Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (5): 784-795.DOI: 10.16258/j.cnki.1674-5906.2025.05.012
• Research Article【Environmental Science】 • Previous Articles Next Articles
HUANG Deng-lingyao(), TANG Bingran, MA Yuanyuan, HE Qiang, LI Hong(
)
Received:
2024-01-11
Online:
2025-05-18
Published:
2025-05-16
通讯作者:
*李宏。E-mail: 作者简介:
黄邓铃尧(1999年生),女,硕士研究生,研究方向为重金属污染土壤修复。E-mail: 1844611852@qq.com
基金资助:
CLC Number:
HUANG Deng-lingyao, TANG Bingran, MA Yuanyuan, HE Qiang, LI Hong. The Effect of As on the Transformation of Nitrogen in Paddy Soil: A Case Study Towards Purple Soil[J]. Ecology and Environmental Sciences, 2025, 34(5): 784-795.
黄邓铃尧, 唐炳然, 马媛媛, 何强, 李宏. 水稻土中砷对氮素转化的影响:以紫色土为例[J]. 生态环境学报, 2025, 34(5): 784-795.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.05.012
Figure 7 The principal component analysis diagram of pH, DO and nitrogen in the water of control, low concentration treatment (b), medium concentration treatment and high concentration treatment group
[1] | AOYAMA M, 1998. Effects of heavy metal accumulation in apple orchard soils on the mineralization of humified plant residues[J]. Soil Science and Plant Nutrition, 44(2): 209-215. |
[2] | BERGAMASCO M A M, BRAOS L B, GUIDINI LOPES I, et al., 2019. Nitrogen mineralization and nitrification in two soils with different pH levels[J]. Communications in Soil Science and Plant Analysis, 53(20): 2778-2788. |
[3] | CHEN G N, DU Y H, FANG L P, et al., 2022. Distinct arsenic uptake feature in rice reveals the importance of N fertilization strategies[J]. Science Total Environment, 854: 158801. |
[4] | CHEN C, SHEN Y, LI Y H, et al., 2021. Demethylation of the antibiotic methylarsenite is coupled to denitrification in anoxic paddy soil[J]. Environmental Science & Technology, 55(22): 15484-15494. |
[5] | CHEN X P, ZHU Y G, HONG M N, et al., 2007. Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants[J]. Environmental Toxicology and Chemistry, 27(4): 881-887. |
[6] | DAI Z M, YU M J, CHEN H H, et al., 2020. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems[J]. Global Change Biology, 26(9): 5267-5276. |
[7] | FENG M, DU Y H, LI X M, et al., 2023. Insight into universality and characteristics of nitrate reduction coupled with arsenic oxidation in different paddy soils[J]. Science Total Environment, 866: 161-342. |
[8] | FENG Q Z, ZHANG Z Y, CHEN Y, et al., 2013. Adsorption and desorption characteristics of arsenic on soils: Kinetics, equilibrium, and effect ofFe(OH)3 colloid, H2SiO3 colloid and phosphate[J]. Procedia Environmental Sciences, 18: 26-36. |
[9] | GALLMETZER A, SILVESTRINI L, SCHINKO T, et al., 2015. Reversible oxidation of a conserved methionine in the nuclear export sequence determines subcellular distribution and activity of the fungal nitrate regulator nirA[J]. PLoS Genetics, 11(7): e1005297. |
[10] | PEDERSEN H, DUNKIN K B A, FIRESTONE M K, et al., 1999. The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by 15N tracer and pool dilution techniques[J]. Biogeochemistry, 44(2): 135-150. |
[11] | HUSSAIN M M, BIBI I, NIAZI N K, et al., 2021. Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients[J]. Science of the Total Environment, 773: 145040. |
[12] |
KUYPERS M M, MARCHANT H K, KARTAL B, 2018. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 16(5): 263-276.
DOI PMID |
[13] | LI S, WU J L, HUO Y L, et al., 2021. Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in northwest China[J]. Science of The Total Environment, 752: 141827. |
[14] |
LIN Z J, WANG X, WU X, et al., 2018. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system[J]. Environmental Pollution, 243(Part B): 1015-1025.
DOI PMID |
[15] | LIU C P, YU H Y, LIU C S, et al., 2015. Arsenic availability in rice from a mining area: Is amorphous iron oxide-bound arsenic a source or sink[J]. Environmental Pollution, 199: 95-101. |
[16] | LIU Y, LI H D, HU T S, et al., 2022. A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: A meta-analysis[J]. Science Total Environment, 830: 154-792. |
[17] | MA L J, GUO H J, MIN W, 2019. Nitrous oxide emission and denitrifier bacteria communities in calcareous soil as affected by drip irrigation with saline water[J]. Applied Soil Ecology, 143: 222-235. |
[18] | MUKHTAR H, LIN Y P, ANTHONY J, 2017. Ammonia oxidizing archaea and bacteria in east asian paddy soils: A Mini Review[J]. Environments, 4(4): 84. |
[19] | NGUYEN K T, AHMED M B, MOJIRI A, et al., 2021. Advances in As contamination and adsorption in soil for effective management[J]. Journal of Environmental Management, 296: 113274. |
[20] | PHAN K, STHIANNOPKAO S, HENG S, et al., 2013. Arsenic contamination in the food chain and its risk assessment of populations residing in the Mekong River basin of Cambodia[J]. Journal of Hazardous Materials, 262(15): 64-71. |
[21] | RAMA S, DUBEY R K, SRIVASTAVA M, et al., 2014. Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions[C]// Handbook of Plant and Crop Physiology, 4th Edition, Boca Raton; Mohammad Pessarakli: 453-487. |
[22] | ROKONUZZAMAN M D, YE Z, WU C, et al., 2022. Arsenic accumulation in rice: Alternative irrigation regimes produce rice safe from arsenic contamination[J]. Environmental Pollution, 310: 119829. |
[23] | SANTOS L A, SANTOS W A, SPERANDIO M V L, et al., 2011. Nitrate uptake kinetics and metabolicparameters in two rice varieties rown in high and low nitrate[J]. Journal of Plant Nutrition, 34(7): 988-1002. |
[24] |
THROBÄCK I, ENWALl K, JARVIS A, et al., 2004. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology Ecology, 49(3): 401-417.
DOI PMID |
[25] | WANG C X, JU J J, ZHANG H K, et al., 2022. Disclosing the ecological implications of heavy metal disturbance on the microbial N-transformation process in the ocean tidal flushing urban estuary[J]. Ecological Indicators, 144: 109504. |
[26] | WANG H Y, CHEN P, ZHU Y G, et al., 2019. Simultaneous adsorption and immobilization of As and Cd by birnessite-loaded biochar in water and soil[J]. Environmental Science and Pollution Research, 26(9): 8575-8584. |
[27] | WANG H R, LIANG J M, HUO P J, et al., 2023. Understanding the cadmium passivation and nitrogen mineralization of aminated lignin in soil[J]. Science of The Total Environment, 873: 162334. |
[28] |
WEI C, ZHANG N, YANG L, 2011. The fluctuation of arsenic levels in lake taihu[J]. Biological Trace Element Research, 143(3): 1310-1318.
DOI PMID |
[29] |
WILLIAMS L E, BARNETT M O, KRAMER T A, et al., 2003. Adsorption and transport of arsenic(V) in experimental subsurface systems[J]. Journal of Environmental Quality, 32(3): 841-850.
PMID |
[30] | XIE Z M, WANG J, WEI X F, et al., 2018. Interactions between arsenic adsorption/desorption and indigenous bacterial activity in shallow high arsenic aquifer sediments from the Jianghan Plain, Central China[J]. Science of The Total Environment, 644: 382-388. |
[31] | XUE S G, JIANG X X, WU C, et al., 2020. Microbial driven iron reduction affects arsenic transformation and transportation in soil-rice system[J]. Environmental Pollution, 24(6): 14921499. |
[32] | YUAN Z F, ZHOU Y J, CHEN Z, et al., 2023. Sustainable immobilization of arsenic by man-made aerenchymatous tissues in paddy soil[J]. Environmental Science & Technology, 57(33): 80-90. |
[33] | ZHANG X, YANG Y Q, FU Q L, et al., 2021. Comparing effects of ammonium and nitrate nitrogen on arsenic accumulation in brown rice and its dynamics in soil-plant system[J]. Journal of Soils and Sediments, 21(7): 2650-2658. |
[34] | ZHANG X M, ZHANG H Y, HUANG T S, et al., 2023. Dynamics of soil net nitrogen mineralization and controlled effect of microbial functional genes in the restoration of cold temperate forests[J]. Applied Soil Ecology, 189: 4898-4898 |
[35] | ZHAO F J, HARRIS E, YAN J, et al., 2013. Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice[J]. Environmental Science & Technology, 47(13): 47-54. |
[36] | 陈荣山, 郭徐魁, 刘长辉, 等, 2009. 无机砷对稻田土微生物活性的影响[J]. 环境科学与管理, 34(9): 136-138, 159. |
CHEN R S, GUO X K, LIU C H, et al., 2009. Effect of microbial activity in paddy soil responding to inorganic arsenic[J]. Environmental Science and Management, 34(9): 136-138, 159. | |
[37] | 串丽敏, 赵同科, 安志装, 等, 2010. 土壤硝态氮淋溶及氮素利用研究进展[J]. 中国农学通报, 26(11): 200-205. |
CHUAN L M, ZHAO T K, AN Z Z, et al., 2010. Research advancement in nitrate leaching and nitrogen use in soils[J]. Chinese Agricultural Science Bulletin, 26(11): 200-205
DOI |
|
[38] | 李艳, 张薇薇, 程永毅, 等, 2017. 重庆紫色母岩及土壤As、Hg环境地球化学基线研究[J]. 土壤学报, 54(4): 917-926. |
LI Y, ZHANG W W, CHENG Y Y, et al., 2017. Environmental geochemical baseline of As and Hg in purple soil and its parent rock in Chongqing[J]. Acta Pedologica Sinica, 54(4): 917-926. | |
[39] | 刘利军, 洪坚平, 闫双堆, 等, 2013. 不同pH条件下腐植酸对土壤中砷形态转化的影响[J]. 植物营养与肥料学报, 19(1): 134-141. |
LIU L J, HONG J P, YAN S D, et al., 2013. Effects of humic acid on soil As in different pH conditions[J]. Plant Nutrition and Fertilizer Science, 19(1): 134-141. | |
[40] | 卢璇, 王云燕, 瞿才燕, 等, 2022. 水体硝化体系中砷的解毒机制探讨[J]. 微生物学报, 62(6): 2212-2225. |
LU X, WANG Y Y, QU C Y, et al., 2022. Detoxification mechanisms of arsenic in nitrification in water systems[J]. Acta Microbiologica Sinica, 62(6): 2212-2225. | |
[41] | 王齐齐, 徐虎, 马常宝, 等, 2018. 西部地区紫色土近30年来土壤肥力与生产力演变趋势分析[J]. 植物营养与肥料学报, 24(6): 1492-1499. |
WANG Q Q, XU H, MA C B, et al., 2018. Change of soil fertility and productivity of purple soil in Western China in recent 30 years[J]. Journal of Plant Nutrition and Fertilizers, 24(6): 1492-1499. | |
[42] | 中华人民共和国环境保护部,2009. 水质氨氮的测定纳氏试剂分光光度法: HJ/T 535—2009[S]. |
Ministry of Environmental Protection of the People’ s Republic of China,2009. Water quality-determination of ammonia nitrogen-nessler’s reagent spectrophotometry: HJ/T 535—2009[S]. | |
[43] | 中华人民共和国环境保护部,2014. 土壤质量全氮的测定凯氏法: GB HJ717—2014[S]. |
Ministry of Environmental Protection of the People’s Republic of China,2014. Soil quality-determination of total nitrogen-modified Kjeldahl method: GB HJ717—2014[S]. | |
[44] | 中华人民共和国生态环境部,2018. 土壤环境质量农用地土壤污染风险管控标准 (试行): GB 15618—2018[S]. |
Ministry of Ecology and Environment of the People’s Republic of China,2018. Soil environmental quality risk control standard for soil contamination of agricultural land: GB 15618—2018[S]. | |
[45] |
朱忆雯, 尹丹, 胡敏, 等, 2023. 稻田土壤氮循环与砷形态转化耦合的研究进展[J]. 生态环境学报, 32(7): 1344-1354.
DOI |
ZHU Y W, YIN D, HU M, et al., 2023. Research progress on coupling of nitrogen cycle and arsenic speciation transformation in paddy soil[J]. Ecology and Environmental Sciences, 32(7): 1344-1354. |
[1] | YAN Siyao, YANG Guang, BAI Yan, GAO Yifan, LIANG Luyu, GONG Feng, HUANG Guoyong, PAN Dandan, LI Xiaomin. Effect of Rice on Arsenic Transformation in Paddy Soil under Flooded Conditions [J]. Ecology and Environmental Sciences, 2024, 33(11): 1756-1767. |
[2] | LIU Sujie, LIU Chuanping, FANG Liping, CHEN Guanhong, LI Fangbai. Arsenic Methylation Process and the Associated Microbial Mechanisms in Paddy Soil Butyrate-degrading Methanogenic Communities [J]. Ecology and Environmental Sciences, 2024, 33(10): 1580-1589. |
[3] | LIANG Xin, HAN Yafeng, ZHENG Ke, WANG Xugang, CHEN Zhihuai, DU Juan. Effects of Fe3O4 on Soil Carbon Mineralization in Paddy Field [J]. Ecology and Environmental Sciences, 2023, 32(9): 1615-1622. |
[4] | QIN Jiaqi, XIAO Zhirou, MING Angang, ZHU Hao, TENG Jinqian, LIANG Zeli, TAO Yi, QIN Lin. Effect of Monoculture and Mixed Plantation with Coniferous and Broadleaved Tree Species on Soil Microbial Carbon Cycle Functional Gene Abundance [J]. Ecology and Environmental Sciences, 2023, 32(10): 1719-1731. |
[5] | WANG Lixiao, LIU Jinxian, CHAI Baofeng. Response of Soil Bacterial Community and Nitrogen Cycle during the Natural Recovery of Abandoned Farmland in Subalpine of the North China [J]. Ecology and Environmental Sciences, 2022, 31(8): 1537-1546. |
[6] | DONG Leheng, WANG Xugang, CHEN Manjia, WANG Zihao, SUN Lirong, SHI Zhaoyong, Wu Qiqi. Interaction of Iron Redox and Cu Activities in Calcareous Paddy Soil under Light and Dark Condition [J]. Ecology and Environmental Sciences, 2022, 31(7): 1448-1455. |
[7] | HE Xiaojia, FENG Shuhua, JIANG Ming, LI Mingrui, ZHAN Fangdong, LI Yuan, HE Yongmei. Effects of UV-B Radiation on Conversion of Active Organic Carbon and Methane Production Potential of Rice Rhizosphere Soil [J]. Ecology and Environmental Sciences, 2022, 31(3): 556-564. |
[8] | LIU Mei, MA Zhiliang. Effects of Warming and Plant Removal on Soil Nitrogen Contents in An Alpine Shrubland of Eastern Qinghai-Tibetan Plateau [J]. Ecology and Environmental Sciences, 2022, 31(3): 470-477. |
[9] | ZOU Chenyi, DING Hong, WANG Yasa, ZHANG Yushu, YU Juhua, ZHENG Xiangzhou. Effect of Straw on Urea Nitrogen Transformation in Soil [J]. Ecology and Environmental Sciences, 2021, 30(6): 1213-1219. |
[10] | HUANG Cheng, WU Yueying, JI Hengkuan, CHEN Liming, LI Beiying, FU Chuanliang, LI Jianhong, WU Weidong, WU Zhipeng. Response of Iron Reduction Characteristics to DOM Molecular Properties under Anaerobic Conditions in Typical Paddy Soils of Hainan Island [J]. Ecology and Environmental Sciences, 2021, 30(5): 957-967. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn