 237: 339-347.
DOI PMID |
[12] |
KRIPPNER J, FALK S, BRUNN H, et al., 2015. Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays)[J]. Journal of Agricultural and Food Chemistry, 63(14): 3646-3653.
DOI PMID |
[13] | LI J F, HE J H, NIU Z G, et al., 2020. Legacy per- and polyfluoroalkyl substances (PFASs) and alternatives (short-chain analogues, F-53B, GenX and FC-98) in residential soils of China: Present implications of replacing legacy PFASs[J]. Environment International, 135: 105419-105432. |
[14] | LI J Y, SUN J and LI P Y, 2022. Exposure routes, bioaccumulation and toxic effects of per- and polyfluoroalkyl substances (PFASs) on plants: A critical review[J]. Environment International, 158: 106891. |
[15] |
LIU Z Y, LU Y L, SONG X, et al., 2019. Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: Implication for planting optimization and food safety[J]. Environment International, 127: 671-684.
DOI PMID |
[16] |
MENG J, WANG T Y, WANG P, et al., 2015. Perfluoroalkyl substances in Daling River adjacent to fluorine industrial parks: Implication from industrial emission[J]. Bulletin of Environmental Contamination and Toxicology, 94(1): 34-40.
DOI PMID |
[17] | MEI W P, SUN H, SONG M K, et al., 2021. Per- and polyfluoroalkyl substances (PFASs) in the soil-plant system: Sorption, root uptake, and translocation[J]. Environment International, 156: 106642. |
[18] | SSEBUGERE P, SILLANPÄÄ M, MATOVU H, et al., 2020. Environmental levels and human body burdens of per- and poly-fluoroalkyl substances in Africa: A critical review[J]. Science of the Total Environment, 739: 139913. |
[19] |
TANG J X, ZHU Y L, LI Y, et al., 2022a. Occurrence characteristics and health risk assessment of per- and polyfluoroalkyl substances from water in residential areas around fluorine chemical industrial areas, China[J]. Environmental Science and Pollution Research, 29: 60733-60743.
DOI |
[20] |
TANG J X, ZHU Y L, XIANG B, et al., 2022b. Multiple pollutants in groundwater near an abandoned Chinese fluorine chemical park: concentrations, correlations and health risk assessments[J]. Scientific Reports, 12: 3370.
DOI |
[21] | WANG T T, YING G G, HE L Y, et al., 2020. Uptake mechanism, subcellular distribution, and uptake process of perfluorooctanoic acid and perfluorooctane sulfonic acid by wetland plant Alisma orientale[J]. Science of the Total Environment, 733: 139383-139394. |
[22] |
WEN B, WU Y L, ZHANG H N, et al., 2016. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils[J]. Environmental Pollution, 216: 682-688.
DOI PMID |
[23] | XU B T, QIU W H, DU J, et al., 2022. Translocation, bioaccumulation, and distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in plants[J]. Iscience, 25(4): 104061. |
[24] | ZHOU Y R, ZHOU Z Y, LIAN Y J, et al., 2021. Source, transportation, bioaccumulation, distribution and food risk assessment of perfluorinated alkyl substances in vegetables: A review[J]. Food Chemistry, 349: 129137. |
[25] | 陈诗艳, 仇雁翎, 朱志良, 等, 2021. 土壤中全氟和多氟烷基化合物的污染现状及环境行为[J]. 环境科学研究, 34(2): 468-478. |
CHEN S Y, QIU Y L, ZHU Z L, et al., 2021. Current pollution status and environmental behaviors of PFASs in soil[J]. Research of Environmental Sciences, 34(2): 468-478. | |
[26] |
杜国勇, 蒋小萍, 卓丽, 等, 2019. 长江流域重庆段水体中全氟化合物的污染特征及风险评价[J]. 生态环境学报, 28(11): 2266-2272.
DOI |
DU G Y, JIANG X P, ZHUO L, et al., 2019. Distribution characteristics and risk assessment of perfluorinated compounds in surface water from Chongqing section of the Yangtze River[J]. Ecology and Environmental Sciences, 28(11): 2266-2272. | |
[27] | 乔肖翠, 赵兴茹, 郭睿, 等, 2019. 典型岩溶区水环境中全氟化合物分布特征及风险评价[J]. 环境科学研究, 32(12): 2148-2156. |
QIAO X C, ZHAO X R, GUO R, et al., 2019. Distribution characteristics and risk assessment of per-and polyfluoroalkyl substances in water environment in typical Karst region[J]. Research of Environmental Sciences, 32(12): 2148-2156. | |
[28] |
汤家喜, 朱永乐, 李玉, 等, 2021. 辽河流域及周边水体中全氟化合物的污染状况及生态风险评价[J]. 生态环境学报, 30(7): 1447-1454.
DOI |
TANG J X, ZHU Y L, LI Y, et al., 2021. Pollution status and ecological risk assessment of perfluorinated compounds in the Liao River Basin and surrounding[J]. Ecology and Environmental Sciences, 30(7): 1447-1454. | |
[29] | 王团团, 李贝贝, 王赛, 等, 2019. 泽泻 (Alisma orientale) 对全氟化合物的吸收和传输特征-浓度的影响[J]. 环境科学, 40(12): 5394-5400. |
WANG T T, LI B B, WANG S, et al., 2019. Concentration-dependent accumulation and translocation of PFASs by wetland plant (Alisma orientale) [J]. Environmental Science, 40(12): 5394-5400. | |
[30] | 伍兆诚, 王少锐, 江龙飞, 等, 2021. 全氟羧酸化合物在氟化工园区土壤-植物中的分布及组成特征[J]. 地球化学, 50(5): 525-535. |
WU Z Z, WANG S R, JIANG L F, et al., 2021. Distribution and composition of perfluorocarboxylic acid substances in the soil-plant system around a fluorochemical manufacturing park[J]. Geochimica, 50(5): 525-535.
DOI URL |
|
[31] | 朱永乐, 汤家喜, 李梦雪, 等, 2021. 全氟化合物污染现状及与有机污染物联合毒性研究进展[J]. 生态毒理学报, 16(2): 86-99. |
ZHU Y L, TANG J X, LI M X, et al., 2021. Contamination status of perfluorinated compounds and its combined effects with organic pollutants[J]. Asian Journal of Ecotoxicology, 16(2): 86-99. |
[1] | XIAO Bo, WANG Shaojun, XIE Lingling, WANG Zhengjun, GUO Zhipeng, ZHANG Kunfeng, ZHANG Lulu, FAN Yuxiang, GUO Xiaofei, LUO Shuang, XIA Jiahui, LI Rui, LAN Mengjie, YANG Shengqiu. Effect of Ant Nesting Activity on Soil Nitrogen Component Allocation in the Xishuangbanna Tropical Forests [J]. Ecology and Environment, 2023, 32(6): 1026-1036. |
[2] | HUANG Yingmei, ZHONG Songxiong, ZHU Yiwen, WANG Xiangqin, LI Fangbai. Effects and Mechanism of Element Sulfur Inhibiting Methylmercury Accumulation in Rice Plants [J]. Ecology and Environment, 2023, 32(6): 1115-1122. |
[3] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[4] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[5] | XIAO Guoju, LI Xiujing, GUO Zhanqiang, HU Yanbin, WANG Jing. Effects of Soil Organic Carbon on Maize Growth and Water Use at the Eastern Foot of Helan Mountain in Ningxia [J]. Ecology and Environment, 2022, 31(9): 1754-1764. |
[6] | GAO Peng, GAO Pin, SUN Weimin, KONG Tianle, HUANG Duanyi, LIU Huaqing, SUN Xiaoxun. Response of the Endosphere and Rhizosphere Microbial Community in Petris vittata L. to Arsenic Stress [J]. Ecology and Environment, 2022, 31(6): 1225-1234. |
[7] | SHI Hanzhi, JIANG Qi, LIU Fan, WEN Dian, HUANG Yongdong, DENG Tenghaobo, WANG Xu, XU Aiping, LI Furong, WU Zhichao, LI Meixia, PENG Jinfen, DU Ruiying. Effects of Returning Rice Stubble to Field on Cadmium Accumulation in Soil and Rice [J]. Ecology and Environment, 2022, 31(2): 363-369. |
[8] | YANG Danli, LUO Ji, JIA Longyu, CHEN Yunfei. Historical Records of Pb Accumulation in Primary Succession Ecosystem of Hailuogou Glacier Retreat Area [J]. Ecology and Environment, 2022, 31(12): 2393-2402. |
[9] | WU De, PENG Ou, LIU Yuling, ZHANG Puxin, YIN Xuefei, HUANG Xinming, TIE Boqing. Effects of Chelating Agents and Thier Combinations on Remediation of Two Cadmium Contaminated Soils by Sedum plumbizincicola [J]. Ecology and Environment, 2022, 31(12): 2414-2421. |
[10] | LIU Zhijian, DONG Yuanhua, ZHANG Xiu, QING Chengshi. Contamination and Ecological Risk Assessment of Heavy Metals in the Soil of Agricultural Land in Weining Plain, Northwest China [J]. Ecology and Environment, 2022, 31(11): 2216-2224. |
[11] | ZOU Xudong, CAI Fu, LI Rongping, MI Na, ZHAO Hujia, WANG Xiaoying, ZHANG Yunhai, WANG Hongyu, JIA Qingyu. Study on Water and Heat Flux and Energy Change of Maize Field [J]. Ecology and Environment, 2021, 30(8): 1642-1653. |
[12] | WANG Weihong, GAO Shuangquan, DU Yanhong, LI Zhifeng, DOU Fei, ZENG Xiaoduo. Effects of Foliar Barriers Agent on Cadmium Accumulation in Different Varieties of Pepper Planted in Cadmium Contaminated Vegetable Field [J]. Ecology and Environment, 2021, 30(8): 1751-1756. |
[13] | TA Weiyuan, KANG Zhen, MENG Zhaojun, JIN Shenghua, YANG Xing, GUO Longfei, ZHAO Dongxu, ZHANG Xin. Research of Pollution Characteristics of Heavy Metals in Soil of Typical Closed Zinc Smelting Enterprises in Qinling Mountains [J]. Ecology and Environment, 2021, 30(7): 1513-1521. |
[14] | QIANG Chengkui, CAO Dan, ZHAO Hu, ZHANG Ming, DING Yonghui, GUAN Ying, ZHANG Guanqin, SHEN Wenyan, QIN Yuehua. Contents and Ecological Health Risk Assessment of Heavy Metals in Soil-Oil Peony System [J]. Ecology and Environment, 2021, 30(6): 1286-1292. |
[15] | LI Furong, WANG Linqing, LI Wenying, WU Zhichao, WANG Xu. Research and Application Progress on Heavy Metal Absorption and Accumulation of Oenanthe javanica [J]. Ecology and Environment, 2021, 30(12): 2423-2430. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn