Ecology and Environment ›› 2022, Vol. 31 ›› Issue (10): 1971-1983.DOI: 10.16258/j.cnki.1674-5906.2022.10.005
• Research Articles • Previous Articles Next Articles
LI Cong1,2(), LÜ Jinghua1, LU Mei1,*(
), YANG Zhidong1, LIU Pan1, REN Yulian3, DU Fan4
Received:
2022-03-14
Online:
2022-10-18
Published:
2022-12-09
Contact:
LU Mei
李聪1,2(), 吕晶花1, 陆梅1,*(
), 杨志东1, 刘攀1, 任玉连3, 杜凡4
通讯作者:
陆梅
作者简介:
李聪(1997年生),男,博士研究生,从事土壤微生物、森林生态恢复研究。E-mail: licongswfu@126.com
基金资助:
CLC Number:
LI Cong, LÜ Jinghua, LU Mei, YANG Zhidong, LIU Pan, REN Yulian, DU Fan. Responses of Soil Bacterial Communities to Vertical Vegetarian Zone Changes in the Subtropical Forests, Southeastern Yunnan[J]. Ecology and Environment, 2022, 31(10): 1971-1983.
李聪, 吕晶花, 陆梅, 杨志东, 刘攀, 任玉连, 杜凡. 滇东南亚热带土壤细菌群落对植被垂直带变化的响应[J]. 生态环境学报, 2022, 31(10): 1971-1983.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.10.005
海拔 Altitdes/ m | 植被带 Vegetarian zones | 坡向 Aspect of slope | 坡度 Slope/ (°) | 主要优势种 Dominant plant | 平均高度 Average height/m | 平均胸径 Mean DBH/ cm | 凋落物厚度 Litter thickness/cm | 郁闭度 Canopy density | 植物多样性 Vegetation diversity | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shannon- Wiener | Simpson | Margalef | Pielou | |||||||||
1480 | E1 | S3°E-N6°E | 30-42 | 窄叶锥 Castanopsis choboensis | 12.40± 3.17c | 9.33± 2.79c | 3±2c | 0.75 | 0.81± 0.08c | 3.26± 0.35a | 12.71± 1.22a | 1.13± 0.10a |
1660 | E2 | N18°W-N30°W | 5-10 | 木荷 Schima superba | 16.60± 1.52b | 18.09± 2.05b | 15±1b | 0.85 | 1.57± 0.10b | 2.68± 0.22b | 11.67± 0.74b | 1.08± 0.08a |
1760 | E3 | N30°W-S68°W | 30-34 | 栎类 Quercus | 20.67± 2.41a | 24.16± 3.12a | 23±4a | 0.95 | 1.88± 0.12a | 2.29± 0.17c | 10.68± 0.55c | 0.85± 0.04b |
Table 1 The basic situation of the sample sites
海拔 Altitdes/ m | 植被带 Vegetarian zones | 坡向 Aspect of slope | 坡度 Slope/ (°) | 主要优势种 Dominant plant | 平均高度 Average height/m | 平均胸径 Mean DBH/ cm | 凋落物厚度 Litter thickness/cm | 郁闭度 Canopy density | 植物多样性 Vegetation diversity | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shannon- Wiener | Simpson | Margalef | Pielou | |||||||||
1480 | E1 | S3°E-N6°E | 30-42 | 窄叶锥 Castanopsis choboensis | 12.40± 3.17c | 9.33± 2.79c | 3±2c | 0.75 | 0.81± 0.08c | 3.26± 0.35a | 12.71± 1.22a | 1.13± 0.10a |
1660 | E2 | N18°W-N30°W | 5-10 | 木荷 Schima superba | 16.60± 1.52b | 18.09± 2.05b | 15±1b | 0.85 | 1.57± 0.10b | 2.68± 0.22b | 11.67± 0.74b | 1.08± 0.08a |
1760 | E3 | N30°W-S68°W | 30-34 | 栎类 Quercus | 20.67± 2.41a | 24.16± 3.12a | 23±4a | 0.95 | 1.88± 0.12a | 2.29± 0.17c | 10.68± 0.55c | 0.85± 0.04b |
Figure 1 The changes in soil physicochemical properties across different vertical vegetarian zones n=15 for each vegetation zone; and n=5 is the average value for 0-50 cm soil layers Different lower-case letters indicate that plant factors are significantly differences (P<0.05), the same as below; Different lower-cases indicate significant difference of an index among the three zonal vegetations in the same layer; the different capital letters indicate significant difference of an index among the five layers in the same zonal vegetation, the maximum mean value mark as a and A
Figure 3 Analysis of similarities of soil bacterial dominant communities in different vertical vegetarian zones n=3 is the average value for each vegetation zoneThe solid line indicates that there is significance between variables (P<0.05), and the dotted line indicates that there is no significance between variables (P>0.05), the same as below
Figure 4 Anosim analysis of soil bacterial dominant communities along soil layers in different vertical vegetarian zones n=9 for the same soil layersL1=0-10 cm, L2=10-20 cm, L3=20-30 cm, L4=30-40 cm, L5=40-50 cm. The same as below
Figure 5 The profile changes of bacterial community across different vertical vegetarian zones (Phylum) n=3 is the average value for each vegetation zone; and n=5 is also the average value for 0-50 cm soil layers
样品 Samples | 丰富度指数 Richness index | Chao 1指数 Chao index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|---|
E1-L1 | 2977±56.12Aa | 3644±73.38Aa | 6.70±0.01Aa | 0.0035±0.0001Bc |
E1-L2 | 1915±114.84Bab | 2630±179.85Ba | 5.71±0.08Bb | 0.0095±0.0012ABa |
E1-L3 | 1949±13.20Bb | 2663±45.54Bb | 5.65±0.06Bb | 0.0107±0.0011Aa |
E1-L4 | 1763±63.38Cb | 2441±28.96Cb | 5.64±0.11Bc | 0.0103±0.0011Aa |
E1-L5 | 1829±13.48Ca | 2408±66.77Ca | 5.70±0.07Ba | 0.0100±0.0030Ab |
E2-L1 | 2033±93.46Bb | 2510±94.83Cc | 6.17±0.02Ac | 0.0049±0.0002Cb |
E2-L2 | 2112±74.60Ba | 2790±96.40Ba | 6.08±0.10Aa | 0.0064±0.0015BCb |
E2-L3 | 2194±97.84Bab | 2808 ±111.50Ba | 6.03±0.05ABa | 0.0066±0.0005Bb |
E2-L4 | 2322±29.17Aa | 3083 ±92.46Aa | 6.01±0.07ABa | 0.0071±0.0007Bb |
E2-L5 | 1417±68.47Cc | 1966±157.87Db | 5.24±0.10Bb | 0.0162±0.0023Aa |
E3-L1 | 1773±27.74Cc | 2135±26.19Cc | 5.97±0.01ABc | 0.0061±0.0005ABa |
E3-L2 | 2232±135.46Aa | 2852±131.10Aa | 6.07±0.10Aa | 0.0059±0.0008Bb |
E3-L3 | 2443±270.49Aa | 3103±247.07Aa | 6.14±0.14Aa | 0.0056±0.0010Bb |
E3-L4 | 1847±56.88Bb | 2408±94.32Bb | 5.86±0.09Bb | 0.0075±0.0010ABb |
E3-L5 | 1689±28.59Db | 2199±50.39Cb | 5.72±0.02Ca | 0.0082±0.0002Ab |
Table 2 The vertical changes in soil physicochemical properties across different vertical vegetarian zones
样品 Samples | 丰富度指数 Richness index | Chao 1指数 Chao index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|---|
E1-L1 | 2977±56.12Aa | 3644±73.38Aa | 6.70±0.01Aa | 0.0035±0.0001Bc |
E1-L2 | 1915±114.84Bab | 2630±179.85Ba | 5.71±0.08Bb | 0.0095±0.0012ABa |
E1-L3 | 1949±13.20Bb | 2663±45.54Bb | 5.65±0.06Bb | 0.0107±0.0011Aa |
E1-L4 | 1763±63.38Cb | 2441±28.96Cb | 5.64±0.11Bc | 0.0103±0.0011Aa |
E1-L5 | 1829±13.48Ca | 2408±66.77Ca | 5.70±0.07Ba | 0.0100±0.0030Ab |
E2-L1 | 2033±93.46Bb | 2510±94.83Cc | 6.17±0.02Ac | 0.0049±0.0002Cb |
E2-L2 | 2112±74.60Ba | 2790±96.40Ba | 6.08±0.10Aa | 0.0064±0.0015BCb |
E2-L3 | 2194±97.84Bab | 2808 ±111.50Ba | 6.03±0.05ABa | 0.0066±0.0005Bb |
E2-L4 | 2322±29.17Aa | 3083 ±92.46Aa | 6.01±0.07ABa | 0.0071±0.0007Bb |
E2-L5 | 1417±68.47Cc | 1966±157.87Db | 5.24±0.10Bb | 0.0162±0.0023Aa |
E3-L1 | 1773±27.74Cc | 2135±26.19Cc | 5.97±0.01ABc | 0.0061±0.0005ABa |
E3-L2 | 2232±135.46Aa | 2852±131.10Aa | 6.07±0.10Aa | 0.0059±0.0008Bb |
E3-L3 | 2443±270.49Aa | 3103±247.07Aa | 6.14±0.14Aa | 0.0056±0.0010Bb |
E3-L4 | 1847±56.88Bb | 2408±94.32Bb | 5.86±0.09Bb | 0.0075±0.0010ABb |
E3-L5 | 1689±28.59Db | 2199±50.39Cb | 5.72±0.02Ca | 0.0082±0.0002Ab |
指标 Index | 去趋势对应分析 Detrended correspondence analysis | ||||
---|---|---|---|---|---|
DCA1 | DCA2 | DCA3 | DCA4 | ||
群落 Community | 特征值 Eigenvalues | 0.468 | 0.056 | 0.036 | 0.029 |
DCA值 Decorana values | 0.476 | 0.046 | 0.015 | 0.006 | |
排序轴长 Axis lengths | 1.778 | 0.856 | 0.727 | 0.678 | |
多样性 Diversity | 特征值 Eigenvalues | 0.081 | 0.001 | 0.001 | 0.001 |
DCA值 Decorana values | 0.371 | 0.001 | 0.001 | 0.001 | |
排序轴长 Axis lengths | 1.414 | 0.605 | 0.759 | 1.023 |
Table 3 Principal component dimension reduction analysis of environmental factors and soil bacterial community composition diversity
指标 Index | 去趋势对应分析 Detrended correspondence analysis | ||||
---|---|---|---|---|---|
DCA1 | DCA2 | DCA3 | DCA4 | ||
群落 Community | 特征值 Eigenvalues | 0.468 | 0.056 | 0.036 | 0.029 |
DCA值 Decorana values | 0.476 | 0.046 | 0.015 | 0.006 | |
排序轴长 Axis lengths | 1.778 | 0.856 | 0.727 | 0.678 | |
多样性 Diversity | 特征值 Eigenvalues | 0.081 | 0.001 | 0.001 | 0.001 |
DCA值 Decorana values | 0.371 | 0.001 | 0.001 | 0.001 | |
排序轴长 Axis lengths | 1.414 | 0.605 | 0.759 | 1.023 |
Figure 7 Redundancy analysis of environmental factors and bacterial community composition and diversity n=15 for each vegetation zonepH=pH value, MC=Moisture content, ST=Soil temperature, BD=Bulk density, SM=Soil organic matter, TN=Total nitrogen, TP=Total phosphorus, TK=Total potassium, W=Plant Shannon-Wiener index, D=Plant Simpson index, J=Plant Pielou index, R=Plant Margalef index, LT=Litter thickness, B_Shannon=Bacterial shannon-wiener index, B_Simpson=Bacterial simpson index
Figure 8 Mantel analysis of environmental factors and soil bacterial dominant communities-diversity across different vertical vegetarian zones n=15 for each vegetation zonepH=pH value, MC=Moisture content, ST=Soil temperature, BD=Bulk density, SM=Soil organic matter, TN=Total nitrogen, TP=Total phosphorus, TK=Total potassium, W=Plant Shannon-Wiener index, D=Plant Simpson index, J=Plant Pielou index, R=Plant Margalef index, LT=Litter thicknes
[1] |
BARDGETT R D, VAN DER PUTTEN W H, 2014. Belowground biodiversity and ecosystem functioning[J]. Nature, 515(7528): 505-511.
DOI URL |
[2] |
FIERER N, LEFF J W, ADAMS B J, et al., 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes[J]. Proceedings of the National Academy of Sciences, 109(52): 21390-21395.
DOI URL |
[3] |
FIERER N, MC CAIN C M, MEIR P, et al., 2011. Microbes do not follow the elevational diversity patterns of plants and animals[J]. Ecology, 92(4): 797-804.
PMID |
[4] |
LI G X, XU G R, SHEN C C, et al., 2016. Contrasting elevational diversity patterns for soil bacteria between two ecosystems divided by the treeline[J]. Science China Life Sciences, 59(11): 1-10
DOI URL |
[5] | LIU C L, ZUO W Y, ZHAO Z Y, et al., 2012. Bacterial diversity of different successional stage forest soils in Dinghushan[J]. Acta Microbiologica Sinica, 52(12): 1489-1496. |
[6] |
JIANG S, XING Y J, LIU G C, et al., 2021. Changes in soil bacterial and fungal community composition and functional groups during the succession of boreal forests[J]. Soil Biology and Biochemistry, 161: 108393.
DOI URL |
[7] |
NAVARRETE A A, KURAMAE E E, de Hollander M, et al., 2013. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils[J]. FEMS Microbiol Ecology, 83(3): 607-621.
DOI URL |
[8] | QIN X H, LIANG Y, CHENG C F, et al., 2021. Effects of Different Tree Species Plantations on Soil Bacterial Community Diversity in South Subtropical China[J]. Forest Research, 34(4): 120-127. |
[9] |
WANG J M, ZHANG T H, LI L P, et al. 2017. The patterns and drivers of bacterial and fungal β-diversity in a typical dryland ecosystem of northwest China[J]. Frontiers in Microbiology, 8: 2126.
DOI PMID |
[10] |
ZHU H, ZHOU S S, YAN L C, et al., 2019. Studies on the evergreen broad-leaved forests of Yunnan, southwestern China[J]. The Botanical Review, 85(2): 131-148.
DOI URL |
[11] |
ZHAO Z, MA Y, FENG T, et al., 2022. Assembly processes of abundant and rare microbial communities in orchard soil under a cover crop at different periods[J]. Geoderma, 406: 115543.
DOI URL |
[12] | 段益莉, 李继侠, 江强, 等, 2019. 长白山东坡不同海拔落叶松土壤微生物碳代谢及酶活性研究[J]. 生态环境学报, 28(4): 652-660. |
DUAN Y L, LI J X, JIANG Q, et al., 2019. Soil microbial carbon metabolism and enzyme activity of Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China[J]. Ecology and Environmental Sciences, 28(4): 652-660. | |
[13] | 冯晓川, 曹新光, 居文华, 等, 2019. 庐山国家级自然保护区森林土壤细菌群落特征研究[J]. 林业资源管理 (6): 101-107. |
FENG X C, CAO X G, JU W H, et al., 2019. A study on community characteristics of forest soil bacteria in Lushan National Nature Reserve[J]. Forest Resources Management (6): 101-107. | |
[14] | 国家林草局, 2000. 森林土壤样品的采集与制备: LYT 1210—1999 [S]. 北京: 中国标准出版社. |
State Forestry Bureau, 2000. Collection and preparation of forest soil samples: LYT 1210—1999 [S]. Beijing: Standards Press of China. | |
[15] | 国家林草局, 2000. 森林土壤分析方法:LY/T 1215—1999、LY/T 1237—1999、LY/T 1228—1999、LY/T 1232—1999、LY/T 1254—1999) [S]. 北京: 中国标准出版社. |
State Forestry Bureau, 2000. Soil analysis for forest ecosystem:LY/T 1215—1999, LY/T 1237—1999, LY/T 1228—1999, LY/T 1232—1999, LY/T 1254—1999 [S]. Beijing: Standards Press of China. | |
[16] | 郭龙洁, 白帆, 代陆娇, 等, 2017. 文山国家级自然保护区灵长类种群数量研究[J]. 西南林业大学学报(自然科学), 37(3): 101-106. |
GUO L J, BAN F, DAI L J, et al., 2017. Primates Population at the Wenshan National Nature Reserve, Yunnan[J]. Journal of Southwest Forestry University (Natural Sciences), 37(3): 101-106. | |
[17] | 韩冬雪, 王宁, 王楠楠, 等, 2015. 不同海拔红松林土壤微生物功能多样性[J]. 应用生态学报, 26(12): 3649-3656. |
HAN D X, WANG N, WAN N N, et al., 2015. Soil microbial functional diversity of different altitude Pinus koraiensis forests[J]. Chinese Journal of Applied Ecology, 26(12): 3649-3656. | |
[18] | 贺婧, 闫冰, 李俊生, 等, 2019. 秦岭中段北坡不同海拔土壤中细菌群落的分布特征及区域差异比较[J]. 环境科学研究, 32(8): 1374-1383. |
HE J, YAN B, LI J S, et al., 2019. Altitude distribution patterns and regional differences of soil bacterial community in Northern Slopes in the Middle Qinling Mountains[J]. Research of Environmental Sciences, 32(8): 1374-1383. | |
[19] | 侯萌, 陈一民, 焦晓光, 等, 2020. 两种气候条件下不同有机质含量农田黑土真菌群落结构特征[J]. 微生物学通报, 47(9): 147-157. |
HOU M, CHEN Y M, JIAO X G, et al., 2020. Characteristics of fungal community structure in arable mollisols with different organic matter content under two climatic conditions[J]. Microbiology China, 47(9): 2822-2832. | |
[20] | 侯贻菊, 吴晓悦, 张喜, 等, 2019. 林木根际土壤研究进展[J]. 贵州林业科技, 47(4): 39-45. |
HOU Y J, WU X Y, ZHANG X, et al., 2019. The Research Progress of rhizosphere soil of forest trees[J]. Guizhou Forestry Science and Technology, 47(4): 39-45. | |
[21] | 胡华英, 张燕林, 褚昭沛, 等, 2021. 红壤侵蚀区不同植被恢复阶段土壤酶活性和微生物多样性变化[J]. 应用与环境生物学报, 27(6): 1-10. |
HU H Y, ZHANG Y L, CHU Z P, et al., 2021. Changes of soil enzyme activity and microbial diversity in different vegetation restoration stages in eroded red soil[J]. Chinese Journal of Applied & Environmental Biology, 27(6): 1-10. | |
[22] | 黄乐乐, 2015. 中国境内中越边境地区苔类植物区系研究[D]. 上海: 华东师范大学. |
HUANG L L, 2015. Studies on the liverwort of the Sino-Vietnam border area[D]. Shang Hai: East China Normal University. | |
[23] | 黄萍, 王楠, 周紫羽, 等, 2020. 白云山落叶阔叶林土壤细菌群落结构及环境因子的相关性分析[J]. 河南农业大学学报, 54(3): 415-421 |
HUANG P, WANG N, ZHOU Z Y, et al., 2020. Soil microbial diversity under typical vegetation zones along an elevation gradient in Helan Mountains[J]. Journal of Henan Agricultural University, 54(3): 415-421. | |
[24] |
李超男, 李家宝, 李香真, 2017. 贡嘎山海拔梯度上不同植被类型土壤甲烷氧化菌群落结构及多样性[J]. 应用生态学报, 28(3): 805-814.
DOI |
LI C N, LI J B, LI X Z, 2017. Soil methanotrophic community structure and diversity in different vegetation types at elevation gradient of Gongga Mountain, Southwest China[J]. Chinese Journal of Applied Ecology, 28(3): 805-814. | |
[25] | 厉桂香, 马克明, 2018. 土壤微生物多样性海拔格局研究进展[J]. 生态学报, 38(5): 1521-1529. |
LI G X, MA K M, 2018. Progress in the study of elevational patterns of soil microbial diversity[J]. Acta Ecologica Sinica, 38(5): 1521-1529. | |
[26] | 陆梅, 2018. 纳帕海湿地退化对土壤微生物群落结构及多样性的影响[D]. 北京: 北京林业大学. |
LU M, 2018. Effects of wetlands degradation on structure and biodiversity of soil microbial community in Napahai Plateau Wetlands[D]. Beijing: Beijing Forestry University. | |
[27] |
梁艳, 明安刚, 何友均, 等, 2021. 南亚热带马尾松-红椎混交林及其纯林土壤细菌群落结构与功能[J]. 应用生态学报, 32(3): 878-886.
DOI |
LIANG Y, MING A G, HE Y J, et al., 2021. Structure and function of soil bacterial communities in the monoculture and mixed plantation of Pinus massoniana and Castanopsis hystrix in southern subtropical China[J]. Chinese Journal of Applied Ecology, 32(3): 878-886.
DOI |
|
[28] | 彭淑娴, 陆梅, 王震, 等, 2017. 纳帕海农田土壤氨氧化细菌的群落结构[J]. 贵州农业科学, 45(6): 91-97. |
PENG S X, LU M, WANG Z, et al., 2017. Ammonia oxidizing bacteria community structure in Napahai farmland soil[J]. Guizhou Agricultural Sciences, 45(6): 91-97. | |
[29] | 刘秉儒, 2021. 生物多样性的海拔分布格局研究及进展[J]. 生态环境学报, 30(2): 438-444. |
LIU B R, 2021. Recent advances in altitudinal distribution patterns of biodiversity[J]. Ecology and Environmental Sciences, 30(2): 438-444. | |
[30] | 刘秉儒, 张秀珍, 胡天华, 等, 2013. 贺兰山不同海拔典型植被带土壤微生物多样性[J]. 生态学报, 33(22): 7211-7220. |
LIU B R, ZHANG X Z, HU T H, et al., 2013. Soil microbial diversity under typical vegetation zones along an elevation gradient in Helan Mountains[J]. Acta Ecologica Sinica, 33(22):7211-7220.
DOI URL |
|
[31] | 任玉连, 曹乾斌, 李聪, 等, 2019. 南滚河自然保护区森林群落特征与土壤性质之间关联分析[J]. 西北林学院学报, 34(3): 50-59. |
REN Y L, CAO Q B, LI C, et al., 2019. Correlation analysis between forest community characteristics and soil characteristics in Nangunhe Nature Reserve[J]. Journal of Northwest Forestry University, 34(3): 50-59. | |
[32] | 沈开强, 韩晓彤, 张銮, 等, 2020. 泰山不同海拔土壤的细菌多样性初步分析[J]. 山东农业科学, 52(6):51-56. |
SHENG K Q, HAN X T, ZHANG L, et al., 2020. Preliminary analysis of bacterial diversity in soil at different altitudes in Mount Tai[J]. Shandong Agricultural Sciences, 52(6):51-56. | |
[33] | 孙佳, 夏江宝, 苏丽, 等, 2020. 黄河三角洲盐碱地不同植被模式的土壤改良效应[J]. 应用生态学报, 31(4): 1323-1332. |
SUN J, XIA J C, SU L, et al., 2020. Soil amelioration of different vegetation types in saline-alkali land of the Yellow River Delta, China[J]. Chinese Journal of Applied Ecology, 31(4): 1323-1332. | |
[34] |
王光华, 刘俊杰, 于镇华, 等, 2016. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 32(2): 14-20.
DOI |
WANG G H, LIU J J, YU Z H, et al., 2016. Research progress of acidobacteria ecology in soils[J]. Biotechnology Bulletin, 32(2): 14-20. | |
[35] | 吴昊, 邹梦茹, 王思芊, 等, 2019. 秦岭松栎林土壤生态化学计量特征及其对海拔梯度的响应[J]. 生态环境学报, 28(12): 2323-2331. |
WU H, ZOU M R, WANG S Q, et al., 2019. Eco-stoichiometry characteristics of soil within Pine and Oak mixed forest and theirs responses to elevation gradient in Qinling Mountains[J]. Ecology and Environmental Sciences, 28(12): 2323-2331. | |
[36] |
吴梦瑶, 陈林, 庞丹波, 等, 2021. 贺兰山不同海拔土壤团聚体碳氮磷含量及其化学计量特征变化[J]. 应用生态学报, 32(4): 1241-1249.
DOI |
WU M Y, CHEN L, PANG D B, et al., 2021. Changes of the concentrations and stoichiometry of carbon, nitrogen and phosphorus in soil aggregates along different altitudes of Helan Mountains, Northwest China[J]. Chinese Journal of Applied Ecology, 32(4): 1241-1249. | |
[37] | 严令斌, 2020. 土壤微生物群落与植物功能性状对喀斯特小生境水热的响应机制[D]. 贵阳: 贵州大学. |
YAN L B, 2020. Response mechanism of soil microbial community and plant functional traits to ecological factors of water and heat in Karst Micro-Habitats[D]. Guiyang: Guizhou University. | |
[38] | 杨宇明, 田昆, 和世钧, 等, 2008. 中国文山国家级自然保护区科学考察研究(3-9)[M]. 北京: 科学出版社. |
YANG Y M, TIAN K, HE S J, et al., 2008. Study on the scientific survey of Wen Shan National Nature Reserve in China (3-9)[M]. Beijing: Science Press. | |
[39] | 姚兰, 胡立煌, 张焕朝, 等, 2019. 黄山土壤细菌群落和酶活性海拔分布特征[J]. 环境科学, 40(2): 859-868. |
YAO L, HU L H, ZHANG H C, et al., 2019. Elevational distribution characteristics of soil bacterial community and enzyme activities in Mount Huangshan[J]. Environmental Science, 40(2): 859-868. | |
[40] | 张地, 张育新, 曲来叶, 等, 2012. 海拔对辽东栎林地土壤微生物群落的影响[J]. 应用生态学报, 23(8): 2041-2048. |
ZHANG D, ZHANG Y X, QU L Y, et al., 2012. Effects of altitude on soil microbial community in Quercus liaotungensis forest[J]. Chinese Journal of Applied Ecology, 23(8): 2041-2048. | |
[41] | 张丹丹, 张丽梅, 沈菊培, 等, 2018. 珠穆朗玛峰不同海拔梯度上土壤细菌和真菌群落变化特征[J]. 生态学报, 38(7): 2247-2261. |
ZHANG D D, ZHANG L M, SHEN J P, et al., 2018. Soil bacterial and fungal community succession along an altitude gradient on Mount Everest[J]. Acta Ecologica Sinica, 38(7): 2247-2261. | |
[42] | 张腾升, 2019. 亚热带不同植被恢复阶段植物与土壤微生物多样性特征及其相关关系[D]. 南昌: 南昌工程学院. |
ZHANG T S, 2019. Plant and soil microbial diversity in different vegetation restoration stages in subtropical region and their correlation[D]. Nanchang: Nanchang Institute of Technology. | |
[43] | 章英才, 王俊, 2007. 植物学实验[M]. 银川: 宁夏人民出版社: 263-265. |
ZHANG Y C, WANG J, 2007. Experiment of Botany[M]. Yinchuan: Ningxia People’s Publishing House: 263-265. | |
[44] | 赵茂强, 2020. 土壤微生物多样性海拔分布格局研究现状分析[J]. 绿色科技 (2): 23-25. |
ZHAO M Q, 2020. Analysis on the research status of altitude distribution pattern of soil microbial diversity[J]. Journal of Green Science and Technology (2): 23-25. | |
[45] |
郑勇, 贺纪正, 2020. 森林土壤微生物对干旱和氮沉降的响应[J]. 应用生态学报, 31(7): 2464-2472.
DOI |
ZHENG Y, HE J Z, 2020. Responses of forest soil microbial communities to drought and nitrogen deposition: A review[J]. Chinese Journal of Applied Ecology, 31(7): 2464-2472.
DOI |
|
[46] | 朱平, 陈仁升, 宋耀选, 等, 2015. 祁连山不同植被类型土壤微生物群落多样性差异[J]. 草业学报, 24(6): 75-84. |
ZHU P, CHEN R S, SONG Y X, et al., 2015. Soil microbial community diversity under four vegetation types in the Qilian Mountains, China[J]. Acta Prataculturae Sinica, 24(6): 75-84. |
[1] | LI Haipeng, HUANG Yuehua, SUN Xiaodong, CAO Qimin, FU Fangxing, SUN Chuhan. Correlation Analysis of the Occurrence of the Tomato Bacterial Wilt and Different Types of Texture of Latosols and Its Bacterial Community in Cropland in Hainan [J]. Ecology and Environment, 2023, 32(6): 1062-1069. |
[2] | HUANG Yingmei, ZHONG Songxiong, ZHU Yiwen, WANG Xiangqin, LI Fangbai. Effects and Mechanism of Element Sulfur Inhibiting Methylmercury Accumulation in Rice Plants [J]. Ecology and Environment, 2023, 32(6): 1115-1122. |
[3] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[4] | JIANG Yongwei, DING Zhenjun, YUAN Junbin, ZHANG Zheng, LI Yang, WEN Qingchun, WANG Yeyao, JIN Xiaowei. Study on Benthic Macroinvertebrates Community Structure and Water Quality Evaluation in Main Rivers of Liaoning Province [J]. Ecology and Environment, 2023, 32(5): 969-979. |
[5] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[6] | KOU Zhu, QING Chun, YUAN Changguo, LI Ping. Diversity and Distribution of Sulfur Oxidizing Bacteria in Hot Springs of Northeast Tibet, China [J]. Ecology and Environment, 2023, 32(5): 989-1000. |
[7] | LI Yang, HOU Zhiyong, CHEN Wei, YU Xiaoying, XIE Yonghong, HUANG Xin, TAN Peiyang, LI Jicheng, LI Shanglin, YANG Hui. Plant Diversity and Systematic Composition of Alpine Wetlands in Dawei Mountain [J]. Ecology and Environment, 2023, 32(4): 643-650. |
[8] | WANG Xinyu, GAO Dengzhou, LIU Bolin, WANG Bin, ZHENG Yanling, LI Xiaofei, HOU Lijun. The Tidal-cycle Variation and Influencing Factors of Dark Carbon Fixation Process in the Yangtze Estuary [J]. Ecology and Environment, 2023, 32(4): 733-743. |
[9] | LI Shanjia, WANG Xingmin, LIU Haifeng, SUN Mengge, LEI Yuxin. Diversity of Desert Plants in Hexi Corridor and Its Response to Environmental Factors [J]. Ecology and Environment, 2023, 32(3): 429-438. |
[10] | QIN Hao, LI Mengai, GAO Jin, CHEN Kailong, ZHANG Yinbo, ZHANG Feng. Composition and Diversity of Soil Bacterial Communities in Shrub at Different Altitudes in Luya Mountain [J]. Ecology and Environment, 2023, 32(3): 459-468. |
[11] | YANG Nie, SUN Xiaoxun, KONG Tianle, SUN Weimin, CHEN Quanyuan, GAO Pin. Response of Microbial Communities to Changes in Antimony Pollution Concentrations in Fluvial Sediment [J]. Ecology and Environment, 2023, 32(3): 609-618. |
[12] | YANG Yu, DENG Renjian, LONG Pei, HUANG Zhongjie, Ren Bozhi, WANG Zhenghua. Isolation and Identification of Arsenic-oxidizing Bacterium Pseudomonas sp. AO-1 and Its Oxidation Properties for As(Ⅲ) [J]. Ecology and Environment, 2023, 32(3): 619-626. |
[13] | TONG Yindong, HUANG Lanlan, YANG Ning, ZHANG Yiyan, LI Zipeng, SHAO Bo. Distribution Characteristics and Potential Environmental Risk Analysis of Microcystins in Global Water Bodies [J]. Ecology and Environment, 2023, 32(1): 129-138. |
[14] | YANG Rui, SUN Weimin, LI Yongbin, GUO Lifang, JIAO Nianyuan. Isolation, Identification and Plant Growth Promotion of Rhizosphere Phosphorus-dissolving Bacteria from Tailings Pioneer Plants [J]. Ecology and Environment, 2023, 32(1): 166-174. |
[15] | ZHANG Lijin, DU Hu, ZENG Fuping, HUANG Guoqin, SONG Min, SONG Tongqing. Discussion on the Relationship between Productivity and Diversity during Vegetation Restoration in the Karst Peak-cluster Depression [J]. Ecology and Environment, 2023, 32(1): 26-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn