Ecology and Environment ›› 2023, Vol. 32 ›› Issue (5): 943-955.DOI: 10.16258/j.cnki.1674-5906.2023.05.012
• Research Articles • Previous Articles Next Articles
ZHANG Junwei(), XIA Shengjie, CHEN Huiru, LIU Yanhong*(
)
Received:
2023-02-21
Online:
2023-05-18
Published:
2023-08-09
Contact:
LIU Yanhong
通讯作者:
刘艳红
作者简介:
张钧韦(1998年生),女,硕士研究生,研究方向为城乡人居环境景观规划与生态设计。E-mail: 15034685951@163.com
基金资助:
CLC Number:
ZHANG Junwei, XIA Shengjie, CHEN Huiru, LIU Yanhong. Influence of Landscape Pattern Evolution on Thermal Environment of Urban Agglomerations in Central Shanxi Province[J]. Ecology and Environment, 2023, 32(5): 943-955.
张钧韦, 夏圣洁, 陈慧儒, 刘艳红. 山西中部城市群景观格局演变对其热环境的影响研究[J]. 生态环境学报, 2023, 32(5): 943-955.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.05.012
温度等级 | 热环境划分区间1) |
---|---|
高温区 | t>u+s |
次高温区 | u+0.5s<t≤u+s |
中温区 | u-0.5s≤t≤u+0.5s |
次低温区 | u-s≤t<u-0.5s |
低温区 | t<u-s |
Table 1 Classification of LST by mean and standard deviation method
温度等级 | 热环境划分区间1) |
---|---|
高温区 | t>u+s |
次高温区 | u+0.5s<t≤u+s |
中温区 | u-0.5s≤t≤u+0.5s |
次低温区 | u-s≤t<u-0.5s |
低温区 | t<u-s |
年份 | 景观指数1) | 林地 | 耕地 | 草地 | 建设用地 | 水体 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 相关系数 | 平均值 | 相关系数 | 平均值 | 相关系数 | 平均值 | 相关系数 | 平均值 | 相关系数 | ||||||
2010 | AI | 79.8 | -0.526** | 50.8 | 0.035** | 51.3 | -0.036 | 47.9 | -0.110** | 75.9 | 0.001 | ||||
Area-Mean | 24.6 | -0.536** | 6.82 | 0.216** | 1.44 | 0.077** | 2.59 | 0.130** | 3.58 | -0.037** | |||||
ED | 34.8 | 0.564** | 36.1 | 0.372** | 11.7 | 0.124** | 19.3 | 0.259** | 14.8 | -0.035** | |||||
LPI | 66.7 | -0.512** | 21.4 | 0.258** | 3.94 | 0.090** | 7.76 | 0.153** | 9.49 | -0.042** | |||||
LSI | 1.58 | 0.563** | 1.66 | 0.388** | 1.11 | 0.113** | 1.30 | 0.276** | 1.14 | -0.040** | |||||
PD | 4.06 | 0.456** | 5.25 | 0.337** | 3.01 | 0.125** | 3.94 | 0.288** | 2.91 | -0.082** | |||||
PLAND | 69.4 | -0.502** | 25.2 | 0.302** | 4.45 | 0.104** | 2.59 | 0.130** | 9.95 | -0.048** | |||||
2013 | AI | 78.9 | -0.377** | 42.6 | 0.112** | 15.9 | -0.033** | 33.5 | -0.132** | 59.9 | -0.061** | ||||
Area-Mean | 57.6 | -0.385** | 13.3 | 0.134** | 1.15 | 0.134** | 2.97 | -0.028** | 2.62 | -0.068** | |||||
ED | 37.1 | 0.480** | 34.6 | 0.450** | 14.4 | 0.214** | 15.1 | 0.235** | 5.76 | -0.02 | |||||
LPI | 66.1 | -0.348** | 19.5 | 0.206** | 1.97 | 0.155** | 4.78 | 0.035** | 2.89 | -0.096** | |||||
LSI | 2.05 | 0.493** | 2.32 | 0.464** | 1.65 | 0.235** | 1.62 | 0.267** | 1.12 | 0.013 | |||||
PD | 1.99 | 0.299** | 3.86 | 0.342** | 3.06 | 0.176** | 2.55 | 0.290** | 1.21 | 0.053* | |||||
PLAND | 68.4 | -0.343** | 24.0 | 0.273** | 4.36 | 0.129** | 6.76 | 0.121** | 3.11 | -0.059** | |||||
2016 | AI | 82.3 | -0.181** | 40.1 | -0.008 | 40.5 | -0.035** | 48.4 | -0.048** | 59.7 | 0.021 | ||||
Area-Mean | 59.2 | -0.191** | 6.32 | 0.044** | 3.78 | -0.009 | 4.95 | 0.046** | 3.14 | -0.018 | |||||
ED | 33.4 | 0.243** | 23.8 | 0.115** | 26.8 | 0.137** | 15.6 | 0.100** | 7.70 | -0.016 | |||||
LPI | 68.3 | -0.170** | 10.4 | 0.063** | 7.76 | 0.044** | 7.37 | 0.061** | 3.54 | -0.023 | |||||
LSI | 1.53 | 0.107** | 1.93 | 0.128** | 2.28 | 0.128** | 1.24 | 0.002 | 1.13 | -0.176** | |||||
PD | 2.07 | 0.159** | 3.13 | 0.119** | 3.57 | 0.150** | 2.27 | 0.110** | 1.34 | -0.038** | |||||
PLAND | 13.8 | -0.164** | 13.8 | 0.081** | 12.1 | 0.082** | 9.26 | 0.073** | 3.95 | -0.028* | |||||
2020 | AI | 80.2 | -0.220** | 53.5 | 0.126** | 47.2 | 0.042 | 51.41 | -0.014** | 76.7 | -0.031 | ||||
Area-Mean | 53.1 | -0.253** | 14.2 | 0.147** | 1.31 | -0.136** | 4.95 | 0.050** | 5.92 | -0.122** | |||||
ED | 32.9 | 0.221** | 35.8 | 0.248** | 5.43 | -0.145** | 14.5 | 0.129** | 9.19 | 0.013 | |||||
LPI | 62.8 | -0.230** | 22.0 | 0.189** | 1.52 | -0.149** | 7.20 | 0.070** | 6.38 | -0.102** | |||||
LSI | 1.93 | 0.235** | 2.28 | 0.230** | 1.13 | -0.145** | 1.53 | 0.137** | 1.24 | 0.054** | |||||
PD | 2.08 | 0.190** | 3.47 | 0.140** | 1.31 | -0.148** | 2.12 | 0.135** | 1.18 | -0.013 | |||||
PLAND | 66.0 | -0.221** | 26.9 | 0.217** | 1.84 | -0.159** | 8.94 | 0.085** | 6.63 | -0.104** |
Table 2 Correlation between landscape index at type level and LST
年份 | 景观指数1) | 林地 | 耕地 | 草地 | 建设用地 | 水体 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 相关系数 | 平均值 | 相关系数 | 平均值 | 相关系数 | 平均值 | 相关系数 | 平均值 | 相关系数 | ||||||
2010 | AI | 79.8 | -0.526** | 50.8 | 0.035** | 51.3 | -0.036 | 47.9 | -0.110** | 75.9 | 0.001 | ||||
Area-Mean | 24.6 | -0.536** | 6.82 | 0.216** | 1.44 | 0.077** | 2.59 | 0.130** | 3.58 | -0.037** | |||||
ED | 34.8 | 0.564** | 36.1 | 0.372** | 11.7 | 0.124** | 19.3 | 0.259** | 14.8 | -0.035** | |||||
LPI | 66.7 | -0.512** | 21.4 | 0.258** | 3.94 | 0.090** | 7.76 | 0.153** | 9.49 | -0.042** | |||||
LSI | 1.58 | 0.563** | 1.66 | 0.388** | 1.11 | 0.113** | 1.30 | 0.276** | 1.14 | -0.040** | |||||
PD | 4.06 | 0.456** | 5.25 | 0.337** | 3.01 | 0.125** | 3.94 | 0.288** | 2.91 | -0.082** | |||||
PLAND | 69.4 | -0.502** | 25.2 | 0.302** | 4.45 | 0.104** | 2.59 | 0.130** | 9.95 | -0.048** | |||||
2013 | AI | 78.9 | -0.377** | 42.6 | 0.112** | 15.9 | -0.033** | 33.5 | -0.132** | 59.9 | -0.061** | ||||
Area-Mean | 57.6 | -0.385** | 13.3 | 0.134** | 1.15 | 0.134** | 2.97 | -0.028** | 2.62 | -0.068** | |||||
ED | 37.1 | 0.480** | 34.6 | 0.450** | 14.4 | 0.214** | 15.1 | 0.235** | 5.76 | -0.02 | |||||
LPI | 66.1 | -0.348** | 19.5 | 0.206** | 1.97 | 0.155** | 4.78 | 0.035** | 2.89 | -0.096** | |||||
LSI | 2.05 | 0.493** | 2.32 | 0.464** | 1.65 | 0.235** | 1.62 | 0.267** | 1.12 | 0.013 | |||||
PD | 1.99 | 0.299** | 3.86 | 0.342** | 3.06 | 0.176** | 2.55 | 0.290** | 1.21 | 0.053* | |||||
PLAND | 68.4 | -0.343** | 24.0 | 0.273** | 4.36 | 0.129** | 6.76 | 0.121** | 3.11 | -0.059** | |||||
2016 | AI | 82.3 | -0.181** | 40.1 | -0.008 | 40.5 | -0.035** | 48.4 | -0.048** | 59.7 | 0.021 | ||||
Area-Mean | 59.2 | -0.191** | 6.32 | 0.044** | 3.78 | -0.009 | 4.95 | 0.046** | 3.14 | -0.018 | |||||
ED | 33.4 | 0.243** | 23.8 | 0.115** | 26.8 | 0.137** | 15.6 | 0.100** | 7.70 | -0.016 | |||||
LPI | 68.3 | -0.170** | 10.4 | 0.063** | 7.76 | 0.044** | 7.37 | 0.061** | 3.54 | -0.023 | |||||
LSI | 1.53 | 0.107** | 1.93 | 0.128** | 2.28 | 0.128** | 1.24 | 0.002 | 1.13 | -0.176** | |||||
PD | 2.07 | 0.159** | 3.13 | 0.119** | 3.57 | 0.150** | 2.27 | 0.110** | 1.34 | -0.038** | |||||
PLAND | 13.8 | -0.164** | 13.8 | 0.081** | 12.1 | 0.082** | 9.26 | 0.073** | 3.95 | -0.028* | |||||
2020 | AI | 80.2 | -0.220** | 53.5 | 0.126** | 47.2 | 0.042 | 51.41 | -0.014** | 76.7 | -0.031 | ||||
Area-Mean | 53.1 | -0.253** | 14.2 | 0.147** | 1.31 | -0.136** | 4.95 | 0.050** | 5.92 | -0.122** | |||||
ED | 32.9 | 0.221** | 35.8 | 0.248** | 5.43 | -0.145** | 14.5 | 0.129** | 9.19 | 0.013 | |||||
LPI | 62.8 | -0.230** | 22.0 | 0.189** | 1.52 | -0.149** | 7.20 | 0.070** | 6.38 | -0.102** | |||||
LSI | 1.93 | 0.235** | 2.28 | 0.230** | 1.13 | -0.145** | 1.53 | 0.137** | 1.24 | 0.054** | |||||
PD | 2.08 | 0.190** | 3.47 | 0.140** | 1.31 | -0.148** | 2.12 | 0.135** | 1.18 | -0.013 | |||||
PLAND | 66.0 | -0.221** | 26.9 | 0.217** | 1.84 | -0.159** | 8.94 | 0.085** | 6.63 | -0.104** |
景观指数1) | 年份 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 2013 | 2016 | 2020 | |||||||||
平均值 | 相关系数 | 平均值 | 相关系数 | 平均值 | 相关系数 | 平均值 | 相关系数 | |||||
AI | 82.1 | -0.585** | 59.9 | -0.061** | 81.5 | -0.240** | 83.1 | -0.260** | ||||
Contag | 43.5 | -0.020** | 48.0 | -0.119** | 42.80 | 0.080** | 43.0 | 0.005 | ||||
Division | 0.331 | 0.539** | 0.317 | 0.502** | 0.339 | 0.224** | 0.337 | 0.251** | ||||
ED | 44.2 | 0.557** | 44.3 | 0.561** | 42.1 | 0.226** | 38.9 | 0.263** | ||||
LPI | 78.5 | -0.555** | 79.0 | -0.461** | 76.5 | -0.206** | 76.8 | -0.236** | ||||
LSI | 1.64 | 0.592** | 2.10 | 0.561** | 1.96 | 0.187** | 1.96 | 0.263** | ||||
PD | 11.2 | 0.541** | 8.94 | 0.564** | 8.71 | 0.237** | 6.77 | 0.256** | ||||
SHDI | 0.503 | 0.502** | 0.503 | 0.536** | 0.537 | 0.233** | 0.489 | 0.259** | ||||
SHEI | 0.488 | 0.520** | 0.444 | 0.475** | 0.440 | 0.238** | 0.505 | 0.245** |
Table 3 Correlation between landscape index and LST at landscape level
景观指数1) | 年份 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 2013 | 2016 | 2020 | |||||||||
平均值 | 相关系数 | 平均值 | 相关系数 | 平均值 | 相关系数 | 平均值 | 相关系数 | |||||
AI | 82.1 | -0.585** | 59.9 | -0.061** | 81.5 | -0.240** | 83.1 | -0.260** | ||||
Contag | 43.5 | -0.020** | 48.0 | -0.119** | 42.80 | 0.080** | 43.0 | 0.005 | ||||
Division | 0.331 | 0.539** | 0.317 | 0.502** | 0.339 | 0.224** | 0.337 | 0.251** | ||||
ED | 44.2 | 0.557** | 44.3 | 0.561** | 42.1 | 0.226** | 38.9 | 0.263** | ||||
LPI | 78.5 | -0.555** | 79.0 | -0.461** | 76.5 | -0.206** | 76.8 | -0.236** | ||||
LSI | 1.64 | 0.592** | 2.10 | 0.561** | 1.96 | 0.187** | 1.96 | 0.263** | ||||
PD | 11.2 | 0.541** | 8.94 | 0.564** | 8.71 | 0.237** | 6.77 | 0.256** | ||||
SHDI | 0.503 | 0.502** | 0.503 | 0.536** | 0.537 | 0.233** | 0.489 | 0.259** | ||||
SHEI | 0.488 | 0.520** | 0.444 | 0.475** | 0.440 | 0.238** | 0.505 | 0.245** |
年份 | 回归模型1) | R2 |
---|---|---|
2010 | t=0.216P+12.3S1+3.48S2+27.4 | 0.092 |
2013 | t=0.03T+0.107E+0.091L1+3.18S2+12.3 | 0.182 |
2016 | t=0.023T-0.058L2+0.019E+0.33P+8.34 | 0.029 |
2020 | t=0.007T+3.70S1-0.027A+31.4 | 0.013 |
Table 4 Stepwise regression model of landscape index and LST at landscape level
年份 | 回归模型1) | R2 |
---|---|---|
2010 | t=0.216P+12.3S1+3.48S2+27.4 | 0.092 |
2013 | t=0.03T+0.107E+0.091L1+3.18S2+12.3 | 0.182 |
2016 | t=0.023T-0.058L2+0.019E+0.33P+8.34 | 0.029 |
2020 | t=0.007T+3.70S1-0.027A+31.4 | 0.013 |
[1] |
CHAKRABORTI S, BANERJEE A, SANNIGRAHI S, et al., 2019. Assessing the dynamic relationship among land use pattern and land surface temperature: A spatial regression approach[J]. Asian Geographer, 36(2): 93-116.
DOI URL |
[2] |
ESTOQUE R, MURAYAMA Y, MYINT S, 2017. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia[J]. Science of the Total Environment, 577(1): 349-359.
DOI URL |
[3] |
GREENE G, KEDRONB P, 2018. Beyond fractional coverage: A multilevel approach to analyzing the impact of urban tree canopy structure on surface urban heat islands[J]. Applied Geography, 95(7): 45- 53.
DOI URL |
[4] |
GUO G H, WU Z F, CHEN Y B, 2019. Complex mechanisms linking land surface temperature to greenspace spatial patterns: Evidence from four southeastern chinese cities[J]. Science of the Total Environment, 674(15): 77-87.
DOI URL |
[5] |
LEE H K, YUAN T, JUNG H C, et al., 2015. Mapping wetland water depths over the central Congo Basin using PALSARS can SAR, Envisat altimetry, and MODIS VCF data[J]. Remote Sensing of Environment, 159: 70-79.
DOI URL |
[6] | MYINT S W, BRAZEL A, OKIN G, et al., 2010. Combined effects of impervious surface and vegetation cover on air temperature variations in a rapidly expanding desert city[J]. GIS Science & Remote Sensing, 47(3): 301-320. |
[7] |
ZHOU D C, BONAFONI S, ZHANG L X, et al., 2018. Remote sensing of the urban heat island effect in a highly populated urban agglomeration area in east China[J]. Science of the Total Environment, 628-629: 415-429.
DOI URL |
[8] | 陈爱莲, 孙然好, 陈利顶, 2012. 传统景观格局指数在城市热岛效应评价中的适用性[J]. 应用生态学报, 23(8): 2077-2086. |
CHEN A L, SUN R H, CHEN L D, 2012. Applicability of traditional landscape pattern index to urban heat island effect assessment[J]. Chinese Journal of Applied Ecology, 23(8): 2077-2086. | |
[9] | 成实, 牛宇琛, 王鲁帅, 2019. 城市公园缓解热岛效应研究——以深圳为例[J]. 中国园林, 35(10): 40- 45. |
CHENG S, NIU Y C, WANG L S, 2019. City parks relieving heat island effect research - in shenzhen, for example[J]. Chinese Garden, 35(10): 40-45. | |
[10] |
陈述彭, 岳天祥, 励惠国, 等, 2000. 地学信息图谱研究及其应用[J]. 地理研究, 19(4): 337-343.
DOI |
CHEN S P, YUE T X, LI H G, et al., 2000. Research on geoscience information graph and its application[J]. Geographical Research, 19(4): 337-343. | |
[11] | 崔林林, 李国胜, 戢冬建, 2018. 成都市热岛效应及其与下垫面的关系[J]. 生态学杂志, 37(5): 1518-1526. |
CUI L L, LI G S, JI D J, 2018. Heat island effect and its relationship with underlying surface in Chengdu City[J]. Journal of Ecology, 37(5): 1518-1526. | |
[12] | 胡丽香, 2010. 武汉中心城区绿量格局研究[D]. 武汉: 华中农业大学:74. |
HU L X, 2010. Study on the pattern of green quantity in Wuhan Central city[D]. Wuhan: Huazhong Agricultural University:74. | |
[13] | 胡盼盼, 李锋, 胡聃, 等, 2021. 1980-2015年珠三角城市群城市扩张的时空特征分析[J]. 生态学报, 41(17): 7063-7072. |
HU P P, LI F, HU D, et al., 2021. Spatial and temporal characteristics of urban expansion in the Pearl River Delta urban Agglomeration from 1980 to 2015[J]. Acta Ecologica Sinica, 41(17): 7063-7072. | |
[14] |
黄丽明, 陈健飞, 2015. 城市景观格局时空特征的热环境效应研究——以广州市花都区为例[J]. 自然资源学报, 30(3): 480-490.
DOI |
HUANG L M, CHEN J F, 2015. Thermal environment effects on spatial and temporal characteristics of urban landscape pattern: A case study of Huadu District, Guangzhou[J]. Journal of Natural Resources, 30(3): 480-490. | |
[15] | 雷金睿, 陈宗铸, 吴庭天, 等, 2019. 1989-2015年海口城市热环境与景观格局的时空演变及其相互关系[J]. 中国环境科学, 39(4): 1734-1743. |
LEI J R, CHEN Z Z, WU T T, et al., 2019. Spatial and temporal changes of urban thermal environment and landscape pattern in Haikou from 1989 to 2015 and their relationship[J]. China Environmental Science, 39(4): 1734-1743. | |
[16] | 刘璐, 申广荣, 吴裕, 等, 2019. 城市化进程中县域土地利用类型的转移特征及其对热环境的影响[J]. 水土保持通报, 39(6): 260-266. |
LIU L, SHEN G R, WU Y, et al., 2019. Transfer characteristics of land use types and their effects on thermal environment in county area during urbanization[J]. Bulletin of Soil and Water Conservation, 39(6): 260- 266. | |
[17] | 刘焱序, 彭建, 王仰麟, 2017. 城市热岛效应与景观格局的关联: 从城市规模、景观组分到空间构型[J]. 生态学报, 37(23): 7769-7780. |
LIU Y X, PENG J, WANG Y L, 2017. The relationship between urban heat island effect and landscape pattern: From urban scale and landscape composition to spatial architecture[J]. Acta Ecologica Sinica, 37(23): 7769-7780. | |
[18] | 卢惠敏, 李飞, 张美亮, 等, 2018. 景观格局对杭州城市热环境年内变化的影响分析[J]. 遥感技术与应用, 33(3): 398- 407. |
LU H M, LI F, ZHANG M L, et al., 2018. Analysis of the influence of landscape pattern on the annual variation of urban thermal environment in Hangzhou[J]. Remote Sensing Technology and Application, 33(3): 398-407. | |
[19] | 宁秀红, 郭龙, 张海涛, 2013. 基于空间自回归和地理加权回归模型的不同尺度下土地利用程度研究[J]. 华中农业大学学报, 32(4): 48-54. |
NING X H, GUO L, ZHANG H T, 2013. Study on land use degree at different scales based on spatial autoregressive and geographically weighted regression models[J]. Journal of Huazhong Agricultural University, 32(4): 48-54. | |
[20] | 潘明慧, 兰思仁, 朱里莹, 等, 2020. 景观格局类型对热岛效应的影响——以福州市中心城区为例[J]. 中国环境科学, 40(6): 2635-2646. |
PAN M H, LAN S R, Zhu L Y, et al., 2020. Influence of landscape pattern types on heat island effect over central Fuzhou City[J]. China Environmental Science, 40(6): 2635-2646.. | |
[21] | 曲海涛, 翟玉兰, 张学明, 等, 2021. 基于1985-2015年Landsat MSS/TM/OLI影像的面向对象SVM分类的威海市土地利用及变化分析[J]. 测绘与空间地理信息, 44(5): 132-135. |
QU H T, ZHAI Y L, ZHANG X M, et al., 2021. Analysis of land use and change in Weihai City based on Object-Oriented SVM classification of Landsat MSS/TM/OLI images from 1985 to 2015[J]. Mapping and Spatial Geographic Information. 44(5): 132-135. | |
[22] | 沈中健, 曾坚, 梁晨, 2020a. 闽南三市绿地景观格局与地表温度的空间关系[J]. 生态学杂志, 39(4): 1309-1317. |
SHEN Z J, ZENG J, LIANG C, 2020. Spatial relationship between green landscape pattern and land surface temperature in three cities in southern Fujian Province[J]. Chinese Journal of Ecology, 39(4): 1309-1317. | |
[23] | 沈中健, 曾坚, 2020b. 厦门市热岛强度与相关地表因素的空间关系研究[J]. 地理科学, 40(5): 842- 852. |
SHEN Z J, ZENG J, 2020. Spatial relationship between heat island intensity and related surface factors in Xiamen City[J]. Geographical Science, 40(5): 842-852. | |
[24] |
覃志豪, ZHANG Minghua, ARNON K, 等, 2001. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报, 56(4): 456-466.
DOI |
QIN Z H, ZHANG M H, ARNON K, et al., 2001. A single window algorithm for land surface temperature calculation from Landsat TM6 data[J]. Acta Geographica Sinica, 56(4): 456-466. | |
[25] | 王戈, 于强, YANG D, 等, 2021. 京津冀城市群生态空间格局变化与地表温度关系研究[J]. 农业机械学报, 52(1): 209-218. |
WANG G, YU Q, YANG D, et al., 2021. Study on the relationship between ecological spatial pattern change and land surface temperature in the Beijing-Tianjin-Hebei urban Agglomeration[J]. Transactions of the Chinese Society for Agricultural Machinery, 52(1): 209-218. | |
[26] | 王莹莹, 2010. 城市热岛变化特征及其与下垫面之间的关系[D]. 合肥: 安徽师范大学:56. |
WANG Y Y, 2010. Variation characteristics of urban heat island and its relationship with underlying surface[D]. Hefei: Anhui Normal University:56. | |
[27] | 魏娜思, 2019. 基于高分影像的林地覆盖遥感动态监测[J]. 信息通信 (3): 19-22. |
WEI N S, 2019. Dynamic monitoring of forest cover by remote sensing based on high-resolution images[J]. Information and Communication (3): 19-22. | |
[28] | 闫章美, 周德成, 张良侠, 2021. 我国三大城市群地区城市和农业用地地表热环境效应对比研究[J]. 生态学报, 41(22): 8870-888. |
YAN Z M, ZHOU D C, ZHANG L X, 2021. Comparative study on surface thermal environment effects of urban and agricultural land in Urban Agglomerations[J]. Acta Ecologica Sinica, 41(22): 8870-8881. | |
[29] | 姚远, 陈曦, 钱静, 2018. 城市地表热环境研究进展[J]. 生态学报, 38(3): 1134-1147. |
YAO Y, CHEN X, QIAN J, 2018. Research progress of urban surface thermal environment[J]. Acta Ecologica Sinica, 38(3): 1134-1147. | |
[30] | 张志明, 罗亲普, 王文礼, 等, 2010. 2D与3D景观指数测定山区植被景观格局变化对比分析[J]. 生态学报, 30(21): 5886-5893. |
ZHANG Z M, LUO Z P, WANG W L, et al., 2010. Comparative analysis of vegetation landscape pattern change in mountainous area measured by 2D and 3D landscape index[J]. Acta Ecologica Sinica, 30(21): 5886-5893. | |
[31] | 邹婧, 曾辉, 2017. 城市地表热环境与景观格局的关系——以深圳市为例[J]. 北京大学学报(自然科学版), 53(3): 436-444. |
ZOU J, ZENG H, 2017. The relationship between urban surface thermal environment and landscape pattern: A case study of Shenzhen[J]. Journal of Peking University (Natural Sciences), 53(3): 436-444. |
[1] | WANG Jiali, FENG Jingke, YANG Yuanzheng, ZU Jiaxing, CAI Wenhua, YANG Jian. Research on Spatial Relations between Impervious Surfaces and the Urban Thermal Environment in the Central Metropolitan Area of Nanning City [J]. Ecology and Environment, 2023, 32(3): 525-534. |
[2] | JIANG Tiantian, YANG Chun, LIAO Wei, HU Li, LIU Huanyao, REN Bo, LI Xiaoma. Path Analysis of the Urban Greenspace Landscape Pattern Impacts on Land Surface Temperature: A Case Study in Changsha [J]. Ecology and Environment, 2023, 32(1): 18-25. |
[3] | WANG Chenxi, ZHANG Qiongrui, ZHANG Ruoqi, SUN Xuechao, XU Songjun. Effects of Landscape Pattern on Water Quality Purification Service in the Pearl River Basin in Guangdong Province [J]. Ecology and Environment, 2022, 31(7): 1425-1433. |
[4] | XUAN Jin, LI Zuchan, ZOU Cheng, QIN Zibo, WU Yahua, HUANG Liujing. Multi-scale Effects of Central Bar Landscape Class and Pattern on Plant Diversity in Minjiang River: The Case of Minjiang River Basin (Fuzhou Section) Planning [J]. Ecology and Environment, 2022, 31(12): 2320-2330. |
[5] | BIAN Zhenxing, ZHANG Yufei, GUO Xiaoyu, LIN Lin, YU Miao. Effects of Agricultural Landscape Patterns on the Food Web of Pests and Predatory Natural Enemies in Low Mountain and Hilly Areas [J]. Ecology and Environment, 2022, 31(1): 79-88. |
[6] | DONG Xin, LANG Jiayu, CHUYUAN Mengran, ZHAO Shanshan, ZHANG Jindong, BAI Wenke. The Seasonal Characteristics of Home Range and Habitat Utilization of Sichuan Golden Monkeys (Rhinopithecus roxellana) [J]. Ecology and Environment, 2021, 30(7): 1342-1352. |
[7] | HU Lin, LI Siyue. Scale Effects of Land Use Structure and Landscape Pattern on Water Quality in the Longchuan River Basin [J]. Ecology and Environment, 2021, 30(7): 1470-1481. |
[8] | SONG Xinbo, HUANG He, GUO Jun, XIONG Mingming. Research on the Impact of Urban Morphology on Thermal Environment in Summer: A Case of Tianjin Central City [J]. Ecology and Environment, 2021, 30(11): 2165-2174. |
[9] | LEI Jinrui, CHEN Zongzhu, CHEN Yiqing, CHEN Xiaohua, LI Yuanling, WU Tingtian. Landscape Pattern Changes and Driving Factors Analysis of Wetland in Hainan Island during 1990-2018 [J]. Ecology and Environment, 2020, 29(1): 59-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn