Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (5): 773-783.DOI: 10.16258/j.cnki.1674-5906.2025.05.011
• Research Article【Environmental Science】 • Previous Articles Next Articles
LIU Honglin1,2(), ZHAO Fangkai1,*(
), YANG Lei3, SHEN Linjun4, YANG Kaifeng4, LI Min3, CHEN Liding1,2,3
Received:
2024-11-02
Online:
2025-05-18
Published:
2025-05-16
刘鸿林1,2(), 赵方凯1,*(
), 杨磊3, 沈琳钧4, 杨恺丰4, 李敏3, 陈利顶1,2,3
通讯作者:
*赵方凯。E-mail: 作者简介:
刘鸿林(1998年生),男,硕士研究生,研究方向为景观格局、土壤污染与风险评价。E-mail: liuhonglin1@stu.ynu.edu.cn
基金资助:
CLC Number:
LIU Honglin, ZHAO Fangkai, YANG Lei, SHEN Linjun, YANG Kaifeng, LI Min, CHEN Liding. Study on Heavy Metal Pollution in Urban Park Soil and Influencing Factors: A Case Study of Ningbo City[J]. Ecology and Environmental Sciences, 2025, 34(5): 773-783.
刘鸿林, 赵方凯, 杨磊, 沈琳钧, 杨恺丰, 李敏, 陈利顶. 城市公园土壤重金属污染及影响因素研究——以宁波市为例[J]. 生态环境学报, 2025, 34(5): 773-783.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.05.011
指标 | 描述 |
---|---|
最大面积斑块面积占比(LPI) | 反映优势景观斑块类型 |
蔓延度指数(CONTAG) | 描述景观组成分散度、连接性 |
边界密度(ED) | 景观或类型被边界分割程度 |
面积加权的平均形状指数 (SHAPE-AM) | 反映斑块形状的复杂程度 |
香农多样性指数(SHDI) | 反映景观异质性 |
香农均匀度指数(SHEI) | 反映景观分布的均匀度和优势度 |
Table 1 Landscape characteristics
指标 | 描述 |
---|---|
最大面积斑块面积占比(LPI) | 反映优势景观斑块类型 |
蔓延度指数(CONTAG) | 描述景观组成分散度、连接性 |
边界密度(ED) | 景观或类型被边界分割程度 |
面积加权的平均形状指数 (SHAPE-AM) | 反映斑块形状的复杂程度 |
香农多样性指数(SHDI) | 反映景观异质性 |
香农均匀度指数(SHEI) | 反映景观分布的均匀度和优势度 |
参数 | 最大值 | 最小值 | 平均值 | 标准差 | 中位数 | 变异系数 | 浙江省土壤背景值 |
---|---|---|---|---|---|---|---|
Cr | 102.2 | 40.2 | 61.5 | 21.5 | 53.5 | 0.35 | 52.9 |
Ni | 43.8 | 16.1 | 23.2 | 6.7 | 21.0 | 0.29 | 24.6 |
Cu | 62.8 | 16.0 | 36.7 | 13.6 | 36.0 | 0.37 | 17.6 |
Zn | 375.2 | 76.0 | 152.5 | 76.5 | 129.0 | 0.50 | 70.6 |
Cd | 2.8 | 0.4 | 1.0 | 0.6 | 0.8 | 0.61 | 0.1 |
Pb | 62.5 | 31.4 | 46.0 | 6.8 | 44.2 | 0.15 | 23.7 |
Table 2 Statistics of soil environmental quality elements in urban parks mg·kg?1
参数 | 最大值 | 最小值 | 平均值 | 标准差 | 中位数 | 变异系数 | 浙江省土壤背景值 |
---|---|---|---|---|---|---|---|
Cr | 102.2 | 40.2 | 61.5 | 21.5 | 53.5 | 0.35 | 52.9 |
Ni | 43.8 | 16.1 | 23.2 | 6.7 | 21.0 | 0.29 | 24.6 |
Cu | 62.8 | 16.0 | 36.7 | 13.6 | 36.0 | 0.37 | 17.6 |
Zn | 375.2 | 76.0 | 152.5 | 76.5 | 129.0 | 0.50 | 70.6 |
Cd | 2.8 | 0.4 | 1.0 | 0.6 | 0.8 | 0.61 | 0.1 |
Pb | 62.5 | 31.4 | 46.0 | 6.8 | 44.2 | 0.15 | 23.7 |
名称 | 成分 | |
---|---|---|
成分1 | 成分2 | |
Cr | 0.20 | 0.92 |
Ni | 0.12 | 0.83 |
Cu | 0.82 | 0.31 |
Zn | 0.97 | −0.14 |
Cd | 0.94 | −0.11 |
Pb | 0.83 | −0.33 |
特征根 | 3.22 | 1.76 |
方差解释率/% | 53.66 | 29.41 |
累计百分比/% | 53.66 | 83.07 |
Table 3 Principal components analysis of heavy metals in urban parks
名称 | 成分 | |
---|---|---|
成分1 | 成分2 | |
Cr | 0.20 | 0.92 |
Ni | 0.12 | 0.83 |
Cu | 0.82 | 0.31 |
Zn | 0.97 | −0.14 |
Cd | 0.94 | −0.11 |
Pb | 0.83 | −0.33 |
特征根 | 3.22 | 1.76 |
方差解释率/% | 53.66 | 29.41 |
累计百分比/% | 53.66 | 83.07 |
[1] | BECKETT K P, FREER-SMITH P H, TAYLOR G, 2000. Particulate pollution capture by urban trees: effect of species and windspeed[J]. Global Change Biology, 6(8): 995-1003. |
[2] | CAI L M, WANG Q S, WEN H H, et al., 2019. Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution[J]. Ecotoxicology and Environmental Safety, 168: 184-191. |
[3] | CHEN H Y, TENG Y G, LU S J, et al., 2015. Contamination features and health risk of soil heavy metals in China[J]. Science of The Total Environment, 512-513: 143-153. |
[4] | CHEN T, CHANG Q R, LIU J, et al., 2016. Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China[J]. Science of The Total Environment, 565: 155-164. |
[5] | CHEN X D, LU X W, LI L Y, et al., 2013. Spatial distribution and contamination assessment of heavy metals in urban topsoil from inside the Xi’an second ringroad, NW China[J]. Environmental Earth Sciences, 68(7): 1979-1988. |
[6] | FOWLER D, SKIBA U, NEMITZ E, et al., 2004. Measuring aerosol and heavy metal deposition on urban woodland and grass using inventories of 210Pb and metal concentrations in soil[J]. Water, Air, and Soil Pollution: Focus, 4: 483-499. |
[7] | HA J, KIM H J, WITH K A, 2022. Urban green space alone is not enough: A landscape analysis linking the spatial distribution of urban green space to mental health in the city of Chicago[J]. Landscape and Urban Planning, 218: 104309. |
[8] | JAMAL A, DELAVAR M A, NADERI A, et al., 2019. Distribution and health risk assessment of heavy metals in soil surrounding a lead and zinc smelting plant in Zanjan, Iran[J]. Human and Ecological Risk Assessment, 25(4): 1018-1033. |
[9] | KIM S, LEE S, HWANG K, et al., 2017. Exploring sustainable street tree planting patterns to be resistant against fine particles (PM2.5)[J]. Sustainability, 9(10): 1709. |
[10] |
LANPHEAR B P, ROGHMANN K J, 1997. Pathways of lead exposure in urban children[J]. Environmental Research, 74(1): 67-73.
PMID |
[11] | LAI D Y, LIU Y Q, LIAO M C, et al., 2023. Effects of different tree layouts on outdoor thermal comfort of green space in summer Shanghai[J]. Urban Climate, 47: 101398. |
[12] |
LI C, LI F B, WU Z F, et al., 2015. Effects of landscape heterogeneity on the elevated trace metal concentrations in agricultural soils at multiple scales in the Pearl River Delta, South China[J]. Environmental Pollution, 206: 264-274.
DOI PMID |
[13] | LI C, SUN G, WU Z F, et al., 2019a. Soil physiochemical properties and landscape patterns control trace metal contamination at the urban-rural interface in southern China[J]. Environmental Pollution, 250: 537-545. |
[14] | LI C, SANCHEZ G M, WU Z F, et al., 2020. Spatiotemporal patterns and drivers of soil contamination with heavy metals during an intensive urbanization period (1989-2018) in southern China[J]. Environmental Pollution, 260: 114075. |
[15] | LI F J, YANG H W, AYYAMPERUMAL R, et al., 2022. Pollution, sources, and human health risk assessment of heavy metals in urban areas around industrialization and urbanization-Northwest China[J]. Chemosphere, 308(Part 2): 136396. |
[16] | LI G, SUN G X, REN Y, et al., 2018. Urban soil and human health: A review[J]. European Journal of Soil Science, 69(1): 196-215. |
[17] |
LI J Q, CEN D Z, HUANG D L, et al., 2014. Detection and analysis of 12 heavy metals in blood and hair sample from a general population of Pearl River Delta area[J]. Cell Biochemistry and Biophysics, 70(3): 1663-1669.
DOI PMID |
[18] | LI S J, YANG L, CHEN L D, et al., 2019b. Spatial distribution of heavy metal concentrations in peri-urban soils in eastern China[J]. Environmental Science and Pollution Research, 26(2): 1615-1627. |
[19] | LIU L, GUAN D S, PEART M R, et al., 2013. The dust retention capacities of urban vegetation-a case study of Guangzhou, South China[J]. Environmental Science and Pollution Research, 20(9): 6601-6610. |
[20] | LIU L L, LIU Q Y, MA J, et al., 2020. Heavy metal(loid)s in the topsoil of urban parks in Beijing, China: Concentrations, potential sources, and risk assessment[J]. Environmental Pollution, 260(12): 114083. |
[21] | LIU Y J, YANG Z, ZHU M H, et al., 2017. Role of plant leaves in removing airborne dust and associated metals on Beijing roadsides[J]. Aerosol and Air Quality Research, 17(10): 2566-2584. |
[22] | LIU Y, LIU G J, YOUSAF B, et al., 2021. Identification of the featured-element in fine road dust of cities with coal contamination by geochemical investigation and isotopic monitoring[J]. Environment International, 152(1): 106499. |
[23] | LI X D, POON C S, LIU P S, 2001. Heavy metal contamination of urban soils and street dusts in Hong Kong[J]. Applied Geochemistry, 16(11-12): 1361-1368. |
[24] | MAAS J, VERHEIJ R A, GROENEWEGEN P P, et al., 2005. Green space, urbanity, and health: How strong is the relation?[J] Journal of Epidemiology and Community Health, 60(7): 587-592. |
[25] | MCDONALD A G, BEALEY W J, FOWLER D, et al., 2007. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations[J]. Atmospheric Environment, 41(38): 8455-8467. |
[26] | MILENKOVIC B, STAJIC J M, GULAN L J, et al., 2015. Radioactivity levels and heavy metals in the urban soil of Central Serbia[J]. Environmental Science and Pollution Research, 22(21): 16732-16741. |
[27] | MULLER G, 1979. Schwermetalle in den sedimenten des Rheins-Vernderungen seit 1971[J]. Umschanvol, 79(24): 778-783. |
[28] | OULD-DADA Z, BAGHINI N M, 2001. Resuspension of small particles from tree surfaces[J]. Atmospheric Environment, 35(22): 3799-3809. |
[29] | PENG J, DAN Y Z, QIAO R L, et al., 2021. How to quantify the cooling effect of urban parks? Linking maximum and accumulation perspectives[J]. Remote Sensing of Environment, 252: 112135. |
[30] | PENG T Y, O'CONNOR D, ZHAO B, et al., 2019. Spatial distribution of lead contamination in soil and equipment dust at children’s playgrounds in Beijing, China[J]. Environmental Pollution, 245: 363-370. |
[31] | SÆBØ A, ROBERT P, NAWROT B, et al., 2012. Plant species differences in particulate matter accumulation on leaf surfaces[J]. Science of The Total Environment, 427-428: 347-354. |
[32] | SCHAUBROECK T, DECKMYN G, NEIRYNCK J, et al., 2014. Multilayered modeling of particulate matter removal by a growing Forest over Time, from plant surface deposition to washoff via rainfall[J]. Environmental Science & Technology, 48(18): 10785-10794. |
[33] | SHI J N, ZHANG G, AN H L, et al., 2017. Quantifying the particulate matter accumulation on leaf surfaces of urban plants in Beijing, China[J]. Atmospheric Pollution Research, 8(5): 836-842. |
[34] | SONG Y S, MAHER B A, LI F, et al., 2015. Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution[J]. Atmospheric Environment, 105: 53-60. |
[35] | SU X C, CAI H, CHEN Z L, et al., 2017. Influence of the ground greening configuration on the outdoor thermal environment in residential areas under different underground space overburden thicknesses[J]. Sustainability, 9(9): 1656. |
[36] | WANG M S, HAN Q, GUI C L, et al., 2019. Differences in the risk assessment of soil heavy metals between newly built and original parks in Jiaozuo, Henan Province, China[J]. Science of The Total Environment, 676: 1-10. |
[37] | WILDING L, 1985. Spatial variability: Its documentation, accommodation and implication to soil surveys[C]// Soil spatial variability proceedings of a workshop of the ISSS and the SSA, Las Vegas. |
[38] |
XIA X H, CHEN X, LIU R M, et al., 2011. Heavy metals in urban soils with various types of land use in Beijing, China[J]. Journal of Hazardous Materials, 186(2-3): 2043-2050.
DOI PMID |
[39] | XU S S, ZHAO Q H, QIN C Z, et al., 2021. Effects of vegetation restoration on accumulation and translocation of heavy metals in post-mining areas[J]. Land Degradation and Development, 32(5): 2000-2012. |
[40] | YU G, CHEN F, ZHANG H L, et al., 2021. Pollution and health risk assessment of heavy metals in soils of Guizhou, China[J]. Ecosystem Health and Sustainability, 7(1): 1859948. |
[41] | ZHANG Y, ZHANG Z Q, ZHANG J Q, et al., 2009. Estimation of non-point source pollution load in Tumenxigou watershed of Miyun Reservoir[J]. Transactions of the Chinese Society of Agricultural Engineering, 25(5): 183-191. |
[42] | ZHAO S T, LI X Y, LI Y M, et al., 2024. Differential impacts of functional traits across 65 plant species on PM retention in the urban environment[J]. Ecological Engineering, 200(9): 107184. |
[43] | ZHOU M, LIAO B, SHU W S, et al., 2015. Pollution assessment and potential sources of heavy metals in agricultural soils around four Pb/Zn mines of Shaoguan City, China[J]. Soil and Sediment Contamination, 24(1): 76-89. |
[44] | 安江梅朵, 张瑞卿, 郭广慧, 等, 2023. 北京市城市公园土壤铅累积特征、来源及健康风险[J]. 环境科学, 44(11): 6287-6296. |
AN J M D, ZHANG R Q, GUO G H, et al., 2023. Accumulation characteristics, sources, and health risks of soil lead of urban parks in Beijing[J]. Environmental Science, 44(11): 6287-6296. | |
[45] | 陈利顶, 傅伯杰, 赵文武, 2006. “源” “汇” 景观理论及其生态学意义[J]. 生态学报, 26(5): 1444-1449. |
CHEN L D, FU B J, ZHAO W W, 2006. Source-sink landscape theory and its ecological significance[J]. Acta Ecologica Sinica, 26(5): 1444-1449. | |
[46] | 陈海珍, 龚春生, 李文立, 等, 2010. 广州市不同功能区土壤重金属污染特征及评价[J]. 环境与健康杂志, 27(8): 700-703. |
CHEN H Z, GONG C S, LI W L, et al., 2010. Characteristic and evaluation of soil pollution by heavy metal in different functional zones of Guangzhou[J]. Journal of Environment and Health, 27(8): 700-703. | |
[47] | 胡鹏杰, 李柱, 钟道旭, 等, 2014. 我国土壤重金属污染植物吸取修复研究进展[J]. 植物生理学报, 50(5): 577-584. |
HU P J, LI Z, ZHONG D X, et al., 2014. Research progress on the phytoextraction of heavy metal contaminated soils in China[J]. Plant Physiology Journal, 50(5): 577-584. | |
[48] |
李佳, 杜瑞英, 王旭, 等, 2023. 植物铜胁迫响应的生理与分子机制研究进展[J]. 中国农学通报, 39(11): 18-28.
DOI |
LI J, DU R Y, WANG X, et al., 2023. Physiological and molecular mechanism of plants response to copper stress: A review[J]. Chinese Agricultural Science Bulletin, 39(11): 18-28.
DOI |
|
[49] | 刘玥, 郭文强, 武晔秋, 2023. 大同市城区公园表层土壤重金属污染特征和健康风险及来源解析[J]. 土壤通报, 54(1): 180-191. |
LIU Y, GUO W Q, WU Y Q, 2023. Pollution characteristics, health risks and source analysis of surface soil heavy metals in urban parks of Datong City[J]. Chinese Journal of Soil Science, 54(1): 180-191. | |
[50] | 庞阔, 李敏, 刘璐, 等, 2022. 基于蒙特卡洛模拟与PMF模型的黄河流域沉积物重金属污染评价及源解析[J]. 环境科学, 43(8): 4008-4017. |
PANG K, LI M, LIU L, et al., 2022. Evaluation and source analysis of heavy metal pollution in sediments of the Yellow River basin based on Monte Carlo simulation and PMF model[J]. Environmental Science, 43(8): 4008-4017. | |
[51] | 徐晓丹, 马志影, 张杰, 等, 2021. 植物叶表毛状体对空气PM净沉降的影响[J]. 中国城市林业, 19(6): 35-40. |
XU X D, MA Z Y, ZHANG J, et al., 2021. Effects of leaf-surface trichomes on the net-deposition of airborne particulate matters[J]. Journal of Chinese Urban Forestry, 19(6): 35-40. | |
[52] | 王景云, 乔鹏炜, 杨军, 等, 2018. 基于空间结构特征的土壤Cu、Pb来源解析——以北京市东南郊污灌区为例[J]. 植物营养与肥料学报, 24(1): 195-202. |
WANG J Y, QIAO P W, YANG J, et al., 2018. Source tracing of soil Cu and Pb based on spatial structure characteristics: A case study in the sewage irrigated area in the southeast suburb of Beijing[J]. Journal of Plant Nutrition and Fertilizers, 24(1): 195-202. | |
[53] | 王子诚, 陈梦霞, 杨毓贤, 等, 2021. 铜胁迫对植物生长发育影响与植物耐铜机制的研究进展[J]. 植物营养与肥料学报, 27(10): 1849-1863. |
WANG Z C, CHEN M X, YANG Y X, et al., 2021. Effects of copper stress on plant growth and advances in the mechanisms of plant tolerance research[J]. Journal of Plant Nutrition and Fertilizers, 27(10): 1849-1863. | |
[54] | 邬建国, 2007. 景观生态学:格局、 过程、尺度与等级[M]. 2版. 北京: 高等教育出版社. |
WU J G, 2007. Landscape ecology:Pattern, process, scale and hierarchy[M]. 2nd edition. Beijing: Higher Education Press. | |
[55] | 中华人民共和国国土资源部, 2016. 土地质量地球化学评价规范: DZ/T 0295—2016[S]. 北京: 中国地质大学. |
Ministry of Land and Resources of the People’s Republic of China, 2016. Specification of land quality geochemical assessment: DZ/T 0295—2016[S]. Beijing: China University of Geosciences. | |
[56] | 郑袁明, 余轲, 吴泓涛, 等, 2002. 北京城市公园土壤铅含量及其污染评价[J]. 地理研究, 21(4): 418-424. |
ZHENG Y M, YU K, WU H T, et al., 2002. Lead concentrations of soils in Beijing urban parks and their pollution assessment[J]. Geographical Research, 21(4): 418-424. |
[1] | ZHANG Renfei, XIAO Meng, LIU Zhicheng. Spatio-temporal Heterogeneity and Driving Factors of Landscape Fragmentation in Beijing-Tianjin-Hebei Region [J]. Ecology and Environmental Sciences, 2025, 34(3): 461-473. |
[2] | LIU Dongyi, QU Yonghua, FENG Yaowei, QU Ran. Research on Chromium Ion Content Inversion of GF-5 Satellite Images Based on Grid Search Optimization CatBoost Model [J]. Ecology and Environmental Sciences, 2024, 33(9): 1460-1470. |
[3] | WU Wenwei, SHEN Cheng, SHA Chenyan, LIN Kuangfei, WU Jian, XIE Yuqing, ZHOU Xuan. Soil Heavy Metal Enrichment Characteristics, Risk Assessment, and Source Analysis in Redevelopment Areas during Urban Industrial Plots [J]. Ecology and Environmental Sciences, 2024, 33(5): 791-801. |
[4] | GU Jiawei, GUO Caixia, ZHU Huanan, TAN Yukun, CHEN Hongyue. Landscape Pattern Evolution and Driving Forces Analysis of the Fengxi Provincial Nature Reserve in Guangdong Province [J]. Ecology and Environmental Sciences, 2024, 33(2): 222-230. |
[5] | TANG Shuya, WANG Chunhui, SONG Jing, LI Gang. Characteristics and Risk Assessment of Soil Heavy Metal Pollution in the Xiangshan Bay Area [J]. Ecology and Environmental Sciences, 2024, 33(11): 1768-1781. |
[6] | ZHANG Junwei, XIA Shengjie, CHEN Huiru, LIU Yanhong. Influence of Landscape Pattern Evolution on Thermal Environment of Urban Agglomerations in Central Shanxi Province [J]. Ecology and Environmental Sciences, 2023, 32(5): 943-955. |
[7] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environmental Sciences, 2023, 32(4): 794-804. |
[8] | XIAO Jieyun, ZHOU Wei, SHI Peiqi. Hyperspectral Inversion of Soil Heavy Metals [J]. Ecology and Environmental Sciences, 2023, 32(1): 175-182. |
[9] | WANG Chenxi, ZHANG Qiongrui, ZHANG Ruoqi, SUN Xuechao, XU Songjun. Effects of Landscape Pattern on Water Quality Purification Service in the Pearl River Basin in Guangdong Province [J]. Ecology and Environmental Sciences, 2022, 31(7): 1425-1433. |
[10] | SHI Jianfei, JIN Zhengzhong, ZHOU Zhibin, WANG Xin. Evaluation of Heavy Metal Pollution in the Soil Around A Typical Tailing Reservoir in Irtysh River Basin [J]. Ecology and Environmental Sciences, 2022, 31(5): 1015-1023. |
[11] | LIU Di, SU Chao, ZHANG Hong, QIN Guanyu. Pollution Characteristics and Risk Assessment of Heavy Metal Pollution in A Typical Coal-based Industrial Cluster Zone [J]. Ecology and Environmental Sciences, 2022, 31(2): 391-399. |
[12] | XUAN Jin, LI Zuchan, ZOU Cheng, QIN Zibo, WU Yahua, HUANG Liujing. Multi-scale Effects of Central Bar Landscape Class and Pattern on Plant Diversity in Minjiang River: The Case of Minjiang River Basin (Fuzhou Section) Planning [J]. Ecology and Environmental Sciences, 2022, 31(12): 2320-2330. |
[13] | XIE Shaowen, GUO Xiaosong, YANG Fen, HUANG Qiang, CHEN Manjia, WEI Xinghu, LIU Chengshuai. Accumulation Characteristics, Geochemical Fractions Distribution and Ecological Risk of Heavy Metals in Soils of Urban Parks in Guangzhou, China [J]. Ecology and Environmental Sciences, 2022, 31(11): 2206-2215. |
[14] | BIAN Zhenxing, ZHANG Yufei, GUO Xiaoyu, LIN Lin, YU Miao. Effects of Agricultural Landscape Patterns on the Food Web of Pests and Predatory Natural Enemies in Low Mountain and Hilly Areas [J]. Ecology and Environmental Sciences, 2022, 31(1): 79-88. |
[15] | CHENG Junwei, CAI Shenwen, HUANG Mingqin. Bioconcentration of Heavy Metals in Dominant Plants of Xiangjiang Manganese Mining Area in Guizhou Province [J]. Ecology and Environmental Sciences, 2021, 30(8): 1742-1750. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn