Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (8): 1172-1181.DOI: 10.16258/j.cnki.1674-5906.2025.08.002
• Papers on “Nuclear Contamination and Ecosystem Security” • Previous Articles Next Articles
LI Shaoting1(), ZHANG Le2, LU Yifu1, XIAO Lixiang1, GUO Can3, ZHANG Zhaowei3,4,*(
)
Received:
2025-02-06
Online:
2025-08-18
Published:
2025-08-01
李少婷1(), 张乐2, 卢奕夫1, 肖李翔1, 郭灿3, 张兆威3,4,*(
)
通讯作者:
*E-mail: 作者简介:
李少婷(1980年生),女,正高级工程师,硕士,研究方向为辐射环境监测。E-mail: 86750641@qq.com
基金资助:
CLC Number:
LI Shaoting, ZHANG Le, LU Yifu, XIAO Lixiang, GUO Can, ZHANG Zhaowei. Distribution and Health Risk Analysis of Radioactive Nuclides in Soil in Some Areas of Hubei Province[J]. Ecology and Environmental Sciences, 2025, 34(8): 1172-1181.
李少婷, 张乐, 卢奕夫, 肖李翔, 郭灿, 张兆威. 湖北省部分地区土壤中放射性核素分布规律及健康风险分析[J]. 生态环境学报, 2025, 34(8): 1172-1181.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.08.002
核素 | 半衰期/ d | 质量活度/ (Bq∙g−1) | 核素 | 半衰期/ d | 质量活度/ (Bq∙g−1) |
---|---|---|---|---|---|
241Am | 1.580×105 | 1.084×101 | 85Sr | 6.485×10 | 1.095×101 |
109Cd | 4.614×102 | 1.509×102 | 137Cs | 1.099×104 | 4.054×100 |
57Co | 2.717×102 | 2.959×100 | 54Mn | 3.121×102 | 7.024×100 |
109Ce | 1.376×102 | 3.979 ×100 | 88Y | 1.066×102 | 1.190×101 |
51Cr | 2.770×10 | 1.396×102 | 65Zn | 2.439×102 | 1.313×101 |
113Sn | 1.151×102 | 7.119×100 | 60Co | 1.925×103 | 7.018×100 |
Table 1 The parameter of efficiency calibration standard source
核素 | 半衰期/ d | 质量活度/ (Bq∙g−1) | 核素 | 半衰期/ d | 质量活度/ (Bq∙g−1) |
---|---|---|---|---|---|
241Am | 1.580×105 | 1.084×101 | 85Sr | 6.485×10 | 1.095×101 |
109Cd | 4.614×102 | 1.509×102 | 137Cs | 1.099×104 | 4.054×100 |
57Co | 2.717×102 | 2.959×100 | 54Mn | 3.121×102 | 7.024×100 |
109Ce | 1.376×102 | 3.979 ×100 | 88Y | 1.066×102 | 1.190×101 |
51Cr | 2.770×10 | 1.396×102 | 65Zn | 2.439×102 | 1.313×101 |
113Sn | 1.151×102 | 7.119×100 | 60Co | 1.925×103 | 7.018×100 |
统计函数 | 40K | 137Cs | 226Ra | 232Th | 238U |
---|---|---|---|---|---|
平均数/(Bq∙kg−1) | 567 | 1.04 | 30.3 | 47.1 | 39.6 |
中位数/(Bq∙kg−1) | 584.50 | 0.63 | 29.00 | 47.00 | 39.50 |
标准偏差/(Bq∙kg−1) | 151.87 | 1.12 | 8.18 | 10.48 | 11.54 |
偏态系数 | −0.65 | 2.37 | 0.90 | −0.18 | 0.52 |
峰度 | 0.16 | 5.06 | 1.57 | 0.09 | 0.73 |
Table 2 Descriptive statistics of data corresponding to the activity of radionuclides
统计函数 | 40K | 137Cs | 226Ra | 232Th | 238U |
---|---|---|---|---|---|
平均数/(Bq∙kg−1) | 567 | 1.04 | 30.3 | 47.1 | 39.6 |
中位数/(Bq∙kg−1) | 584.50 | 0.63 | 29.00 | 47.00 | 39.50 |
标准偏差/(Bq∙kg−1) | 151.87 | 1.12 | 8.18 | 10.48 | 11.54 |
偏态系数 | −0.65 | 2.37 | 0.90 | −0.18 | 0.52 |
峰度 | 0.16 | 5.06 | 1.57 | 0.09 | 0.73 |
地点 | 质量活度/(Bq∙kg−1) | 参考文献 | ||||
---|---|---|---|---|---|---|
238U | 232Th | 226Ra | 40K | 137Cs | ||
Quebec,加拿大 | 0.2-212(38) | Blagoeva et al., | ||||
Aog,保加利亚 | 85.7-2543 | Zhiyanski et al., | ||||
Punjab,巴基斯坦 | 42-53(47) | 34-43(39) | 532-621(569) | Faheem et al., | ||
Kelantan,马来西亚 | 49-251(145) | 491-2496(908) | Hamzah et al., | |||
Azad Kashmir,巴基斯坦 | 28-73(44) | 13-60(31) | 250-896(575) | 2-69(15) | Rafique et al., | |
Isparta,土耳其 | 3-66(15) | 4-69(16) | 44-452(211) | 0.3-19(3) | Kürkçüoğlu et al., | |
Kano,尼日利亚 | 50-122(72) | 41-102(65) | 253-1227(681) | Muhammad et al., | ||
West Bengal,印度 | 7-22(17) | 24-34(29) | 461-610(518) | Sharma et al., | ||
也门 | 33-211 | 28-81 | ND-1235 | Maglas et al., | ||
Phosphate area,突尼斯 | <0.1-43.5(13) | 5-56(27) | 103-529(264) | Machraoui et al., | ||
Rajasthan,印度 | 40-71(55) | 13-36(24) | 294-781(549) | Rani et al., | ||
土耳其 | 2-220(29) | 1-159(33) | 26-1603(449) | 1-357(13) | Turhan et al., | |
全球中位数 | 16-110(35) | 11-64(30) | 17-60(35) | 140-850(400) | UNSCEAR, | |
人口加权平均数 | 33 | 45 | 32 | 420 | UNSCEAR, | |
广东珠江流域 | 14-180(73) | 31-306(103) | 20-215(69) | 92-1910(535) | <0.4-5.6(0.7) | 马婷婷等, |
成都 | 21-31(29) | 49-56(52) | 34-39(36) | 521-594 | 刘合凡等, | |
内蒙古 | 14-43(26) | 16-58(36) | 13-38(25) | 485-929(692) | 王玮等, | |
湖北 | 11-71(39.6) | 15-67(47.1) | 13-55(30.3) | 202-876(567) | 0.3-6(1.04) |
Table 3 Activity concentration of radionuclides in soil of Hubei, China and other areas
地点 | 质量活度/(Bq∙kg−1) | 参考文献 | ||||
---|---|---|---|---|---|---|
238U | 232Th | 226Ra | 40K | 137Cs | ||
Quebec,加拿大 | 0.2-212(38) | Blagoeva et al., | ||||
Aog,保加利亚 | 85.7-2543 | Zhiyanski et al., | ||||
Punjab,巴基斯坦 | 42-53(47) | 34-43(39) | 532-621(569) | Faheem et al., | ||
Kelantan,马来西亚 | 49-251(145) | 491-2496(908) | Hamzah et al., | |||
Azad Kashmir,巴基斯坦 | 28-73(44) | 13-60(31) | 250-896(575) | 2-69(15) | Rafique et al., | |
Isparta,土耳其 | 3-66(15) | 4-69(16) | 44-452(211) | 0.3-19(3) | Kürkçüoğlu et al., | |
Kano,尼日利亚 | 50-122(72) | 41-102(65) | 253-1227(681) | Muhammad et al., | ||
West Bengal,印度 | 7-22(17) | 24-34(29) | 461-610(518) | Sharma et al., | ||
也门 | 33-211 | 28-81 | ND-1235 | Maglas et al., | ||
Phosphate area,突尼斯 | <0.1-43.5(13) | 5-56(27) | 103-529(264) | Machraoui et al., | ||
Rajasthan,印度 | 40-71(55) | 13-36(24) | 294-781(549) | Rani et al., | ||
土耳其 | 2-220(29) | 1-159(33) | 26-1603(449) | 1-357(13) | Turhan et al., | |
全球中位数 | 16-110(35) | 11-64(30) | 17-60(35) | 140-850(400) | UNSCEAR, | |
人口加权平均数 | 33 | 45 | 32 | 420 | UNSCEAR, | |
广东珠江流域 | 14-180(73) | 31-306(103) | 20-215(69) | 92-1910(535) | <0.4-5.6(0.7) | 马婷婷等, |
成都 | 21-31(29) | 49-56(52) | 34-39(36) | 521-594 | 刘合凡等, | |
内蒙古 | 14-43(26) | 16-58(36) | 13-38(25) | 485-929(692) | 王玮等, | |
湖北 | 11-71(39.6) | 15-67(47.1) | 13-55(30.3) | 202-876(567) | 0.3-6(1.04) |
参数 | 40K | 137Cs | 226Ra | 232Th | 238U |
---|---|---|---|---|---|
40K | 1.000 | ||||
137Cs | −0.456 | 1.000 | |||
226Ra | 0.042 | 0.001 | 1.000 | ||
232Th | 0.023 | 0.025 | 0.490 | 1.000 | |
238U | 0.006 | 0.018 | 0.441 | 0.538 | 1.000 |
Table 4 The correlation matrix among the variables
参数 | 40K | 137Cs | 226Ra | 232Th | 238U |
---|---|---|---|---|---|
40K | 1.000 | ||||
137Cs | −0.456 | 1.000 | |||
226Ra | 0.042 | 0.001 | 1.000 | ||
232Th | 0.023 | 0.025 | 0.490 | 1.000 | |
238U | 0.006 | 0.018 | 0.441 | 0.538 | 1.000 |
区域 | 剂量当量率/ (nGy∙h−1) | 年有效剂量当量率/ (μSv∙a−1) | 终生癌症风险/ 10−3 | 外照射 指数 |
---|---|---|---|---|
武汉 | 51.41 | 63.05 | 0.25 | 0.31 |
黄石 | 61.65 | 75.61 | 0.30 | 0.36 |
十堰 | 66.99 | 82.16 | 0.32 | 0.38 |
宜昌 | 58.76 | 72.06 | 0.28 | 0.34 |
襄阳 | 80.40 | 98.60 | 0.39 | 0.46 |
鄂州 | 72.36 | 88.74 | 0.35 | 0.42 |
荆门 | 71.71 | 87.95 | 0.34 | 0.42 |
孝感 | 67.65 | 82.97 | 0.32 | 0.39 |
荆州 | 63.74 | 78.17 | 0.30 | 0.36 |
黄冈 | 68.34 | 83.82 | 0.33 | 0.39 |
咸宁 | 69.26 | 84.93 | 0.33 | 0.41 |
随州 | 64.36 | 78.93 | 0.31 | 0.37 |
恩施 | 54.11 | 66.37 | 0.26 | 0.31 |
神农架 | 74.65 | 91.55 | 0.36 | 0.43 |
平均值 | 65.9 | 80.9 | 0.32 | 0.38 |
Table 5 The mean values of the districts for absorbed dose rate, AEDE, LCR and Hex
区域 | 剂量当量率/ (nGy∙h−1) | 年有效剂量当量率/ (μSv∙a−1) | 终生癌症风险/ 10−3 | 外照射 指数 |
---|---|---|---|---|
武汉 | 51.41 | 63.05 | 0.25 | 0.31 |
黄石 | 61.65 | 75.61 | 0.30 | 0.36 |
十堰 | 66.99 | 82.16 | 0.32 | 0.38 |
宜昌 | 58.76 | 72.06 | 0.28 | 0.34 |
襄阳 | 80.40 | 98.60 | 0.39 | 0.46 |
鄂州 | 72.36 | 88.74 | 0.35 | 0.42 |
荆门 | 71.71 | 87.95 | 0.34 | 0.42 |
孝感 | 67.65 | 82.97 | 0.32 | 0.39 |
荆州 | 63.74 | 78.17 | 0.30 | 0.36 |
黄冈 | 68.34 | 83.82 | 0.33 | 0.39 |
咸宁 | 69.26 | 84.93 | 0.33 | 0.41 |
随州 | 64.36 | 78.93 | 0.31 | 0.37 |
恩施 | 54.11 | 66.37 | 0.26 | 0.31 |
神农架 | 74.65 | 91.55 | 0.36 | 0.43 |
平均值 | 65.9 | 80.9 | 0.32 | 0.38 |
[1] | ABDUL R N S, UM W, IBRAHIM I, et al., 2023. Acute oral toxicity and bioavailability of uranium and thorium in contaminated soil[J]. Nuclear Engineering and Technology, 55(4): 1460-1467. |
[2] | AHMAD A Y, AIGHOUTI M A, AISADIG I, et al., 2019. Vertical distribution and radiological risk assessment of 137Cs and natural radionuclides in soil samples[J]. Scientific Reports, 9: 12196. |
[3] | AHMAD F, MORRIS K, LAW G T W, et al., 2021. Fate of radium on the discharge of oil and gas produced water to the marine environment[J]. Chemosphere, 273: 129550. |
[4] | AHMAD N, JAAFAR M S, BAKHASH M, et al., 2015. An overview on measurements of natural radioactivity in Malaysia[J]. Journal of Radiation Research and Applied Science, 8(1): 136-141. |
[5] |
BERETKA J, MATTHEW P J, 1985. Natural radioactivity of Australian building materials, industrial wastes and by-products[J]. Health Physics, 48(1): 87-95.
PMID |
[6] | BLAGOEVA R, ZIKOVSKY L, 1995. Geographic and Vertical Distribution of Cs-137 in Soils in Canada[J]. Journal of Environmental Radioactivity, 27(3): 269-274. |
[7] | CORNELL R M, 1993. Adsorption of cesium on minerals: A review[J]. Journal of Radioanalytical and Nuclear Chemistry, 171: 483-500. |
[8] | FAHEEM M, MUJAHID S A, MATIULLAH, 2008. Assessment of radiological hazards due to the natural radioactivity in soil and building material samples collected from six districts of the Punjab province-Pakistan[J]. Radiation Measurements, 43(8): 1443-1447. |
[9] | GULAN L, STAJIC J M, MILENKOVIC B, et al., 2021. Plant uptake and soil retention of radionuclides and metals in vineyard environments[J]. Environmental Science and Pollution Research, 28(36): 49651-49662. |
[10] | HAMZAH Z, ABDUL R S A, SAAT A, et al., 2012. Evaluation of natural radioactivity in soil on district of Kuala Krai, Kelantan[J]. The Malaysian Journal of Analytical Sciences, 16(3): 335-345. |
[11] | IBIKUNLE S B, 2022. Assessment of natural radioactivity in mango, the influence of soil radioactivity, its radiation hazard indices and the overall excess lifetime cancer risk[J]. International Journal of Radiation Research, 20(2): 483-489. |
[12] | ICRP, 1991. Recommendations of the international commission radiological protection[R]. ICRP Publication 60. Oxford:Pergamon Press. |
[13] |
INOUE K, FUKUSHI M, VAN L T, et al., 2020. Distribution of gamma radiation dose rate related with natural radionuclides in all of Vietnam and radiological risk assessment of the built-up environment[J]. Scientific Reports, 10(1): 12428.
DOI PMID |
[14] | KRIEGER R, 1981. Radioactivity of construction materials[J]. Betonwerk Fertigteil Technology, 47: 468-473. |
[15] | KÜRKÇÜOĞLU M E, KAHRAMAN F Ç, DIZMAN S, et al., 2024. Evaluation of radioactivity and radiological parameters in soil samples in Isparta, Türkiye[J]. Nuclear Engineering and Technology, 56(10): 4007-4017. |
[16] |
KURNAZ A, KÜÇÜKÖMEROĞLU B, KESER R, et al., 2007. Determination of radioactivity levels and hazards of soil and sediment samples in Firtina Valley (Rize, Turkey)[J]. Applied Radiation and Isotopes, 65(11): 1281-1289.
PMID |
[17] | LINHOFF B S, CHARETTE M A, WADHAM J, 2020. Rapid mineral surface weathering beneath the Greenland Ice Sheet shown by radium and uranium isotopes[J]. Chemical Geology, 547: 119663. |
[18] | LI P R, GONG Y T, LU W Y, et al., 2022. Radiocesium distribution caused by tillage inversion affects the soil-to-crop transfer factor and translocation in agroecosystems[J]. Science of The Total Environment, 831: 154897. |
[19] |
MACHRAOUI S, LABIDI S, PURUSHOTHAM M M, 2024. Assessment of gamma absorbed doses and radiological risk indexes from soil radioactivity around the phosphate area in south Tunisia[J]. Radiation Protection Dosimetry, 200(4): 387-395.
DOI PMID |
[20] | MAGLAS N N M, QIANG Z, ALI M M, et al., 2024. Natural radioactivity level in Yemen: A systematic review of radiological studies[J]. Applied Radiation and Isotopes, 210: 111343. |
[21] | MATSUOKA K, MORITSUKA N, NUKADA M, et al., 2020. Continuous nitrogen fertilization retards the vertical migration of Fukushima nuclear accident-derived cesium-137 in apple orchard soil[J]. The Science of the Total Environment, 731: 138903. |
[22] | MEHRA R, KAUR S, CHAND S, et al., 2021. Dosimetric assessment of primordial radionuclides in soil and groundwater of Sikar district, Rajasthan[J]. Journal of Radioanalytical and Nuclear Chemistry, 330(3): 1605-1620. |
[23] | MUHAMMAD A N, ISMAIL A F, GARBA N N, 2024. Natural radioactivity in food crops and soil and estimation of the concomitant dose from tin mining areas in Nigeria[J]. Journal of Taibah University for Science, 18(1): 2366507. |
[24] |
MUROTA K, SAITO T, TANAKA S, 2016. Desorption kinetics of cesium from Fukushima soils[J]. Journal of Environmental Radioactivity, 153: 134-140.
DOI PMID |
[25] | PARK S M, ALESSI D S, BAEK K, 2019. Selective adsorption and irreversible fixation behavior of cesium onto 2꞉1 layered clay mineral: A mini review[J]. Journal of Hazardous Materials, 369: 569-576. |
[26] | QIAN J, ZHOU L, YANG X F, et al., 2020. Prussian blue analogue functionalized magnetic microgels with ionized chitosan for the cleaning of cesium-contaminated clay[J]. Journal of Hazardous Materials, 386: 121965. |
[27] | RAFIQUE M, JABBAR A, KHAN A R, et al., 2013. Radiometric analysis of rock and soil samples of Leepa Valley; Azad Kashmir, Pakistan[J]. Journal of Radioanalytical and Nuclear Chemistry, 298(3): 2049-2056. |
[28] |
RANI A, MITTAL S, MEHRA R, et al., 2015. Assessment of natural radionuclides in the soil samples from Marwar region of Rajasthan, India[J]. Applied Radiation and Isotopes, 101: 122-126.
DOI PMID |
[29] | SHAHROKHI A, ADELIKHAH M, CHALUPNIK S, et al., 2021. Multivariate statistical approach on distribution of natural and anthropogenic radionuclides and associated radiation indices along the north-western coastline of Aegean Sea, Greece[J]. Marine Pollution Bulletin, 163: 112009. |
[30] | SHARMA R L, MAHUR A K, MEHRA R, et al., 2023. Natural radioactivity, radon exhalation rates and radiation doses in the soil samples collected from the vicinity of kolaghat thermal power plant, West Bengal, India[J]. Indian Journal of Pure & Applied Physics, 61: 653-658. |
[31] | TAGAMI K, TSUKADA H, UCHIDA S, 2019. Quantifying spatial distribution of 137Cs in reference site soil in Asia[J]. CATENA, 180: 341-345. |
[32] |
TASKIN H, KARAVUS M, AY P, et al., 2009. Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey[J]. Journal of Environmental Radioactivity, 100(1): 49-53.
DOI PMID |
[33] | TURHAN Ş, KÖSE A, VARİNLİOĞLU A, et al., 2012. Distribution of terrestrial and anthropogenic radionuclides in Turkish surface soil samples[J]. Geoderma, 187-188: 117-124. |
[34] | UNSCEAR, 2000. Sources and effects of ionizing radiation[R]. Report of the United Nations. Scientific Committee on the Effects of Atomic Radiation to the general Assembly. New York, USA: United Nations. |
[35] | VEERASAMY N, KASAR S, MURUGAN R, et al., 2023. 234U/238U disequilibrium and 235U/238U ratios measured using MC-ICP-MS in natural high background radiation area soils to understand the fate of uranium[J]. Chemosphere, 323: 138217. |
[36] |
WANG J L, DU J Z, BI Q Q, 2017. Natural radioactivity assessment of surface sediments in the Yangtze Estuary[J]. Marine Pollution Bulletin, 114(1): 602-608.
DOI PMID |
[37] | ZHIYANSKI M, BECH J, SOKOLOVSKA M, et al., 2007. Cs-137 distribution in forest floor and surface soil layers from two mountainous regions in Bulgaria[J]. Journal of Geochemical Exploration, 96(2): 256-266. |
[38] | ZORER Ö S, 2019. Evaluations of environmental hazard parameters of natural and some artificial radionuclides in river water and sediments[J]. Microchemical Journal, 145: 762-766. |
[39] | 曹龙生, 杨亚新, 张叶, 等, 2012. 中国大陆主要省份土壤中天然放射性核素含量分布规律研究[J]. 东华理工大学学报(自然科学版), 35(2): 167-172. |
CAO L S, YANG Y X, ZHANG Y, et al., 2012. Study on the distribution of natural radionuclide content in soil in major provinces of Chinese mainland[J]. Journal of East China University of Technology (Natural Science Edition), 35(2): 167-172. | |
[40] | 刘合凡, 葛良全, 吴和喜, 等, 2014. 成都市不同土壤天然放射性核素分析[J]. 核电子学与探测技术, 34(6): 703-707. |
LIU H F, GE L Q, WU H X, et al., 2014. Natural Radionuclide Analysis of the Soil Samples in Chengdu[J]. Nuclear Electronics & Detection Technology, 34(6): 703-707. | |
[41] | 马婷婷, 李冠超, 阙泽胜, 等, 2023. 基于GIS的某流域土壤放射性分布特征和健康风险评价[J]. 有色金属(冶炼部分) (8): 120-128. |
MA T T, LI G C, QUE Z S, et al., 2023. Distribution characteristics and health risk assessment of soil radioactivity in a watershed based on GIS[J]. Nonferrous Metals (Extractive Metallurgy) (8): 120-128. | |
[42] | 邵慧娟, 王金花, 2023. 137Cs在土壤-植物系统中的迁移及污染土壤修复技术[J]. 生态毒理学报, 18(4): 207-217. |
SHAO H J, WANG J H, 2023. Migration of 137Cs in soil-plant system and remediation technologies of contaminated soil[J]. Asian Journal of Ecotoxicology, 18(4): 207-217. | |
[43] | 田一平, 张家贤, 1992. 湖北省土壤中天然放射性核素含量调查[J]. 辐射防护, 12(4): 300-303. |
TIAN Y P, ZHANG J X, 1992. Survey of natural radionuclide contents in soil in Hubei province[J]. Radiation protection, 12(4): 300-303. | |
[44] | 王玮, 李鑫, 郑鑫, 等, 2025. 内蒙古城市土壤放射性水平分析及外照射水平估算[J]. 辐射防护通讯, 45(1): 34-39. |
WANG W, LI X, ZHENG X, et al., 2025. Analysis of soil radioactivity level and estimation of external exposure level in major cities of inner Mongolia autonomous region[J]. Radiation protection bulletin, 45(1): 34-39. | |
[45] | 杨剑洲, 龚晶晶, 唐世新, 等, 2020. 广东省部分地区土壤放射性核素的测定和剂量评估[J]. 物探与化探, 44(2): 419-425. |
YANG J Z, GONG J J, TANG S X, et al., 2020. The determination of radioactivity concentrations in soil samples and dose assessment in parts of Guangdong Province[J]. Geophysical and Geochemical Exploration, 44(2): 419-425. | |
[46] |
张坤, 王善强, 李战国, 等, 2021. 放射性污染土壤中铯的吸附/解析行为研究进展[J]. 原子能科学技术, 55(3): 405-416.
DOI |
ZHANG K, WANG S Q, LI Z G, et al., 2021. Research progress in adsorption/desorption behavior of Cesium in Radioactive contaminated soil[J]. Atomic Energy Science and Technology, 55(3): 405-416.
DOI |
|
[47] | 中华人民共和国生态环境部, 2023. 2022年全国辐射环境质量报告[R]. 北京: 中华人民共和国生态环境部. |
Ministry of Ecology and Environment of the People’s Republic of China, 2023. 2022 Annual report of the national radiation environment[R]. Beijing: Ministry of Ecology and Environment of the People’s Republic of China. |
[1] | DU Fangni, FENG Qingliang, YUAN Han, CAO Shaofei. Application and Prospects of Model Fish Biomarkers in Radioecology [J]. Ecology and Environmental Sciences, 2025, 34(8): 1182-1191. |
[2] | PENG Hao, SUN Hongtu, TENG Keyan, ZHANG Ailing, WU Di, ZHU Pei. Thoughts on Strengthening Soil Pollution Supervision and Prevention in the Decommissioning of Nuclear Facilities [J]. Ecology and Environmental Sciences, 2025, 34(8): 1203-1211. |
[3] | ZHUANG Li, SUN Haorong, LIU Xiaolu, FANG Ming. Discussion on the Monitoring Mechanism of Radioactive Pollution Triggered by the Discharge of Radioactive Wastewater from Fukushima [J]. Ecology and Environmental Sciences, 2025, 34(8): 1212-1218. |
[4] | WU Guiling, WU Xiaohui, OU Weiyou, ZHOU Huakun, MA Wenwen, JI Xiaofei. Study on the Distribution of Soil Salinity Ions in Typical Vegetation Communities of Salt Marsh Wetlands in the Qinghai Lake Basin [J]. Ecology and Environmental Sciences, 2025, 34(8): 1228-1239. |
[5] | LIN Jiayin, HOU Yuting, ZENG Haicen, LI Weizhi, LI Dongqin, YE Tingjin, CHEN Huojun. Preparation of Silicon-calcium-based Materials and Their Passivation Effects on Cadmium Contaminated Soil [J]. Ecology and Environmental Sciences, 2025, 34(8): 1282-1292. |
[6] | ZHOU Yixiang, TANG Bin, FU Chengzhong, XU Rongqin, ZHOU Dongjing, WANG Junli, ZHENG Jing. Occurrence and Associated Risk Assessment of Bisphenols and Brominated Flame Retardants in the Water Sources of the Middle and Lower Reaches of the Beijiang River [J]. Ecology and Environmental Sciences, 2025, 34(7): 1007-1019. |
[7] | TIAN Mi, LIAO Riquan, ZHANG Jian, DONG Fengfeng, TANG Jianhui. Pollution Characteristics and Ecological Risk Assessment of Per- and Poly-fluoroalkyl Substances (PFAS) in Qinzhou Bay [J]. Ecology and Environmental Sciences, 2025, 34(7): 1020-1028. |
[8] | XIAO Yongyin, WANG Fan, LI Canhua, WANG Chao, WANG Wanjun. Enrichment Characteristics and Health Risks of Antibiotic Resistance Genes in Biofilms on Biodegradable Microplastics in Freshwater [J]. Ecology and Environmental Sciences, 2025, 34(7): 1029-1041. |
[9] | ZHAO Xi, WEI Si. Environmental Characteristics, Global levels, Sources and Risk of Emerging Pollutants Ultra-Short-Chain Poly- and Perfluorinated Substances [J]. Ecology and Environmental Sciences, 2025, 34(7): 1064-1078. |
[10] | DING Xin, LIU Jian, WEI Lihong, XIE Dewei, ZHENG Zhaopei. Spatiotemporal Patterns and Influencing Factors of Vegetation Net Ecosystem Productivity in Shandong Province Based on GSMSR Model [J]. Ecology and Environmental Sciences, 2025, 34(7): 1079-1089. |
[11] | GUO Jiawen, LIU Kai, LIU Gaoyuan, GAO Xinxin, YANG Kun, PAN Bo. Effects of Exogenous Cane Leaf Additives in Different Forms on Properties of Red Soil and Sugarcane Growth Yunnan [J]. Ecology and Environmental Sciences, 2025, 34(7): 1100-1110. |
[12] | LIU Zeyuan, WEI Youhai, YAN Xufa, CHENG Liang, HOU Lu, YAN Ziwei, GUO Liangzhi. Impact of Climate Change on the Potential Geographic Distribution of the Invasive Weed Sonchus asper [J]. Ecology and Environmental Sciences, 2025, 34(6): 845-852. |
[13] | OUYANG Qunwen, GUO Xiaoping, HAO Jiahang, GUO Yu. Vegetation Succession Characteristics of Highway Slope Spraying in Beijing: A Perspective from the Soil Seed Bank [J]. Ecology and Environmental Sciences, 2025, 34(6): 941-949. |
[14] | MENG Chang, HONG Mei, LI Fei. Collaborative Enhancement of Soil Heavy Metal Prediction Accuracy Using Hyperspectral Sensitive Band Selection and Machine Learning [J]. Ecology and Environmental Sciences, 2025, 34(6): 950-960. |
[15] | LIN Yongyi, ZHOU Yanfei, DENG Jinhuan, TIAN Jihui, CAI Kunzheng. Biochar Combined with Phosphorus Promote Silicon Fraction Transformation and Si Absorption of Soybean Plant in Latosolic Red Soil [J]. Ecology and Environmental Sciences, 2025, 34(5): 710-719. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn