Ecology and Environment ›› 2025, Vol. 34 ›› Issue (4): 548-555.DOI: 10.16258/j.cnki.1674-5906.2025.04.005
• Research Article【Environmental Science】 • Previous Articles Next Articles
CHEN Siyu1(), SUN Lijuan2, SU Congcong3, YU Xingna1,*(
)
Received:
2024-09-30
Online:
2025-04-18
Published:
2025-04-24
Contact:
YU Xingna
通讯作者:
于兴娜
作者简介:
陈思宇(2001年生),男,硕士研究生,主要研究方向为大气环境。E-mail: 202412030228@nuist.edu.cn
基金资助:
CLC Number:
CHEN Siyu, SUN Lijuan, SU Congcong, YU Xingna. Characteristics of Volatile Organic Compounds and its Contribution to Secondary Organic Aerosol and Ozone in Spring and Summer in Taiyuan[J]. Ecology and Environment, 2025, 34(4): 548-555.
陈思宇, 孙丽娟, 苏枞枞, 于兴娜. 太原市春夏季VOCs组成特征及其对二次有机气溶胶和臭氧的贡献[J]. 生态环境学报, 2025, 34(4): 548-555.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.04.005
[1] | AN J L, ZHU B, WANG H L, et al., 2014. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China[J]. Atmospheric Environment, 97: 206-214. |
[2] | ATKINSON R, 2000. Atmospheric chemistry of VOCs and NOx[J]. Atmospheric Environment, 34(12-14): 2063-2101. |
[3] |
ATKINSON R, AREY J, 2003. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 103(12): 4605-4638.
PMID |
[4] | CARTER W P L, 2010. Development of the SAPRC-07 chemical mechanism[J]. Atmospheric Environment, 44(40): 5324-5335. |
[5] | GROSJEAN D, 1992. In situ organic aerosol formation during a smog episode: Estimated production and chemical functionality[J]. Atmospheric Environment. Part A. General Topics, 26(6): 953-963. |
[6] | GROSJEAN D, SEINFELD J H, 1989. Parameterization of the formation potential of secondary organic aerosols[J]. Atmospheric Environment (1967), 23(8): 1733-1747. |
[7] | GUO H, SO L K, SIMPSON J I, et al., 2007. C1-C8 volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processing and source apportionment[J]. Atmospheric Environment, 41(7): 1456-1472. |
[8] | HUANG X F, WANG C, ZHU B, et al., 2019. Exploration of sources of OVOCs in various atmospheres in southern China[J]. Environmental Pollution, 249: 831-842. |
[9] | HUI L R, LIU X G, TAN Q W, et al., 2019. VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China[J]. Science of the Total Environment, 650(Part 2): 2624-2639. |
[10] | LI J, LI H Y, HE Q S, et al., 2020b. Characteristics, sources and regional inter-transport of ambient volatile organic compounds in a city located downwind of several large coke production bases in China[J]. Atmospheric Environment, 233: 117573. |
[11] | LI X B, YUAN B, WANG S, et al., 2022. Variations and sources of volatile organic compounds (VOCs) in urban region: insights from measurements on a tall tower[J]. Atmospheric Chemistry and Physics, 22(16): 10567-10587. |
[12] | LI Y D, YIN S S, YU S J, et al., 2020a. Characteristics, source apportionment and health risks of ambient VOCs during high ozone period at an urban site in central plain, China[J]. Chemosphere, 250: 126283. |
[13] | LIU X F, LI X Y, TAN X, et al., 2022. Distribution characteristics, source apportionment, and chemical reactivity of volatile organic compounds in two adjacent areas in Shanxi, North China[J]. Atmospheric Environment, 290: 119374. |
[14] | LIU Y, SHAO M, FU L L, et al., 2008. Source profiles of volatile organic compounds (VOCs) measured in China: Part I[J]. Atmospheric Environment, 42(25): 6247-6260. |
[15] | LIU Y F, YIN S J, ZHANG S Q, et al., 2024. Drivers and impacts of decreasing concentrations of atmospheric volatile organic compounds (VOCs) in Beijing during 2016-2020[J]. Science of the Total Environment, 906: 167847. |
[16] | PEKEY B, YILMAZ H, 2011. The use of passive sampling to monitor spatial trends of volatile organic compounds (VOCs) at an industrial city of Turkey[J]. Microchemical Journal, 97(2): 213-219. |
[17] | QIN Y, WALK T, GARY R, et al., 2007. C2-C10 nonmethane hydrocarbons measured in Dallas, USA—Seasonal trends and diurnal characteristics[J]. Atmospheric Environment, 41(28): 6018-6032. |
[18] | QU H, WANG Y H, ZHANG R X, et al., 2021. Chemical production of oxygenated volatile organic compounds strongly enhances boundary-layer oxidation chemistry and ozone production[J]. Environmental Science & Technology, 55(20): 13718-13727. |
[19] | REN X, WEN Y P, HE Q S, et al., 2021. Higher contribution of coking sources to ozone formation potential from volatile organic compounds in summer in Taiyuan, China[J]. Atmospheric Pollution Research, 12(6): 101083. |
[20] | SADEGHI B, POUVAEI A, CHOI Y, et al., 2022. Influence of seasonal variability on source characteristics of VOCs at Houston industrial area[J]. Atmospheric Environment, 277: 119077. |
[21] |
SUN J, WANG Y S, WU F K, et al., 2018. Vertical characteristics of VOCs in the lower troposphere over the North China Plain during pollution periods[J]. Environmental Pollution, 236: 907-915.
DOI PMID |
[22] | WANG Y, CUI Y, HE Q S, et al., 2023. Significant impact of VOCs emission from coking and coal/biomass combustion on O3 and SOA formation in Taiyuan, China[J]. Atmospheric Pollution Research, 14(2): 101671. |
[23] | WU Y J, FAN X L, LIU Y, et al., 2023. Source apportionment of VOCs based on photochemical loss in summer at a suburban site in Beijing[J]. Atmospheric Environment, 293: 119459. |
[24] |
YAO D, TANG G Q, WANG Y H, et al., 2021. Significant contribution of spring northwest transport to volatile organic compounds in Beijing[J]. Journal of Environmental Sciences, 104: 169-181.
DOI PMID |
[25] | ZHANG X F, YIN Y Y, WEN J H, et al., 2019. Characteristics, reactivity and source apportionment of ambient volatile organic compounds (VOCs) in a typical tourist city[J]. Atmospheric Environment, 215: 116898. |
[26] | 曹姗姗, 2020. 大连市城区夏季环境空气VOCs污染特征及来源分析[J]. 环境保护科学, 46(4): 113-116. |
CAO S S, 2020. Analysis of the characteristics and sources of VOCs pollution of urban area of Dalian in summer[J]. Environmental Protection Science, 46(4): 113-116. | |
[27] | 高亢, 章慧, 刘梦迪, 等, 2020. 芜湖市大气挥发性有机物污染特征、大气反应活性及源解析[J]. 环境科学, 41(11): 4885-4894. |
GAO K, ZHANG H, LIU M D, et al., 2020. Characteristics, atmospheric reactivity, and source apportionment of ambient volatile organic compounds in Wuhu[J]. Environmental Science, 41(11): 4885-4894. | |
[28] | 关璐, 苏枞枞, 库盈盈, 等, 2023. 沈阳工业区夏季VOCs组成特征及其对二次污染形成的贡献[J]. 环境科学, 44(7): 3779-3787. |
GUAN L, SU C C, KU Y Y, et al., 2023. Composition characteristics of volatile organic compounds and associated contribution to secondary pollution in Shenyang industrial area in summer[J]. Environmental Science, 44(7): 3779-3787. | |
[29] | 景盛翱, 高雅琴, 沈建东, 等, 2020. 杭州市城区挥发性有机物污染特征及反应活性[J]. 环境科学, 41(12): 5306-5315. |
JING S A, GAO Y Q, SHEN J D, et al., 2020. Characteristics and reactivity of ambient VOCs in urban Hangzhou, China[J]. Environmental Science, 41(12): 5306-5315. | |
[30] | 李如梅, 闫雨龙, 王成, 等, 2021. 太原市城区夏季VOCs来源及其对O3生成的贡献[J]. 中国环境科学, 41(6): 2515-2525. |
LI R M, YAN Y L, WANG C, et al., 2021. Source apportionment of VOCs and its contribution to O3 production during summertime in urban area of Taiyuan[J]. China Environmental Science, 41(6): 2515-2525. | |
[31] | 梁思远, 王帅, 高松, 等, 2021. 北京市城区挥发性有机物污染特征及其对臭氧影响分析[J]. 中国环境监测, 37(6): 21-30. |
LIANG S Y, WANG S, GAO S, et al., 2021. Characteristics of volatile organic compounds and its impact on O3 formation in Beijing urban area[J]. Environmental Monitoring in China, 37(6): 21-30. | |
[32] | 林旭, 2016. 南京北郊VOCs变化特征及其对二次有机气溶胶和臭氧的贡献研究[D]. 南京: 南京信息工程大学. |
LIN X, 2016. The characteristics, potential contribution of secondary organic aerosols and ozone of VOCs in the northern suburb of Nanjing[D]. Nanjing: Nanjing University of Information Science and Technology. | |
[33] | 司雷霆, 王浩, 李洋, 等, 2019. 太原市夏季大气VOCs污染特征及臭氧生成潜势[J]. 中国环境科学, 39(9): 3655-3662. |
SI L T, WANG H, LI Y, et al., 2019. Pollution characteristics and ozone formation potential of ambient VOCs in summer in Taiyuan[J]. China Environmental Science, 39(9): 3655-3662. | |
[34] | 宋鑫, 袁斌, 王思行, 等, 2023. 珠三角典型工业区挥发性有机物 (VOCs) 组成特征: 含氧挥发性有机物的重要性[J]. 环境科学, 44(3): 1336-1345. |
SONG X, YUAN B, WANG S X, et al., 2023. Compositional characteristics of volatile organic compounds in typical industrial areas of the pearl river delta: Importance of oxygenated volatile organic compounds[J]. Environmental Science, 44(3): 1336-1345. | |
[35] |
王甫华, 吴曼曼, 乔佳, 等, 2019. 新型挥发性有机物吸附浓缩在线监测系统的研制[J]. 质谱学报, 40(2): 177-188.
DOI |
WANG F H, WU M M, QIAO J, et al., 2019. Development of new online monitoring system of adsorption and concentration for atmospheric volatile organic compounds[J]. Journal of Chinese Mass Spectrometry Society, 40(2): 177-188. | |
[36] | 王茜, 2024. 上海城郊夏季VOCs变化特征及其对O3污染的贡献分析[J]. 环境科学, 45(8): 4440-4447. |
WANG Q, 2024. Characteristics and influence of atmospheric VOCs in ozone formation potential in suburb of Shanghai during summer[J]. Environmental Science, 45(8): 4440-4447. | |
[37] | 温彦平, 闫雨龙, 李丽娟, 等, 2016. 太原市夏季挥发性有机物污染特征及来源分析[J]. 太原理工大学学报, 47(3): 331-336. |
WEN Y P, YAN Y L, LI L J, et al., 2016. Pollution characteristic and source analysis of volatile organic compounds in summer in Taiyuan[J]. Journal of Taiyuan University of Technology, 47(3): 331-336. | |
[38] | 徐晨曦, 陈军辉, 姜涛, 等, 2020. 成都市区夏季大气挥发性有机物污染特征及来源解析[J]. 环境科学, 41(12): 5316-5324. |
XU C X, CHEN J H, JIANG T, et al., 2020. Characteristics and sources of atmospheric volatile organic compounds pollution in summer in Chengdu[J]. Environment Science, 41(12): 5316-5324. | |
[39] | 张蕊, 孙雪松, 王裕, 等, 2023. 北京市城区夏季大气VOCs变化特征及臭氧生成潜势[J]. 环境科学, 44(4): 1954-1961. |
ZHANG R, SUN X S, WANG Y, et al., 2023. Variation characteristics and ozone formation potential of ambient VOCs in urban Beijing in summer[J]. Environment Science, 44(4): 1954-1961. | |
[40] | 张子金, 林煜棋, 张煜娴, 等, 2021. 南京毒性挥发性有机化合物夏冬季源解析及健康风险评估[J]. 环境科学, 42(12): 5673-5686. |
ZHANG Z J, LIN Y C, ZHANG Y X, et al., 2021. Source analysis and health risk assessment of toxic volatile organic compounds in Nanjing in summer and winter[J]. Environmental Science, 42(12): 5673-5686. |
[1] | CONG Xin, ZHANG Huaidi, ZHANG Rong, ZHAO Cen, CHEN Kun, LIU Hanbing. Pollution Characteristics and Risk Analysis of Heavy Metal in Farmland Soils of China in Recent 10 Years Based on Meta Analysis [J]. Ecology and Environment, 2024, 33(9): 1451-1459. |
[2] | ZHANG Junmei, WANG Zhiyu, YANG Benyong, YANG Shushen, YANG Lingxiao. Pollution Characteristics, Light Absorption and Sources of Water-soluble Organic Carbon in PM2.5 [J]. Ecology and Environment, 2024, 33(7): 1072-1078. |
[3] | JIANG Boqi, FU Tian, CHENG Yixuan, SU Zongzong, SHEN Jiandong, YU Jincheng, YU Xingna. Characteristics of Ozone Pollution and Its Influencing Factors in Shenyang [J]. Ecology and Environment, 2024, 33(1): 72-79. |
[4] | YAN Xuejun, HAO Saimei, ZHANG Rongrong, QIN Hua, GAO Sulian, WANG Feng, JIN Xianzhong, SUN Youmin, ZHANG Guiqin. Composition Spectrum and Emission Estimation of VOCs from Furniture Malls [J]. Ecology and Environment, 2023, 32(6): 1070-1077. |
[5] | XU Xiaoyun, RAO Zhihan, JIANG Hongbin, ZHANG Wei, CHEN Chao, YANG Yongan, HU Yanli, WEI Haichuan. Pollution Characteristics and Formation Potential for O3 and SOA of Ambient VOCs in Suining Industrial Zone in Summer [J]. Ecology and Environment, 2023, 32(5): 956-968. |
[6] | WEN Lirong, JIANG Ming, HUANG Bo, YUAN Luan, ZHOU Yan, LU Weimei, ZHANG Ying, LIU Ming, ZHANG Liyun. Analysis of Ozone Pollution Causes and Source Analysis of VOCs in Typical Areas of Pearl River Delta: A Case Study of Zhongshan City [J]. Ecology and Environment, 2023, 32(3): 500-513. |
[7] | XU Chen, PEI Shunxiang, WU Sha, GUO Hui, MA Shumin, WU Di, ZHANG Yaoxiang, FA Lei. Study on Major Atmospheric BVOCs Composition of Different Forest Types in Jiulong Mountain, Beijing [J]. Ecology and Environment, 2023, 32(2): 245-255. |
[8] | WANG Molei, LI Zhihui, CHEN Laiguo, GUO Songjun, LIU Ming, WANG Shuo, LU Haitao. Polybrominated Diphenyl Ethers in Flue Gas from Municipal Waste Incineration Plants and Surrounding Soil Pollution Characteristics [J]. Ecology and Environment, 2022, 31(8): 1582-1589. |
[9] | FAN Keyu, GAO Yuan, LAI Zini, ZENG Yanyi, LIU Qianfu, LI Haiyan, MAI Yongzhan, YANG Wanling, WEI Jingxin, SUN Jinhui, WANG Chao. Characteristics of Microplastic Pollution in Fish in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1590-1598. |
[10] | ZHU Li, YAN Huaizhong, SUN Youmin, FAN Jing, LIU Guanghui, ZHNG Guiqin. Characteristics and Source Identification of Dust Precipitates in A Typical Heavy Industry Area in Shandong [J]. Ecology and Environment, 2022, 31(7): 1393-1399. |
[11] | PAN Danlin, WANG Feifei, CAO Wenzhi, CHEN Yiyue. The Study on Characteristics of 22 Pharmaceuticals and Personal Care Products in Rivers [J]. Ecology and Environment, 2022, 31(6): 1200-1207. |
[12] | CHEN Xuequan, KONG Bin, LAN Qing, YU Zhiquan, XIE Yinsi, HUANG Junyi. Emission Characteristics and Ozone Formation Potential Assessment of Volatile Organic Compounds (VOCs) from Adhesive Manufacturing Industry [J]. Ecology and Environment, 2022, 31(4): 750-758. |
[13] | LI Yinghui, GUO Qianjin, YAN Yulong, HU Dongmei, DENG Mengjie, PENG Lin. Variation Characteristics and Source Apportionment of Ambient BTEX in Jincheng City [J]. Ecology and Environment, 2022, 31(3): 504-511. |
[14] | LIU Di, SU Chao, ZHANG Hong, QIN Guanyu. Pollution Characteristics and Risk Assessment of Heavy Metal Pollution in A Typical Coal-based Industrial Cluster Zone [J]. Ecology and Environment, 2022, 31(2): 391-399. |
[15] | LI Shaoning, TAO Xueying, LI Huimin, ZHAO Na, XU Xiaotian, LU Shaowei. Study on Dynamic Characteristics of BVOCs Released from Platycladus orientalis and Salix babylonica in Growing Season [J]. Ecology and Environment, 2022, 31(2): 257-264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn