Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (7): 1100-1110.DOI: 10.16258/j.cnki.1674-5906.2025.07.010
• Research Article [Ecology] • Previous Articles Next Articles
GUO Jiawen1,2(), LIU Kai2, LIU Gaoyuan2, GAO Xinxin3, YANG Kun2, PAN Bo1,*(
)
Received:
2025-01-08
Online:
2025-07-18
Published:
2025-07-11
郭家文1,2(), 刘凯2, 刘高源2, 高欣欣3, 杨昆2, 潘波1,*(
)
通讯作者:
*E-mail: 作者简介:
郭家文(1979年生),男,研究员,博士研究生,主要研究方向为甘蔗土壤碳循环。E-mail: 79jwguo@163.com
基金资助:
CLC Number:
GUO Jiawen, LIU Kai, LIU Gaoyuan, GAO Xinxin, YANG Kun, PAN Bo. Effects of Exogenous Cane Leaf Additives in Different Forms on Properties of Red Soil and Sugarcane Growth Yunnan[J]. Ecology and Environmental Sciences, 2025, 34(7): 1100-1110.
郭家文, 刘凯, 刘高源, 高欣欣, 杨昆, 潘波. 外源不同形式蔗叶添加物对云南红壤及甘蔗生长的影响[J]. 生态环境学报, 2025, 34(7): 1100-1110.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.07.010
样品 | w(C)/% | w(N)/% | w(H)/% | C/N |
---|---|---|---|---|
SLBC | 47.86 | 0.87 | 2.32 | 54.89 |
SLA | 14.33 | 0.25 | 0.90 | 57.04 |
SL | 39.81 | 0.47 | 6.01 | 85.54 |
Table 1 Element contents of cane leaf biochar, cane leaf ash and cane leaf
样品 | w(C)/% | w(N)/% | w(H)/% | C/N |
---|---|---|---|---|
SLBC | 47.86 | 0.87 | 2.32 | 54.89 |
SLA | 14.33 | 0.25 | 0.90 | 57.04 |
SL | 39.81 | 0.47 | 6.01 | 85.54 |
w(SOM)/(g·kg−1) | pH | w(AN)/(mg·kg−1) | w(AP)/(mg·kg−1) | w(AK)/(mg·kg−1) | w(TN)/(mg·kg−1) | w(TP)/(mg·kg−1) | w(TK)/(g·kg−1) | w(DOC)/(μg·g−1) | w(DON)/(μg·g−1) |
---|---|---|---|---|---|---|---|---|---|
9.75 | 8.0 | 26.09 | 9.75 | 105.04 | 550.00 | 757.74 | 1.17 | 135.46 | 27.47 |
Table 2 Physicochemical property parameters of the original soil
w(SOM)/(g·kg−1) | pH | w(AN)/(mg·kg−1) | w(AP)/(mg·kg−1) | w(AK)/(mg·kg−1) | w(TN)/(mg·kg−1) | w(TP)/(mg·kg−1) | w(TK)/(g·kg−1) | w(DOC)/(μg·g−1) | w(DON)/(μg·g−1) |
---|---|---|---|---|---|---|---|---|---|
9.75 | 8.0 | 26.09 | 9.75 | 105.04 | 550.00 | 757.74 | 1.17 | 135.46 | 27.47 |
处理 | 株高(PH)/ cm | 茎径(SD)/ mm | 鲜质量(FW)/ kg | 锤度(Bx)/ (°) |
---|---|---|---|---|
CK | 211.30±10.44a | 21.49±1.40ab | 0.76±0.11a | 19.67±0.76b |
SLBC | 200.63±7.70a | 21.31±0.68b | 0.57±0.09b | 22.83±0.31a |
SLA | 212.13±16.70a | 20.69±1.19b | 0.78±0.15a | 22.00±0.58a |
SL | 211.93±4.97a | 22.89±1.43a | 0.79±0.14a | 21.67±0.49a |
Table 3 Effects of different cane leaf additives on agronomic characters of sugarcane
处理 | 株高(PH)/ cm | 茎径(SD)/ mm | 鲜质量(FW)/ kg | 锤度(Bx)/ (°) |
---|---|---|---|---|
CK | 211.30±10.44a | 21.49±1.40ab | 0.76±0.11a | 19.67±0.76b |
SLBC | 200.63±7.70a | 21.31±0.68b | 0.57±0.09b | 22.83±0.31a |
SLA | 212.13±16.70a | 20.69±1.19b | 0.78±0.15a | 22.00±0.58a |
SL | 211.93±4.97a | 22.89±1.43a | 0.79±0.14a | 21.67±0.49a |
[1] | ABIVEN S, HUND A, MARTINSEN V, et al., 2015. Biochar amendment increases maize root surface areas and branching: A shovelomics study in Zambia[J]. Plant and Soil, 395: 44-45. |
[2] | BERNAL S, BUTTURINI A, SABATER F, 2005. Seasonal variations of dissolved nitrogen and DOC꞉DON ratios in an intermittent Mediterranean stream[J]. Biogeochemistry, 75: 351-372. |
[3] | CALABRESE S, MOHANTY B P, MALIK A A, 2022. Soil microorganisms regulate extracellular enzyme production to maximize their growth rate[J]. Biogeochemistry, 158(3): 303-312. |
[4] | CERRI C C, GALDOS M V, MAIA S M F, et al., 2011. Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: An examination of existing data[J]. European Journal of Soil Science, 62(1): 23-28. |
[5] | CHEN L M, SUN S L, ZHOU Y Y, et al., 2023. Straw and straw biochar differently affect fractions of soil organic carbon and microorganisms in farmland soil under different water regimes[J]. Environmental Technology and Innovation, 32: 103412. |
[6] | CHOWDHURY S, FARRELL M, BOLAN N, 2014. Distribution of photo-assimilated carbon as affected by nutrient addition to soil[J]. Korean Society of Soil Sciences and Fertilizer, 6: 52. |
[7] | DENG J H, HE D Y, ZHU X H, et al., 2024. Biochar amendment shifts bacterial keystone taxa regulating soil phosphorus dynamics[J]. Applied Soil Ecology, 201: 105521. |
[8] | DU PREEZ C C, STEYN J T, KOTZE E, 2001. Long-term effects of wheat residue management on some fertility indicators of a semi-arid Plinthosol[J]. Soil and Tillage Research, 63(1-2): 25-33. |
[9] | GHORBANI M, AMIRAHMADI E, 2024. Insights into soil and biochar variations and their contribution to soil aggregate status-A meta-analysis[J]. Soil and Tillage Research, 244: 106282. |
[10] |
GUMIERE T, ROUSSEAU A N, DA COSTA D P, et al., 2019. Phosphorus source driving the soil microbial interactions and improving sugarcane development[J]. Scientific Reports, 9(1): 4400.
DOI PMID |
[11] | GUO X X, LIU H T, ZHANG J, 2020. The role of biochar in organic waste composting and soil improvement: A review[J]. Waste Management, 102(1): 884-899. |
[12] | HALDER M, AHMAD S J, RAHMAN T, et al., 2023. Effects of straw incorporation and straw-burning on aggregate stability and soil organic carbon in a clay soil of Bangladesh[J]. Geoderma Regional, 32: e00620. |
[13] | HAN L F, SUN K, YANG Y, et al., 2020. Biochar’s stability and effect on the content, composition and turnover of soil organic carbon[J]. Geoderma, 364: 114184. |
[14] | HE X L, YANG Y R, HUANG B S, et al., 2024. An overview of characteristic factors of biochar as a soil improvement tool in rice growth: A review[J]. Environmental Research, 242: 117794. |
[15] | KALER A S, MCCRAY J M, WRIGHT A L, et al., 2017. Sugarcane yield and plant nutrient response to sulfur-amended Everglades histosols[J]. Journal of Plant Nutrition, 40(2): 187-196. |
[16] | KERSTEN P, CULLEN D, 2013. Recent advances on the genomics of litter-and soil-inhabiting Agaricomycetes[J]. Genomics of Soil-and Plant-Associated Fungi, 36: 311-332. |
[17] | KHAN A, WEI Y B, ADNAN M, et al., 2023. Dynamics of rhizosphere bacterial communities and soil physiochemical properties in response to consecutive ratooning of sugarcane[J]. Frontiers in Microbiology, 14: 1197246. |
[18] | LEITE L F C, SAGRILO E, DE ARAÚJO A S F, et al., 2018. Short-term effect of sugarcane straw on soil organic carbon pools[J]. Journal of Agricultural Science, 10(8): 405. |
[19] | LI S Q, ZHENG X H, LIU C Y, et al., 2018. Influences of observation method, season, soil depth, land use and management practice on soil dissolvable organic carbon concentrations: A meta-analysis[J]. Science of the Total Environment, 631-632: 105-114. |
[20] | LI Y, ABALOS D, ARTHUR E, et al., 2024. Different straw return methods have divergent effects on winter wheat yield, yield stability, and soil structural properties[J]. Soil and Tillage Research, 238: 105992. |
[21] | LIAO F, YANG L, LI Q, et al., 2018. Effect of biochar on growth, photosynthetic characteristics and nutrient distribution in sugarcane[J]. Sugar Tech, 21: 289-295. |
[22] | LIU Y F, TAN Y M, LIANG D, et al., 2023. Effects of sugarcane leaf return and fertilizer reduction on maize growth, yield and soil properties in red soil[J]. Plants, 12(5): 1029. |
[23] | LÜ L Q, YOUNAN O, IJAZ M, et al., 2024. Promotive effect of mechanochemically crushed straw on rice growth by improving soil properties and modulating bacterial communities[J]. Plant Growth Regulation, 103(2): 337-350. |
[24] |
PATOINE G, EISENHAUER N, CESARZ S, et al., 2022. Drivers and trends of global soil microbial carbon over two decades[J]. Nature Communications, 13(1): 4195.
DOI PMID |
[25] | PHUKONGCHAI W, KAEWPRADIT W, RASCHE F, 2022. Inoculation of cellulolytic and ligninolytic microorganisms accelerates decomposition of high C/N and cellulose rich sugarcane straw in tropical sandy soils[J]. Applied Soil Ecology, 172: 104355. |
[26] | POKHAREL P, MA Z L, CHANG S X, 2020. Biochar increases soil microbial biomass with changes in extra- and intracellular enzyme activities: A global meta-analysis[J]. Biochar, 2(1): 65-79. |
[27] | QING H C, ZHU X H, WU J, et al., 2021. Dynamics of microbial diversity during the composting of agricultural straw[J]. Journal of Integrative Agriculture, 20(5): 1121-1136. |
[28] | SALGADO-GARCíA S, LAGUNES-ESPINOZA L, CARRILLO-AVILA E, et al., 2006. Changes in the properties of a Mexican Fluvisol following 30 years of sugarcane cultivation[J]. Soil and Tillage Research, 88(1-2): 160-167. |
[29] |
SEABLOOM E W, CALDEIRA M C, DAVIES K F, et al., 2023. Globally consistent response of plant microbiome diversity across hosts and continents to soil nutrients and herbivores[J]. Nature Communications, 14(1): 3516.
DOI PMID |
[30] | SUWANREE S, KNIJNENBURG J T, KASEMSIRI P, et al., 2022. Engineered biochar from sugarcane leaves with slow phosphorus release kinetics[J]. Biomass and Bioenergy, 156: 106304. |
[31] | SEEMAKRAM W, SUEBRASRI T, KHAEKHUM S, et al., 2023. Enhancement of integrated sugarcane trash managements by co-inoculation of cellulolytic microorganisms for sustaining soil fertility[J]. Sugar Tech, 25(4): 925-937. |
[32] | VANCE E, BROOKES P, JENKINSON D, 1987. Microbial biomass measurements in forest soils: Determination of kc values and tests of hypotheses to explain the failure of the chloroform fumigation-incubation method in acid soils[J]. Soil Biology and Biochemistry, 19(6): 689-696. |
[33] | VUPPALADADIYAM A K, VUPPALADADIYAM S S V, SIKARWAR V S, et al., 2023. A critical review on biomass pyrolysis: Reaction mechanisms, process modeling and potential challenges[J]. Journal of the Energy Institute, 108: 101236. |
[34] | WANG J L, LIIU K L, ZHAO X Q, et al., 2022. Microbial keystone taxa drive crop productivity through shifting aboveground-belowground mineral element flows[J]. Science of The Total Environment, 811: 152342. |
[35] | WANG X P, SHI J M, 2024. Leaf chlorophyll content is the crucial factor for the temporal and spatial variation of global plants leaf maximum carboxylation rate[J]. Science of the Total Environment, 927: 172280. |
[36] |
XU X X, DU X, WANG F, et al., 2020. Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings[J]. Frontiers in Plant Science, 11: 904.
DOI PMID |
[37] | ZHANG M M, DANG P F, HAEGEMAN B, et al., 2024. The effects of straw return on soil bacterial diversity and functional profiles: A meta-analysis[J]. Soil Biology and Biochemistry, 195: 109484. |
[38] | ZHAO H Y, KE Z Z, MENG X W, et al., 2019. Straw and biochar strongly affect functional diversity of microbial metabolism in paddy soils[J]. Journal of Integrative Agriculture, 18(7): 1474-1485. |
[39] | 白震, 张明, 宋斗妍, 等, 2008. 不同施肥对农田黑土微生物群落的影响[J]. 生态学报, 28(7): 3244-3253. |
BAI Z, ZHANG M, SONG D Y, et al., 2008. Effect of different fertilizaiton on microbial community in an arable mollisol[J]. Acta Ecologica Sinica, 28(7): 3244-3253. | |
[40] | 李新华, 郭洪海, 朱振林, 等, 2016. 不同秸秆还田模式对土壤有机碳及其活性组分的影响[J]. 农业工程学报, 32(9): 130-135. |
LI X H, GUO H H, ZHU Z L, et al., 2016. Effects of different straw return modes on contents of soil organic carbon and fractions of soil active carbon[J]. Transactions of the Chinese Society of Agricultural Engineering, 32(9): 130-135. | |
[41] | 刘杰云, 邱虎森, 汤宏, 等, 2019. 生物质炭对双季稻水稻土微生物生物量碳, 氮及可溶性有机碳氮的影响[J]. 环境科学, 40(8): 3799-3807. |
LIU J Y, QIU H S, TANG H, et al., 2019. Effects of biochar amendment on soil microbial biomass carbon, nitrogen and dissolved organic carbon, nitrogen in paddy soils[J]. Environmental Science, 40(8): 3799-3807. | |
[42] | 衣本骥, 刘畅, 韩宏伟, 等, 2024. 不同改性生物炭对稻田氮素损失及产量的影响[J]. 中国环境科学, 44(9): 5122-5133. |
YI B J, LIU C, HAN H W, et al., 2024. Effect of different modified biochar treatments on nitrogen loss and rice yield in paddy fields[J]. China Environmental Science, 44(9): 5122-5133. | |
[43] | 赵惠丽, 董金琎, 师江澜, 等, 2021. 秸秆还田模式对小麦-玉米轮作体系土壤有机碳固存的影响[J]. 土壤学报, 58(1): 213-224. |
ZHAO H L, DONG J J, SHI J L, et al., 2021. Effect of straw returning mode on soil organic carbon sequestration[J]. Acta Pedologica Sinica, 58(1): 213-224. | |
[44] |
张仲富, 王禹童, 艾静, 等, 2025. 钾肥对甘蔗根际微生物多样性和群落构建过程的影响[J]. 应用生态学报, 36(2) : 526-536.
DOI |
ZHANG Z F, WANG Y T, AI J, et al., 2024. Effects of potassium fertilizer on rhizosphere microbial diversity and community assembly in sugarcane[J]. Chinese Journal of Applied Ecology, 36(2): 526-536. |
[1] | XU Mingyu, YU Longsheng. Soil Improvement Effect of Agricultural and Forestry Waste Organic Materials on Ionic Rare Earth Mine Tailing [J]. Ecology and Environmental Sciences, 2025, 34(1): 126-134. |
[2] | ZHANG Chuanguang, SHEN Yan, ZHANG Shanshan, LI Yuwen, CHEN Jian, YANG Wenzhong. Analysis of Microbial Diversity of Rhizosphere Soil of Pinus wangii (Pinaceae) in In Situ and Ex Situ Conservation [J]. Ecology and Environmental Sciences, 2024, 33(10): 1544-1553. |
[3] | LIU Han, WANG Ping, SUN Luyuan, QING Wenjing, CHEN Xiaofen, CHEN Jin, ZHOU Guopeng, LIANG Ting, LIU Jia, LI Yanli. Effects of Winter Green Manure Planting on Soil Microbial Biomass Carbon, Nitrogen, and Enzyme Activity in Red Soil Young Citrus Orchard [J]. Ecology and Environmental Sciences, 2023, 32(9): 1623-1631. |
[4] | DONG Zhijin, ZHANG Chengchun, ZHAN Xiuli, ZHANG Weifu. Spatial Distribution Characteristics of Soil Nutrients of Biological Soil Crusts and Their Underlying Soil of Sandy Land in the East of Yellow River in Ningxia [J]. Ecology and Environmental Sciences, 2023, 32(5): 910-919. |
[5] | PAN Yuling, QU Xiangning, LI Qing, WANG Lei, WANG Xiaoping, TAN Peng, CUI Geng, AN Yu, TONG Shouzheng. Spatial Distribution Characteristics of Soil Physicochemical Factors and Their Response to Microtopography in a Typical Beach Wetland of the Yellow River in Ningxia [J]. Ecology and Environmental Sciences, 2023, 32(4): 668-677. |
[6] | ZHANG Beier, WU Jianqiang, WANG Min, XIONG Lijun, TAN Juan, SHEN Cheng, HUANG Botao, HUANG Shenfa. Evaluation of Soil Health in Different Arable Land Ecological Conservation Projects [J]. Ecology and Environmental Sciences, 2023, 32(2): 388-396. |
[7] | CUI Qiao, LI Zongxing, ZHANG Baijuan, ZHAO Yue, NAN Fusen. A Meta-analysis of the Effects of Freezing and Thawing on Soil Dissolved Carbon and Nitrogen and Microbial Biomass Carbon and Nitrogen Contents [J]. Ecology and Environmental Sciences, 2022, 31(8): 1700-1712. |
[8] | LONG Jing, HUANG Yao, LIU Zhanfeng, JIAN Shuguang, WEI Liping, WANG Jun. Leaf Traits and Nutrient Resorption of Two Woody Species on A Tropical Coral Island [J]. Ecology and Environmental Sciences, 2022, 31(2): 248-256. |
[9] | YU Fei, YE Caihong, XU Tiaozi, ZHANG Zhongrui, ZHU Hangyong, ZHANG Geng, HUA Lei, DENG Jianfeng, DING Xiaogang. Evaluation of Heavy Metal Pollution in Woodland Soil of Granite Area in Shaoguan City [J]. Ecology and Environmental Sciences, 2022, 31(2): 354-362. |
[10] | SHENG Jifeng, LI Yao, YU MeiJia, HAN Yanying, YE Yanhui. Effects of Nitrogen and Phosphorus An Addition on Soil Nutrients and Activity of Related Enzymes in Alpine Grassland [J]. Ecology and Environmental Sciences, 2022, 31(12): 2302-2309. |
[11] | ZHANG Xiaoli, WANG Guoli, CHANG Fangdi, ZHANG Hongyuan, PANG Huancheng, ZHANG Jianli, WANG Jing, JI Hongjie, LI Yuyi. Effects of Microbial Agents on Physicochemical Properties and Microbial Flora of Rhizosphere Saline-alkali Soil [J]. Ecology and Environmental Sciences, 2022, 31(10): 1984-1992. |
[12] | LIAO Yingchun, DUAN Honglang, SHI Xingxing, MENG Qingyin, LIU Wenfei, SHEN Fangfang, FAN Houbao, ZHU Tao. The Relationship between the Stand Growth and Root Biomass of Cunninghamia lanceolate Plantations [J]. Ecology and Environmental Sciences, 2021, 30(6): 1121-1128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn