Ecology and Environment ›› 2025, Vol. 34 ›› Issue (2): 233-246.DOI: 10.16258/j.cnki.1674-5906.2025.02.006
• Research Article【Ecology】 • Previous Articles Next Articles
SUN Yujia1(), LU Mei1,*(
), ZHAO Xuyan2, FENG Jun3, LIU Guoqing1, GUO Chuxiao1, WANG Mingliu1, HUANG Minchao1, CHEN Zhiming2
Received:
2024-07-16
Online:
2025-02-18
Published:
2025-03-03
Contact:
LU Mei
孙煜佳1(), 陆梅1,*(
), 赵旭燕2, 冯峻3, 刘国庆1, 郭础鸟1, 王明柳1, 黄敏超1, 陈志明2
通讯作者:
陆梅
作者简介:
孙煜佳(1995年生),女,硕士研究生,主要从事湿地生态研究。E-mail: sunyujiade@163.com
基金资助:
CLC Number:
SUN Yujia, LU Mei, ZHAO Xuyan, FENG Jun, LIU Guoqing, GUO Chuxiao, WANG Mingliu, HUANG Minchao, CHEN Zhiming. Response of Soil Bacterial Community Structure to Nitrogen Addition in Degraded Napahai Alpine Meadow[J]. Ecology and Environment, 2025, 34(2): 233-246.
孙煜佳, 陆梅, 赵旭燕, 冯峻, 刘国庆, 郭础鸟, 王明柳, 黄敏超, 陈志明. 纳帕海高寒退化草甸土壤细菌群落结构对氮添加的响应[J]. 生态环境学报, 2025, 34(2): 233-246.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.02.006
土层/cm | 指标 | 氮添加量/(g·m−2·a−1) | |||
---|---|---|---|---|---|
0 | 5 | 10 | 15 | ||
0-20 | w(全氮)/(g∙kg−1) | 0.87±0.00Ba | 0.94±0.03Aa | 0.96±0.02Aa | 0.80±0.004Ca |
w(有机质)/(g∙kg−1) | 33.46±1.04Ca | 38.34±0.35Ba | 62.53±1.07Aa | 34.24±0.11Ca | |
w(全磷)/(g∙kg−1) | 0.63±0.04Ba | 0.61±0.083Aa | 0.83±0.293AaCa | 0.79±0.16Ca | |
w(全钾)/(g∙kg−1) | 15.73±2.69Ca | 15.30±2.47Ba | 15.14±3.823Aa | 14.98±0.28Ca | |
w(速效磷)/(mg∙kg−1) | 16.88±3.45Aa | 10.62±8.82Ba | 12.64±7.94Ba | 14.26±10.28Ca | |
w(速效钾)/(mg∙kg−1) | 28.78±7.31Ca | 30.37±7.96Ca | 31.95±7.27Ba | 32.65±2.24Aa | |
w(速效氮)/(mg∙kg−1) | 215.07±40.83Aa | 250.74±39.16Aa | 299.17±39.85Ba | 263.91±224.07Ca | |
pH | 7.11±0.033Aa | 6.08±0.01BaAa | 5.40±0.01Ba | 5.23±0.01Ca | |
20-40 | w(全氮)/(g∙kg−1) | 0.56±0.004Bc | 0.58±0.003Ac | 0.57±0.01Ac | 0.54±0.02Cc |
w(有机质)/(g∙kg−1) | 16.75±0.47Bc | 17.58±0.52ABc | 17.52±0.94ABc | 17.99±0.08Ac | |
w(全磷)/(g∙kg−1) | 0.57±0.19Ac | 0.57±0.36Bc | 0.37±0.01Cc | 0.59±0.25Dc | |
w(全钾)/(g∙kg−1) | 15.74±1.62Dc | 15.31±1.69Ac | 15.14±1.06Bc | 15.00±1.52Dc | |
w(速效磷)/(mg∙kg−1) | 8.77±5.24Ac | 8.43±4.40Cc | 19.77±9.23Cc | 18.99±10.04Bc | |
w(速效钾)/(mg∙kg−1) | 19.53±10.79 | 19.12±13.47Ac | 17.59±2.63Bc | 20.59±0.12Cc | |
w(速效氮)/(mg∙kg−1) | 61.58±17.58Cc | 128.60±41.68Bc | 86.93±36.14 | 80.78±17.25Ac | |
pH | 7.18±0.01Aa | 6.81±0.01BCa | 6.85±0.07ABa | 6.47±0.37Ca | |
0-40 | w(全氮)/(g∙kg−1) | 0.71±0.00Bb | 0.76±0.01Ab | 0.76±0.02Ab | 0.67±0.01Cb |
w(有机质)/(g∙kg−1) | 25.10±0.48Db | 27.96±0.09Bb | 40.03±0.61Ab | 26.11±0.10Cb | |
w(全磷)/(g∙kg−1) | 0.60±0.13Bb | 0.59±0.24Ab | 0.61±0.31Db | 0.69±0.22Cb | |
w(全钾)/(g∙kg−1) | 15.73±5.04Ab | 15.30±1.92Bb | 15.14±3.41Db | 14.99±1.82Cb | |
w(速效磷)/(mg∙kg−1) | 12.82±4.91Bb | 9.53±7.50Ab | 16.89±8.01Db | 19.04±9.14Cb | |
w(速效钾)/(mg∙kg−1) | 24.15±9.68Cb | 24.75±11.66Db | 24.77±9.26Bb | 26.62±6.76Ab | |
w(速效氮)/(mg∙kg−1) | 138.32±18.03Bb | 189.67±18.07Ab | 193.05±10.19Cb | 172.34±21.95 | |
pH | 7.15±0.02Aab | 6.44±0.01Bb | 6.12±0.04Cb | 5.85±0.19Db |
Table 1 Effect of nitrogen addition on soil physicochemical properties in degraded plateau meadow
土层/cm | 指标 | 氮添加量/(g·m−2·a−1) | |||
---|---|---|---|---|---|
0 | 5 | 10 | 15 | ||
0-20 | w(全氮)/(g∙kg−1) | 0.87±0.00Ba | 0.94±0.03Aa | 0.96±0.02Aa | 0.80±0.004Ca |
w(有机质)/(g∙kg−1) | 33.46±1.04Ca | 38.34±0.35Ba | 62.53±1.07Aa | 34.24±0.11Ca | |
w(全磷)/(g∙kg−1) | 0.63±0.04Ba | 0.61±0.083Aa | 0.83±0.293AaCa | 0.79±0.16Ca | |
w(全钾)/(g∙kg−1) | 15.73±2.69Ca | 15.30±2.47Ba | 15.14±3.823Aa | 14.98±0.28Ca | |
w(速效磷)/(mg∙kg−1) | 16.88±3.45Aa | 10.62±8.82Ba | 12.64±7.94Ba | 14.26±10.28Ca | |
w(速效钾)/(mg∙kg−1) | 28.78±7.31Ca | 30.37±7.96Ca | 31.95±7.27Ba | 32.65±2.24Aa | |
w(速效氮)/(mg∙kg−1) | 215.07±40.83Aa | 250.74±39.16Aa | 299.17±39.85Ba | 263.91±224.07Ca | |
pH | 7.11±0.033Aa | 6.08±0.01BaAa | 5.40±0.01Ba | 5.23±0.01Ca | |
20-40 | w(全氮)/(g∙kg−1) | 0.56±0.004Bc | 0.58±0.003Ac | 0.57±0.01Ac | 0.54±0.02Cc |
w(有机质)/(g∙kg−1) | 16.75±0.47Bc | 17.58±0.52ABc | 17.52±0.94ABc | 17.99±0.08Ac | |
w(全磷)/(g∙kg−1) | 0.57±0.19Ac | 0.57±0.36Bc | 0.37±0.01Cc | 0.59±0.25Dc | |
w(全钾)/(g∙kg−1) | 15.74±1.62Dc | 15.31±1.69Ac | 15.14±1.06Bc | 15.00±1.52Dc | |
w(速效磷)/(mg∙kg−1) | 8.77±5.24Ac | 8.43±4.40Cc | 19.77±9.23Cc | 18.99±10.04Bc | |
w(速效钾)/(mg∙kg−1) | 19.53±10.79 | 19.12±13.47Ac | 17.59±2.63Bc | 20.59±0.12Cc | |
w(速效氮)/(mg∙kg−1) | 61.58±17.58Cc | 128.60±41.68Bc | 86.93±36.14 | 80.78±17.25Ac | |
pH | 7.18±0.01Aa | 6.81±0.01BCa | 6.85±0.07ABa | 6.47±0.37Ca | |
0-40 | w(全氮)/(g∙kg−1) | 0.71±0.00Bb | 0.76±0.01Ab | 0.76±0.02Ab | 0.67±0.01Cb |
w(有机质)/(g∙kg−1) | 25.10±0.48Db | 27.96±0.09Bb | 40.03±0.61Ab | 26.11±0.10Cb | |
w(全磷)/(g∙kg−1) | 0.60±0.13Bb | 0.59±0.24Ab | 0.61±0.31Db | 0.69±0.22Cb | |
w(全钾)/(g∙kg−1) | 15.73±5.04Ab | 15.30±1.92Bb | 15.14±3.41Db | 14.99±1.82Cb | |
w(速效磷)/(mg∙kg−1) | 12.82±4.91Bb | 9.53±7.50Ab | 16.89±8.01Db | 19.04±9.14Cb | |
w(速效钾)/(mg∙kg−1) | 24.15±9.68Cb | 24.75±11.66Db | 24.77±9.26Bb | 26.62±6.76Ab | |
w(速效氮)/(mg∙kg−1) | 138.32±18.03Bb | 189.67±18.07Ab | 193.05±10.19Cb | 172.34±21.95 | |
pH | 7.15±0.02Aab | 6.44±0.01Bb | 6.12±0.04Cb | 5.85±0.19Db |
Figure 4 Heat map showing the association of bacterial relative abundance and diversity with plants and soil environmental factors under nitrogen addition
Figure 5 Partial least square structural equation model analysis on the effects of plant and soil environment changes on bacteria under nitrogen addition
[1] | BAHRAM M, HILDEBRAND F, FORSLUND S K, et al., 2018. Structure and function of the global topsoil microbiome[J]. Nature, 560(7717): 233-237. |
[2] | CHEN Q Y, YUAN Y L, HU Y L, et al., 2021. Excessive nitrogen addition accelerates N assimilation and P utilization by enhancing organic carbon decomposition in a Tibetan alpine steppe[J]. Science of the Total Environment, 764: 142848. |
[3] | CORSTANJE R, REDDY K R, PRENGER J P, et al., 2007. Soil microbial eco-physiological response to nutrient enrichment in a sub-tropical wetland[J]. Ecological Indicators, 7(2):277-289. |
[4] | EILERS K G, LAUBER C L, KNIGHT R, et al., 2010. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil[J]. Soil Biology and Biochemistry, 42(6): 896-903. |
[5] |
FIERER N, 2017. Embracing the unknown: disentangling the complexities of the soil microbiome[J]. Nature Reviews Microbiology, 15: 579-590.
DOI PMID |
[6] | FIERER N, LAUBER C L, RAMIREZ K S, et al., 2011. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. The Isme Journal, 6(5): 1007-1017. |
[7] |
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al., 2008. Transformation of the nitrogen cycle: Recent Trends, Questions, and Potential Solutions[J]. Science, 320(5878): 889-892.
DOI PMID |
[8] | HAIR J F, RISHER J J, SARSTEDT M, et al., 2019. When to use and how to report the results of PLS-SEM[J]. European Business Review, 31(1): 2-24. |
[9] | HARPOLE W S, SULLIVAN L L, LIND E M, et al., 2016. Addition of multiple limiting resources reduces grassland diversity[J]. Nature, 1537(7618): 93-96. |
[10] | KHALIL M I, RAHMAN M S, SCHMIDHALTER U, et al., 2007. Nitrogen fertilizer-induced mineralization of soil organic C and N in six contrasting soils of Bangladesh[J]. Journal of Plant Nutrition and Soil Science, 170(2): 210-218. |
[11] | KUYPERS M M M, MARCHANT H K, KARTAl B, et al., 2018. The microbial nitrogen-cycling network[J]. Nature reviews, 16(5): 263-276. |
[12] | LIU L F, TIAN J Q, WANG H J, et al., 2023. Stable oxic-anoxic transitional interface is beneficial to retard soil carbon loss in drained peatland[J]. Soil Biology and Biochemistry, 181: 109024. |
[13] | LUO Z M, LIU J X, CHAI B F, et al., 2020. Soil bacterial community response and nitrogen cycling variations associated with subalpine meadow degradation on the loess plateau China[J]. Applied and Environmental Microbiology, 86(9): e00180-20. |
[14] | REICHSTEIN M, REY A, FREIBAUER A, et al., 2003. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices[J]. Global Biogeochemical Cycles, 17(4): 1104. |
[15] | SIKORSKI J, BAUMGARTNER V, BIRKHOFER K, et al., 2022. The evolution of ecological diversity in Acidobacteriota[J]. Frontiers in Microbiology, 13(5): 715637. |
[16] | PAREDES S H, LEBEIS S L, 2016. Giving back to the community: Microbial mechanisms of plant-soil interactions[J]. Functional Ecology, 30(7): 1043-1052. |
[17] |
PROBER S M, LEFF J W, BATES S T, et al., 2015. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide[J]. Ecology Letters, 18(1): 85-95.
DOI PMID |
[18] | WANG Y S, LI C N, KOU Y P, et al., 2017. Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibet alpine meadows[J]. Soil Biology and Biochemistry, 115: 547-555. |
[19] | XU D H, FANG X W, ZHANG R Y, et al., 2016. Influences of nitrogen, phosphorus and silicon addition on plant productivity and species richness in an alpine meadow[J]. AoB PLANTS, 7(7): 19-34. |
[20] | ZHANG T A, CHEN H Y H, RUAN H H, et al., 2018. Global negative effects of nitrogen deposition on soil microbes[J]. The Isme Journal, 12(7): 1817-1825. |
[21] | ZHANG R J, TIAN X R, XIANG Q J, et al., 2022. Response of soil microbial community structure and function to different altitudes in arid valley in Panzhihua, China[J]. BMC Microbiology, 22: 1-11. |
[22] |
ZONG N, SHI P, SONG M, et al., 2016. Nitrogen critical loads for an alpine meadow ecosystem on the Tibetan Plateau[J]. Environmental Management, 57: 531-542.
DOI PMID |
[23] | 鲍士旦, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社: 2-37. |
BAO S D, 2000. Methods of soil agrochemical analysis[M]. Beijing: China Agricultural Science and Technology Press: 2-37. | |
[24] | 曹子铖, 程淑兰, 方华军, 等, 2020. 温带针阔叶林土壤有机碳动态和微生物群落结构对有机氮添加的响应特征[J]. 土壤学报, 57(4): 963-974. |
CAO Z C, CHENG S L, FANG H J, et al., 2020. Responses of soil organic carbon dynamics and microbial community structure to organic nitrogen fertilization in the temperate needle-broad leaved mixed forest[J]. Acta Pedologica Sinica, 57(4): 963-974. | |
[25] |
付伟, 武慧, 赵爱花, 等, 2020. 陆地生态系统氮沉降的生态效应:研究进展与展望[J]. 植物生态学报, 44(5): 475-493.
DOI |
FU W, WU H, ZHAO A H, et al., 2020. Ecological impacts of nitrogen deposition on terrestrial ecosystems: Research progresses and prospects[J]. Chinese Journal of Plant Ecology, 44(5): 475-493. | |
[26] | 胡启良, 杨滨娟, 刘宁, 等, 2022. 绿肥混播下不同施氮量对水稻产量、土壤碳氮和微生物群落的影响[J]. 华中农业大学学报, 41(6): 16-26. |
HU Q L, YANG B J, LIU N, et al., 2022. Effects of application rates of nitrogen on rice yield, carbon and nitrogen, microbial community in soil under mixed sowing of green manure[J]. Journal of Huazhong Agricultural University, 41(6): 16-26. | |
[27] | 胡洋, 丛孟菲, 陈末, 等, 2022. 氮添加对巴音布鲁克高寒湿地土壤微生物量和酶活性的影响[J]. 生态学报, 42(13): 5328-5339. |
HU Y, CONG M F, CHEN M, et al., 2022. Effects of nitrogen addition on soil microbial biomass and enzymatic activity in Bayinbuluk alpine wetland[J]. Acta Ecologica Sinica, 42(13): 5328-5339. | |
[28] | 刘灿然, 马克平, 1998. 生物群落多样性的测度方法VI: 与多样性测度有关的统计问题[J]. 生物多样性, 6(3): 229-239. |
LIU C R, MA K P, 1998. Measurement of biotic community diversity VI: The statistical aspects of diversity measures[J]. Chinese Biodiversity, 6(3): 229-239. | |
[29] |
刘红梅, 杨殿林, 张海芳, 等, 2019. 氮添加对贝加尔针茅草原土壤细菌群落结构的影响[J]. 草业学报, 28(9): 23-32.
DOI |
LIU H M, YANG D L, ZNANG H F, et al., 2019. Effects of nitrogen addition on the soil bacterial community structure of Stipa baicalensis steppe[J]. Acta Prataculturae Sinica, 28(9): 23-32. | |
[30] | 刘红梅, 张海芳, 皇甫超河, 等, 2017. 长期氮添加对贝加尔针茅草原土壤微生物群落多样性的影响[J]. 农业环境科学学报, 36(4): 709-717. |
LIU H M, ZHANG H F, HUANGFU C H, et al., 2017. Effects of different long-term nitrogen addition on soil microbial diversity of Stipa baicalensis steppe in Inner Mongolia, China[J]. Journal of Agro-Environment Science, 36(4): 709-717. | |
[31] | 刘伟, 程积民, 高阳, 等, 2012. 黄土高原草地土壤有机碳分布及其影响因素[J]. 土壤学报, 49(1): 68-76. |
LIU W, CHENG J M, GAO Y, et al., 2012. Soil organic carbon distribution and its influencing factors in grassland on the Loess Plateau[J]. Acta Pedologica Sinica, 49(1): 68-76. | |
[32] |
刘艳, 陈梦娇, 郭童童, 等, 2023. 多梯度氮磷添加对高寒退化草甸植物群落生物量与氮磷含量的影响[J]. 草地学报, 31(3): 751-759.
DOI |
LIU Y, CHEN M J, GUO T T, et al., 2023. Effects of Multi-gradient Nitrogen and Phosphorus Additions on Biomass and Nitrogen and Phosphorus Content of Alpine Meadow Plant Community[J]. Acta Agrestia Sinica, 31(3): 751-759.
DOI |
|
[33] | 刘株秀, 2023. 东北均腐土剖面微生物群落分布和功能特征分析[D]. 长春市: 中国科学院大学(中国科学院东北地理与农业生态研究所): 1-89. |
LIU Z X, 2023. Distribution and functional characteristics of microbial communities in Isohumosol profiles in Northeast China[D]. Changchun: University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences): 1-89. | |
[34] | 陆梅, 2018. 纳帕海湿地退化对土壤微生物群落结构及多样性的影响[D]. 北京: 北京林业大学: 1-207. |
LU M, 2018. Effects of wetlands degradation on structure and biodiversity of soil microbial community in Napahai plateau wetlands[D]. Beijing: Beijing Forestry University: 1-207. | |
[35] | 吕博, 丁亮, 过聪, 等, 2024. 复合微生物肥对棉田土壤养分及根际细菌群落的影响[J/OL]. 作物杂志: 1-10.1-10 [2024-07-15]. http://kns.cnki.net/kcms/detail/11.1808.S.20240220.0946.003.html. |
LÜ B, DING L, GUO C, et al., 2024. Effect of compound microbial fertilizer on soil nutrients and inter-root bacterial communities in cotton fields[J/OL]. Crops: 1-10.1-10 [2024-07-15]. http://kns.cnki.net/kcms/detail/11.1808.S.20240220.0946.003.html. | |
[36] | 吕晶花, 李聪, 杨志东, 等, 2023a. 纳帕海高原湿地土壤微生物群落对土地利用方式改变的响应[J]. 土壤通报, 54(3): 682-694. |
LÜ J H, LI C, YANG Z D, et al., 2023. Responses of soil microbial communities to land use changes in the Napahai plateau wetlands[J]. Chinese Journal of Soil Science, 54(3): 682-694. | |
[37] | 吕晶花, 赵旭燕, 陆梅, 等, 2023b. 氮沉降下纳帕海草甸植被与土壤变化对微生物生物量碳氮的影响[J]. 应用生态学报, 34(6): 1525-1532. |
LÜ J H, ZHAO X Y, LU M, et al., 2023. Effects of vegetation and soil changes on microbial biomass carbon and nitrogen in the Napahai meadow under N deposition[J]. Journal of Applied Ecology, 34(6): 1525-1532. | |
[38] | 潘禹, 宋娅丽, 王克勤, 等, 2021. 模拟N沉降对滇中亚高山典型森林凋落物分解及土壤微生物的影响[J]. 林业科学研究, 34(3): 88-97. |
PAN Y, SONG Y L, WANG K Q, et al., 2021. Effects of simulated nitrogen deposition on litter decomposition and soil microorganisms of typical subalpine forests in central Yunnan, China[J]. Forestry Research, 34(3): 88-97. | |
[39] |
孙官发, 陆梅, 闪昇阳, 等, 2024. 短期氮沉降对纳帕海高寒退化疏花早熟禾草甸土壤呼吸干湿季变化的影响[J]. 应用生态学报, 35(2): 390-398.
DOI |
SUN G F, LU M, SHAN S Y, et al., 2024. Effect of short-term nitrogen deposition on dry-wet seasonal variation of soil respiration in degraded Poa pratensis alpine meadow of the Napahai, Yunnan, China[J]. Chinese Journal of Applied Ecology, 35(2): 390-398. | |
[40] |
孙建波, 畅文军, 李文彬, 等, 2022. 香蕉不同生育期根际微生物生物量及土壤酶活的变化研究[J]. 生态环境学报, 31(6): 1169-1174.
DOI |
SUN J B, CHANG W J, LI W B, et al., 2022. Dynamics of soil microbial biomass and enzyme activities in rhizosphere soil at different growing stages of banana[J]. Ecology and Environmental Sciences, 31(6): 1169-1174. | |
[41] | 童永尚, 张春平, 俞旸, 等, 2024. 多年生高寒栽培草地土壤微生物学特性对短期氮添加的响应[J/OL]. 环境科学, 1-13[2024-07-15]. https://doi.org/10.13227/j.hjkx.202312228. |
TONG Y S, ZNANG C P, YU Y, et al., 2024. Response of Microbiological Properties to Short-term Nitrogen Addition in Perennial Alpine Cultivated Grassland[J/OL]. Environmental Science, 1-13 [2024-07-15]. https://doi.org/10.13227/j.hjkx.202312228. | |
[42] | 图纳热, 红梅, 闫瑾, 等, 2023. 降水变化和氮沉降对荒漠草原土壤细菌群落结构及酶活性的影响[J]. 农业环境科学学报, 42(2): 403-413. |
TU N R, HONG M, YAN J, et al., 2023. Effects of precipitation change and nitrogen deposition on soil bacterial community structure and enzyme activities in desert steppe[J]. Journal of Agro-Environment Science, 42(2): 403-413. | |
[43] | 王长庭, 王根绪, 李香真, 等, 2017. 氮肥添加对高寒藏嵩草 (Kobresia tibetica) 沼泽化草甸和土壤微生物群落的影响[J]. 生态学报, 37(2): 405-415. |
WANG C T, WANG G X, LI X Z, et al., 2017. Effects of N addition on the plant and soil microbial community in alpine Kobresia tibetica meadow of Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 37(2): 405-415. | |
[44] | 王金双, 2018. 氮沉降背景下枯落物对松嫩草地微生物群落的作用[D]. 长春市: 东北师范大学: 1-54. |
WANG J S, 2018. Effects of nitrogen and litter input on microbial community in Songnen Grassland[D]. Changchun: Northeast Normal University: 1-54. | |
[45] |
王燚, 李文珊, 展鹏飞, 等, 2024. 若尔盖高原泥炭沼泽土壤微生物空间分布[J]. 应用生态学报, 35(6): 1705-1715.
DOI |
WANG Y, LI W S, ZHAN P F, et al., 2024. Spatial distribution of soil microorganisms in the Zoige Plateau peatland, Southwest China[J]. Chinese Journal of Applied Ecology, 35(6): 1705-1715.
DOI |
|
[46] |
吴林坤, 林向民, 林文雄, 2014. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 38(3): 298-310.
DOI |
WU L K, LIN X M, LIN W X, 2014. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 38(3): 298-310. | |
[47] | 姚继周, 2016. 水杉人工林细根生产和周转及对氮沉降的响应[D]. 南京: 南京林业大学: 1-51. |
YAO J Z, 2016. Fine root production and turnover and the response to nitrogen deposition in Metasequoia glyptostroboides plantation[D]. Nanjing: Nanjing Forestry University: 1-51. | |
[48] | 曾红丽, 白炜, 房佳辰, 等, 2022. 氮添加对青藏高原高寒沼泽草甸土壤细菌群落的影响[J]. 西北农业学报, 3(8): 1035-1045. |
ZENG H L, BAI W, FANG J C, et al., 2022. Effects of nitrogen addition on soil bacterial community in alpine marsh meadow of Qinghai-Tibet Plateau[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 3(8): 1035-1045. | |
[49] | 张昊, 姜娜, 樊林染, 等, 2024. 长期养分添加对贝加尔针茅草原土壤微生物群落的影响[J]. 生态学报, 44(3): 1130-1139. |
ZHANG H, JIANG N, FAN L R, et al., 2024. Effects of long-term nutrient addition on microbi ial community in soil of Stipa baicalensis steppe in the Inner Mongolia, China[J]. Journal of Ecology, 44(3): 1130-1139. | |
[50] | 张晓黎, 孙向阳, 安宝晟, 等, 2024. 拉萨河流域不同生态系统类型土壤微生物群落结构特征[J]. 生态学杂志, 43(6): 1728-1737. |
ZHANG X L, SUN X Y, AN B S, et al., 2024. Characterization of soil microbial community structure in different ecosystem types in the Lhasa River Basin[J]. Chinese Journal of Ecology, 43(6): 1728-1737. | |
[51] | 张紫薇, 陈召莹, 张甜娜, 等, 2022. 岗南水库沉积物好氧反硝化菌群落时空分布特征[J]. 环境科学, 43(1): 314-328. |
ZHANG Z W, CHEN Z Y, ZHANG T N, et al., 2022. Spatial and temporal distribution of aerobic denitrification bacterial community in sediments of Gangnan Reservoir[J]. Environmental Science, 43(1): 314-328. | |
[52] |
朱锦福, 黄瑞灵, 董志强, 等, 2022. 青海湖高寒湿地土壤细菌群落对氮添加的响应[J]. 生态环境学报, 31(6): 1101-1109.
DOI |
ZHU J F, HUANG R L, DONG Z Q, et al., 2022. Response of the soil bacterial community to nitrogen addition in alpine wetland of Qinghai Lake[J]. Ecology and Environmental Sciences, 31(6): 1101-1109. | |
[53] | 朱小梅, 邢锦城, 洪立洲, 等, 2024. 不同施氮处理下黑麦草翻压还田对滩涂盐渍土碳氮与细菌群落结构的影响[J/OL]. 浙江农业学报, 1-11 [2024-11-14]. http://kns.cnki.net/kcms/detail/33.1151.S.20241017.1102.006.html. |
ZHU X M, XING J C, HONG L Z, et al., 2024. Effects of overturning Lolium perenne under different nitrogen rates on carbon, nitrogen and bacterial community structure in saline soil of coastal area[J/OL]. Acta Agriculturae Zhejiangensis, 1-11 [2024-11-14]. http://kns.cnki.net/kcms/detail/33.1151.S.20241017.1102.006.html. | |
[54] | 周艳翔, 吕茂奎, 谢锦升, 等, 2013. 深层土壤有机碳的来源、特征与稳定性[J]. 亚热带资源与环境学报, 8(1): 48-55. |
ZHOU Y X, LÜ M K, XIE J S, et al., 2013. Sources, characteristics and stability of organic carbon in deep soil[J]. Journal of Subtropical Resources and Environment, 8(1): 48-55. | |
[55] |
宗宁, 段呈, 耿守保, 等, 2018. 增温施氮对高寒退化草甸生产力及生物量分配的影响[J]. 应用生态学报, 29(1): 59-67.
DOI |
ZONG N, DUAN C, GENG S B, et al., 2018. Effects of warming and nitrogen addition on community production and biomass allocation in an alpine meadow[J]. Chinese Journal of Applied Ecology, 29(1): 59-67.
DOI |
[1] | YUE Hangyu, GUO Chengjiu, SU Fangli, WEI Chao. Analysis of Rhizosphere Soil Microbial Community Structure and Diversity of Different Vegetation Types in Liaohe Estuary Wetland [J]. Ecology and Environment, 2025, 34(2): 222-232. |
[2] | LI Yanlin, CHEN Yangyang, YANG Shuangrong, LIU Jumei. Study on the Effects of Organic Acids in Plant Root Exudates on Soil Organic Carbon and Nitrogen Mineralization [J]. Ecology and Environment, 2024, 33(9): 1362-1371. |
[3] | ZHU Leyang, ZHANG Xizhe, TAO Jiang, WANG Xiu, HAN Yanying, YE Yanhui. The Effect of Nitrogen Addition on Soil Respiration in the Abies Georgei var. Smithii Forest of Sygera Mountains [J]. Ecology and Environment, 2024, 33(9): 1384-1396. |
[4] | ZHANG Jinglei, WANG Guoliang, WU Bo, JIA Chunlin, ZHANG Jinhong, ZHOU Yuan, MA Bing. The Effects of Alfalfa-Triticale Rotation on Soil Bacterial and Fungal Community Diversity and Co-occurrence Network in Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2024, 33(7): 1048-1062. |
[5] | LI Chengyang, LIANG Zhihui, LI Zhenming, CAI Min, XU Ruiyao, CHEN Xiuyu, DING Jiayin, XU Qiuyun, PENG Fei. Plant Community Characteristics and Soil Characteristics of Degraded Alpine Meadows in the Beilu River Basin of the Yangtze River Source Area [J]. Ecology and Environment, 2024, 33(7): 1063-1071. |
[6] | WANG Zihan, LÜ Shijie, WANG Zhongwu, LIU Hongmei. Effects of Grazing Intensity on Dominant Population and Species Diversity and Their Typical Relationships [J]. Ecology and Environment, 2024, 33(6): 869-876. |
[7] | GUAN Yuliang, GAN Xianhua, YIN Zuoyun, HUANG Yuhui, TAO Yuzhu, LI Kuan, ZHANG Weiqiang, DENG Caiqiong, ZENG Xiangyao, HUANG Fangfang. Distribution Pattern of Plant Diversity at Different Elevations in Nanling Nature Reserve [J]. Ecology and Environment, 2024, 33(6): 877-887. |
[8] | WANG Junwei, CHEN Yonghao, ZENG Zhefei, CHEN Mengyan, LA Qiong. Study on Species Diversity of Invasive Plant Datura stramonium Community in Lhasa, Tibet [J]. Ecology and Environment, 2024, 33(6): 900-907. |
[9] | JIANG Yunfeng, YAN Ting, LIU Junnan, MA Bingzeng, WANG Haimeng, DOU Xiaomeng. Responses of Soil Mesofauna in Agricultural Fields to the Frequency of Corn Stover Mulching in Northeastern China’s Black Soil Region [J]. Ecology and Environment, 2024, 33(5): 699-707. |
[10] | QING Caixia, CHEN Shengbin, DENG Jiewen, DENG Xingwei, LI Zhe, QIU Lu. The Effects of Habitat Amount, Habitat Quality and Meteorological Factors on the Species Diversity of Dung Beetles in Chengdu [J]. Ecology and Environment, 2024, 33(5): 708-719. |
[11] | HUANG Qian, ZHU Shiying, LI Tianshun, LI Mingyan, SUO Nancuo, PU Bu. Distribution Pattern of Soil Protozoa Community along Altitude and Its Correlation with Environmental Factors in Rating National Forest Park in Tibet, China [J]. Ecology and Environment, 2024, 33(4): 499-508. |
[12] | WEI Xixi, CHAO Xinyan, ZHENG Jingming, TANG Kexin, WAN Long, ZHOU Jinxing. Study on Species Diversity of Typical Plant Communities and Their Influencing Factors in the Eastern and Western Helan Mountains [J]. Ecology and Environment, 2024, 33(4): 520-530. |
[13] | CHEN Hongjie, LIAO Hongkai, LONG JIAN, ZHAO Yuxin, ZHAN Kaixian, RAN Taishan, YANG Guomei. Effects of Reductive Soil Disinfestation on Soil Protist Community [J]. Ecology and Environment, 2024, 33(4): 539-547. |
[14] | DING Hao, LI Changxin, DING Jing, LAN Hao. Genetic and Functional Diversity of N-damo Bacteria in Different Environments [J]. Ecology and Environment, 2024, 33(2): 202-211. |
[15] | SONG Jiangqin, YIN Yali, ZHAO Wen, LIU Yan, SUI Qiqi, HUO Jiuyan, ZHENG Wenxian, LI Shixiong. Characteristics of Spatial Differentiation of Soil Microbial Communities in Degraded Grassland on the “Black Soil Beaches” of Qinghai Plateau [J]. Ecology and Environment, 2024, 33(11): 1696-1707. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn