Ecology and Environment ›› 2024, Vol. 33 ›› Issue (4): 539-547.DOI: 10.16258/j.cnki.1674-5906.2024.04.005
• Research Article [Ecology] • Previous Articles Next Articles
CHEN Hongjie(), LIAO Hongkai*(
), LONG JIAN, ZHAO Yuxin, ZHAN Kaixian, RAN Taishan, YANG Guomei
Received:
2024-03-05
Online:
2024-04-18
Published:
2024-05-31
Contact:
LIAO Hongkai
陈弘杰(), 廖洪凯*(
), 龙健, 赵雨鑫, 湛凯翔, 冉泰山, 杨国梅
通讯作者:
廖洪凯
作者简介:
陈弘杰(1999年生),男,硕士研究生,研究方向为土壤环境。E-mail: 984208362@qq.com
基金资助:
CLC Number:
CHEN Hongjie, LIAO Hongkai, LONG JIAN, ZHAO Yuxin, ZHAN Kaixian, RAN Taishan, YANG Guomei. Effects of Reductive Soil Disinfestation on Soil Protist Community[J]. Ecology and Environment, 2024, 33(4): 539-547.
陈弘杰, 廖洪凯, 龙健, 赵雨鑫, 湛凯翔, 冉泰山, 杨国梅. 强还原土壤灭菌对土壤原生生物群落的影响[J]. 生态环境学报, 2024, 33(4): 539-547.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.04.005
自然风干天数/d | 处理 | pH | w(TC)/(g·kg-1) | w(AP)/(mg·kg-1) | w(NH4+-N)/(mg·kg-1) | w(NO3--N)/(mg·kg-1) |
---|---|---|---|---|---|---|
1 d | CK | 7.29±0.282b | 35.6±4.21a | 18.3±3.57a | 24.8±0.491c | 8.20±1.50a |
CS | 7.87±0.114a | 41.6±7.66a | 18.3±3.76a | 57.6±1.81a | 2.20±0.261a | |
SB | 6.84±0.221bc | 37.3±2.37a | 16.9±3.63a | 40.1±4.27b | 0.681±0.193a | |
SBCS | 6.70±0.141c | 41.4±1.93a | 17.7±2.55a | 35.9±3.95b | 5.17±0.143a | |
3 d | CK | 7.23±0.231ab | 34.3±2.25b | 20.9±2.96a | 25. 1±1.08c | 7.05±0.943a |
CS | 7.33±0.196a | 36.8±2.66b | 16.1±2.86ab | 53.1±0.364a | 1.11±0.131b | |
SB | 7.11±0.143ab | 47.6±5.36a | 10.9±1.36b | 39.4±4.23b | 1.35±0.412b | |
SBCS | 6.86±0.0412b | 39.9±0.372ab | 12.7±2.47b | 33.6±2.07b | 0.651±0.153b | |
7 d | CK | 6.86±0.469a | 32.9±1.36b | 23.3±2.99a | 23.6±2.23c | 6.14±0.464a |
CS | 6.88±0.316a | 37.5±3.30ab | 21. 3±2.35a | 51.7±5.46a | 0.198±0.0411b | |
SB | 7.28±0.266a | 43.3±2.01a | 21.7±4.23a | 56.3±1.71a | 1.25±0.278b | |
SBCS | 7.02±0.514a | 38.9±3.38ab | 20.3±4.10a | 41.6±4.01b | 0.261±0.0312b | |
21 d | CK | 7.16±0.232a | 36.0±1.86a | 23.5±9.70a | 28.5±2.20ab | 9.74±1.80b |
CS | 6.79±0.601a | 47.2±7.24a | 17.3±1.22a | 28.9±8.13ab | 18.9±3.47a | |
SB | 7.01±0.539a | 44.5±2.76a | 12.1±2.22a | 42.7±6.60a | 8.28±1.31b | |
SBCS | 7.19±0.528a | 46.9±10.8a | 12.7±2.38a | 23.7±1.23b | 6.82±2.12b |
Table 1 Changes in soil physicochemical properties under different RSD treatments
自然风干天数/d | 处理 | pH | w(TC)/(g·kg-1) | w(AP)/(mg·kg-1) | w(NH4+-N)/(mg·kg-1) | w(NO3--N)/(mg·kg-1) |
---|---|---|---|---|---|---|
1 d | CK | 7.29±0.282b | 35.6±4.21a | 18.3±3.57a | 24.8±0.491c | 8.20±1.50a |
CS | 7.87±0.114a | 41.6±7.66a | 18.3±3.76a | 57.6±1.81a | 2.20±0.261a | |
SB | 6.84±0.221bc | 37.3±2.37a | 16.9±3.63a | 40.1±4.27b | 0.681±0.193a | |
SBCS | 6.70±0.141c | 41.4±1.93a | 17.7±2.55a | 35.9±3.95b | 5.17±0.143a | |
3 d | CK | 7.23±0.231ab | 34.3±2.25b | 20.9±2.96a | 25. 1±1.08c | 7.05±0.943a |
CS | 7.33±0.196a | 36.8±2.66b | 16.1±2.86ab | 53.1±0.364a | 1.11±0.131b | |
SB | 7.11±0.143ab | 47.6±5.36a | 10.9±1.36b | 39.4±4.23b | 1.35±0.412b | |
SBCS | 6.86±0.0412b | 39.9±0.372ab | 12.7±2.47b | 33.6±2.07b | 0.651±0.153b | |
7 d | CK | 6.86±0.469a | 32.9±1.36b | 23.3±2.99a | 23.6±2.23c | 6.14±0.464a |
CS | 6.88±0.316a | 37.5±3.30ab | 21. 3±2.35a | 51.7±5.46a | 0.198±0.0411b | |
SB | 7.28±0.266a | 43.3±2.01a | 21.7±4.23a | 56.3±1.71a | 1.25±0.278b | |
SBCS | 7.02±0.514a | 38.9±3.38ab | 20.3±4.10a | 41.6±4.01b | 0.261±0.0312b | |
21 d | CK | 7.16±0.232a | 36.0±1.86a | 23.5±9.70a | 28.5±2.20ab | 9.74±1.80b |
CS | 6.79±0.601a | 47.2±7.24a | 17.3±1.22a | 28.9±8.13ab | 18.9±3.47a | |
SB | 7.01±0.539a | 44.5±2.76a | 12.1±2.22a | 42.7±6.60a | 8.28±1.31b | |
SBCS | 7.19±0.528a | 46.9±10.8a | 12.7±2.38a | 23.7±1.23b | 6.82±2.12b |
组别 | r | p值 |
---|---|---|
CK-CS | 0.536 | 0.0423 |
CK-SB | 0.565 | 0.0314 |
CK-SBCS | 0.576 | 0.0268 |
CS-SB | 0.380 | 0.0346 |
CS-SBCS | 0.318 | 0.0681 |
SB-SBCS | 0.343 | 0.0572 |
Table 2 Adonis intergroup difference analysis
组别 | r | p值 |
---|---|---|
CK-CS | 0.536 | 0.0423 |
CK-SB | 0.565 | 0.0314 |
CK-SBCS | 0.576 | 0.0268 |
CS-SB | 0.380 | 0.0346 |
CS-SBCS | 0.318 | 0.0681 |
SB-SBCS | 0.343 | 0.0572 |
Alpha多样性指数 | pH | 全碳 | 速效磷 | 铵态氮 | 硝态氮 |
---|---|---|---|---|---|
Shannon | 0.0881 | -0.395 | 0.398 | 0.245 | 0.0492 |
Simpson | 0.345 | -0.250 | 0.003 | 0.285 | -0.213 |
Chao1 | 0.412 | -0.762 | 0.870 | -0.0653 | -0.160 |
dominance | -0.855 | 0.824 | -0.367 | -0.0592 | 0.769 |
Table 3 Pearson correlation between Alpha diversity index of soil protist community and soil physicochemical properties
Alpha多样性指数 | pH | 全碳 | 速效磷 | 铵态氮 | 硝态氮 |
---|---|---|---|---|---|
Shannon | 0.0881 | -0.395 | 0.398 | 0.245 | 0.0492 |
Simpson | 0.345 | -0.250 | 0.003 | 0.285 | -0.213 |
Chao1 | 0.412 | -0.762 | 0.870 | -0.0653 | -0.160 |
dominance | -0.855 | 0.824 | -0.367 | -0.0592 | 0.769 |
功能类型 | pH | 全碳 | 速效磷 | 铵态氮 | 硝态氮 |
---|---|---|---|---|---|
捕食型 | 0.0641 | 0.502 | -0.964* | 0.0932 | -0.344 |
自养型 | -0.118 | -0.424 | 0.969* | -0.146 | 0.414 |
寄生型 | 0.221 | 0.259 | -0.956* | 0.246 | -0.542 |
Table 4 Pearson correlation between functional composition of soil protist community and soil physical and soil physicochemical properties
功能类型 | pH | 全碳 | 速效磷 | 铵态氮 | 硝态氮 |
---|---|---|---|---|---|
捕食型 | 0.0641 | 0.502 | -0.964* | 0.0932 | -0.344 |
自养型 | -0.118 | -0.424 | 0.969* | -0.146 | 0.414 |
寄生型 | 0.221 | 0.259 | -0.956* | 0.246 | -0.542 |
[1] | ACOSTA M D, LYNN D H, 2004. Soil ciliate species richness and abundance associated with the rhizosphere of different subtropical plant species[J]. The Journal of Eukaryotic Microbiology, 51(5): 582-588. |
[2] |
ADL S M, BASS D, LANE C E, et al., 2019. Revisions to the classification, nomenclature, and diversity of eukaryotes[J]. Journal of Eukaryotic Microbiology, 66(1): 4-119.
DOI PMID |
[3] | ANTONELLI M, WETZEL C E, ECTOR L, et al., 2017. On the potential for terrestrial diatom communities and diatom indices to identify anthropic disturbance in soils[J]. Ecological Indicators, 75: 73-81. |
[4] |
ATSUKO U, NOBUO K, KATSUJI U, 2018. Role of anaerobic bacteria in biological soil disinfestation for elimination of soil-borne plant pathogens in agriculture[J]. Applied Microbiology and Biotechnology, 102: 6309-6318.
DOI PMID |
[5] | BERNASCONI S M, BAUDER A, BOURDON B, et al., 2011. Chemical and biological gradients along the damma glacier soil chronosequence, Switzerland[J]. Vadose Zone Journal, 10(3): 867-883. |
[6] |
BLOK W, LAMERS J, TERMORSHUIZEN A, et al., 2000. Disease control and pest management control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping[J]. Phytopathology, 90(3): 253-259.
DOI PMID |
[7] |
BOKULICH N A, SUBRAMANIAN S, FAITH J J, et al., 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 10(1): 57-59.
DOI PMID |
[8] |
BONKOWSKI M, 2004. Protozoa and plant growth: The microbial loop in soil revisited[J]. New Phytologist, 162(3): 617-631.
DOI PMID |
[9] |
CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al., 2016. DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 13(7): 581-583.
DOI PMID |
[10] |
CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al., 2010. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 7(5): 335-336.
DOI PMID |
[11] | CHANDARANA K A, AMARESAN N, 2022. Soil protists: An untapped microbial resource of agriculture and environmental importance[J]. Pedosphere, 32(1): 184-197. |
[12] | CHEN Y L, YANG K J, YE Y, et al., 2021. Reductive soil disinfestation attenuates antibiotic resistance genes in greenhouse vegetable soils[J]. Journal of Hazardous Materials, 420(1): 126632. |
[13] | CLARHOLM M, 1985. Possible roles for roots, bacteria, protozoa and fungi in supplying nitrogen to plants[M]. Ecologcal interactions in soil, 4: 355-365. |
[14] |
BICKEL D, 2013. Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions[J]. Statistical Applications in Genetics and Molecular Biology, 12(4): 529-543.
DOI PMID |
[15] | DU L T, HUANG B J, DU N S, et al., 2017. Effects of garlic/cucumber relay intercropping on soil enzyme activities and the microbial environment in continuous cropping[J]. HortScience, 52(1): 78-84. |
[16] | DUPONT A C, GRIFFITHS R I, BELL T, et al., 2016. Differences in soil micro‐eukaryotic communities over soil pH gradients are strongly driven by parasites and saprotrophs[J]. Environmental Microbiology, 18(6): 2010-2024. |
[17] | GEISEN S, BANDOW C, RÖMBKE J, et al., 2014. Soil water availability strongly alters the community composition of soil protists[J]. Pedobiologia, 57(4-6): 205-213. |
[18] | GIOIA F D, OZORES-HAMPTON M, ZHAO X, et al., 2017. Anaerobic soil disinfestation impact on soil nutrients dynamics and nitrous oxide emissions in fresh-market tomato[J]. Agriculture, Ecosystems & Environment, 240: 194-205. |
[19] | GRIFFITHS B S, RÖMBKE J, SCHMELZ R M, et al., 2016. Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function[J]. Ecological Indicators, 69: 213-223. |
[20] |
GROSSMANN L, JENSEN M, HEIDER D, et al., 2016. Protistan community analysis: Key findings of a large-scale molecular sampling[J]. Isme Journal, 10: 2269-79.
DOI PMID |
[21] |
GUO S, XIONG W, HANG X N, et al., 2021. Protists as main indicators and determinants of plant performance[J]. Microbiome, 9(1): 64.
DOI PMID |
[22] |
HANG L, PAN F J, HAN X Z, et al., 2020. A comprehensive analysis of the response of the fungal community structure to long-term continuous cropping in three typical upland crops[J]. Journal of Integrative Agriculture, 19(3): 866-880.
DOI |
[23] | HAWXHURST C J, MICCIULLA J L, BRIDGES C M, et al., 2023. Soil protists can actively redistribute beneficial bacteria along medicago truncatula roots[J]. Applied and environmental microbiology, 83(3): e01819-22. |
[24] | HUANG X Q, CUI H L, YANG L, et al., 2017. The microbial changes during the biological control of cucumber damping-off disease using biocontrol agents and reductive soil disinfestation[J]. BioControl, 62(1): 97-109. |
[25] | HUANG X Q, LIU L L, WEN T, et al., 2015. Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f.sp. cubense infected soil during and after reductive soil disinfestation[J]. Microbiological Research, 181(1): 33-42. |
[26] | HUANG X Q, LIU L L, WEN T, et al., 2016. Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation[J]. Applied Microbiology & Biotechnology, 100(12): 5581-5593. |
[27] | HÜNNINGHAUS M, KOLLER R, KRAMER S, et al., 2017. Changes in bacterial community composition and soil respiration indicate rapid successions of protist grazers during mineralization of maize crop residues[J]. Pedobiologia, 62: 1-8. |
[28] | KRASHEVSKA V, SANDMANN D, MARAUN M, et al., 2014. Moderate changes in nutrient input alter tropical microbial and protist communities and belowground linkages[J]. The ISME Journal, 8(5): 1126-1134. |
[29] | LI W H, LIU Q Z, 2019. Changes in fungal community and diversity in strawberry rhizosphere soil after 12 years in the greenhouse[J]. Journal of Integrative Agriculture, 18(5): 677-687. |
[30] | LI X, CHEN J, ZHANG Q Z, et al., 2021. Microbial community responses to multiple soil disinfestation change drivers[J]. Applied Microbiology and Biotechnology, 105(18): 6993-7007. |
[31] | CHEN Y D, DU J F, LI Y, et al., 2022. Evolutions and managements of soil microbial community structure drove by continuous cropping[J]. Frontiers in Microbiology, 13: 839494. |
[32] |
MAGOČ T, SALZBERG S L, 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 27(21): 2957-2963.
DOI PMID |
[33] | MARTIN B D, ERNEST S, 2012. Current usage of symbiosis and associated terminology[J]. International Journal of Biology, 5(1): 32-45. |
[34] |
MENG T Z, REN G D, WANG G F, et al., 2019. Impacts on soil microbial characteristics and their restorability with different soil disinfestation approaches in intensively cropped greenhouse soils[J]. Applied Microbiology and Biotechnology, 103(15): 6369-6383.
DOI PMID |
[35] |
NORIAKI M, YUSO K, SEIJI U, et al., 2013. Development of biological soil disinfestations in Japan[J]. Applied Microbiology and Biotechnology, 97(9): 3801-3809.
DOI PMID |
[36] | NAAMALA J, SMITH D L, 2020. Relevance of plant growth promoting microorganisms and their derived compounds, in the face of climate change[J]. Agronomy, 10(8): 1179. |
[37] | NGUYEN B A T, CHEN Q L, YAN Z Z, et al., 2021. Distinct factors drive the diversity and composition of protistan consumers and phototrophs in natural soil ecosystems[J]. Soil Biology and Biochemistry, 160: 108317. |
[38] | OLIVERIO A M, GEISEN S, DELGADO-BAQUERIZO M, et al., 2020. The global-scale distributions of soil protists and their contributions to belowground systems[J]. Science Advances, 6(4): eaax8787. |
[39] |
PEITSCH W K, HOFMANN I, BULKESCHER J, et al., 2005. Drebrin, an actin-binding, cell-type characteristic protein: induction and localization in epithelial skin tumors and cultured keratinocytes[J]. Journal of Investigative Dermatology, 125(4): 761-774.
PMID |
[40] | REGIN R, METTE V, EKELUND F, 2012. Interactions between bacteria, protozoa and nematodes in soil[J]. Acta Protozoologica, 51(3): 223-235. |
[41] | ROSENBERG K, BERTAUX J, KROME K, et al., 2009. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana[J]. The ISME Journal, 3(6): 675-684. |
[42] | SCHIPPERS B A, BAKKER A W, BAKKER P A H M, 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices[J]. Annual Review of Phytopathology, 25(1): 339-358. |
[43] | SCHMIDT O, DYCKMANS J, SCHRADER S, 2016. Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates[J]. Biology Letters, 12(1): 20150646. |
[44] |
SCHULZ G, SCHNEIDER D, BRINKMANN N, et al., 2019. Changes in trophic groups of protists with conversion of rainforest into rubber and oil palm plantations[J]. Frontiers in Microbiology, 10: 240.
DOI PMID |
[45] | SEPPEY C V W, SINGER D, DUMACK K, et al., 2017. Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling[J]. Soil Biology and Biochemistry, 112: 68-76. |
[46] | SIMONE G, ISABEL C, ALEXIS C, et al., 2023. Toward a common set of functional traits for soil protists[J]. Soil Biology and Biochemistry, 187: 109207. |
[47] | STEFAN G, CASPER W Q, 2020. Microbial-faunal interactions in the rhizosphere[J]. Rhizosphere Biology: Interactions Between Microbes and Plants, 12: 237-253. |
[48] |
STEFAN G, D A E M, SINA A, et al., 2018. Soil protists: A fertile frontier in soil biology research[J]. FEMS Microbiology Reviews, 42(3): 293-323.
DOI PMID |
[49] | VAULOT D, GEISEN S, MAHÉ F, et al., 2021. pr2-primers: an 18S rRNA primer database for protists[J] Molecular Ecology Resources, 22(1): 168-179. |
[50] | WEN T, HUANG X Q, ZHANG J B, et al., 2015. Effects of water regime, crop residues, and application rates on control of Fusarium oxysporum f. sp. Cubense[J]. Journal of Environmental Sciences, 31(1): 30-37. |
[51] | WU X, RONG L, SAI G, et al., 2019. Microbial amendments alter protist communities within the soil microbiome[J]. Soil Biology and Biochemistry, 135: 379-382. |
[52] | YANG R Y, WEINER J, SHI X J, et al., 2021. Effect of reductive soil disinfestation on the chemical and microbial characteristics of rhizosphere soils associated with Salvia miltiorrhiza production in three cropping systems[J] Applied Soil Ecology, 160(103865): 1-9. |
[53] | ZENG J R, LIU J Z, LU C H, et al., 2020. Intercropping with turmeric or ginger reduce the continuous cropping obstacles that affect Pogostemon cablin (patchouli)[J]. Frontiers in Microbiology, 11(1): 579719. |
[54] | ZHANG B, LI X Z, WANG F Q, et al., 2016. Assaying the potential autotoxins and microbial community associated with Rehmannia glutinosa replant problems based on its ‘autotoxic circle’[J]. Plant and Soil, 407(1-2): 307-322. |
[55] | ZHANG S Y, ZHANG H F, LIU H M, et al., 2022. Fertilization drives distinct biotic and abiotic factors in regulating functional groups of protists in a 5-year fertilization system[J]. Frontiers in Microbiology, 13: 1036362. |
[56] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 中国农业出版社. |
BAO S D, 2000. Agricultural soil analysis[M]. Beijing: China Agriculture Press. | |
[57] | 蔡祖聪, 张金波, 黄新琦, 等, 2015. 强还原土壤灭菌防控作物土传病的应用研究[J]. 土壤学报, 52(3): 469-476. |
CAI Z C, ZHANG J B, HUANG X Q, et al., 2015. Application of reductive soil disinfestation to suppress soil-borne pathogens[J]. Acta Pedologica Sinica, 52(3): 469-476. | |
[58] | 郭晨曦, 周桂芳, 陈碧华, 等, 2020. 强还原土壤灭菌法 (RSD) 对大棚连续三茬蔬菜生长、产量和病虫害的影响[J]. 河南农业科学, 49(11): 98-109. |
GUO C X, ZHOU G F, CHEN B H, et al., 2020. Effect of reductive soil disinfestation on growth, yield, diseases and insect pests of three continuous cultivation vegetables in plastic greenhouse[J]. Journal of Henan Agricultural Sciences, 49(11): 98-109. | |
[59] | 郭佩瑶, 刘美玲, 曾玉华, 2023. 设施土壤连作障碍及其防控措施研究进展[J]. 西北园艺(果树), 2(1): 1-5. |
GUO P Y, LIU M L, ZENG Y H, 2023. Research progress on continuous cropping obstacles and their prevention and control measures in facility soil[J]. Northwest Horticulture, 2(1): 1-5. | |
[60] |
刘亮亮, 周开胜, 黄新琦, 等, 2021. 低温茬口空闲期土壤强还原消毒对西瓜枯萎病的影响[J]. 应用生态学报, 32(8): 2967-2974.
DOI |
LIU L L, ZHOU K S, HUANG X Q, et al., 2021. Effects of reductive soil disinfestation during Iow-temperature stubble free period on the control of watermelon Fusarium wilt[J]. Chinese Journal of Applied Ecology, 32(8): 2967-2974. | |
[61] | 王光飞, 马艳, 安霞, 等, 2016. 不同有机物料强还原处理对土壤性状影响与防控辣椒疫病效果[J]. 中国土壤与肥料 (5): 124-129. |
WANG G F, MA Y, AN X, et al., 2016. Effect of different intensively reductive treatments by organic materials on soil character and disease control of phytophthora blight of chilli pepper[J]. Soil and Fertilizer Sciences in China (5): 124-129. | |
[62] | 韦中, 宋宇琦, 熊武, 等, 2020. 土壤原生动物--研究方法及其在土传病害防控中的作用[J]. 土壤学报, 58(1): 14-22. |
WEI Z, SONG Y Q, XIONG W, et al., 2020. Soil protozoa: research methods and roles in the biocontrol of soil-borne diseases[J]. Acta Pedologica Sinica, 58(1): 14-22. | |
[63] |
闫宁, 战宇, 苗馨月, 等, 2022. 强还原土壤灭菌处理对人参连作土壤细菌群落结构及土壤酶活的影响[J]. 中国农业科技导报, 24(6): 133-144.
DOI |
YAN N, ZHAN Y, MIAO X Y, et al., 2022. Effects of reductive soil disinfestation on soil bacterial community structure and soil enzyme activity in continuous cropping of ginseng[J] China Journal of Agricultural Science and Technology, 24(6): 133-144. | |
[64] | 叶伟芬, 陆晓林, 姚燕来, 等, 2023. 强还原处理对青菜连作土壤理化性质及产量的影响[J]. 浙江农业科学, 64(2): 355-358. |
YE W F, LU X L, YAO Y L, et al., 2023. Effects of reductive soil disinfestation on physicochemical properties of continuous cropped soil and yield of Brassica chinensis L.[J]. Journal of Zhejiang Agricultural Sciences, 64(2): 355-358. | |
[65] | 赵军, 张晶清, 林于蓝, 等, 2022. 强还原土壤处理驱动的微生物群落稳定性与功能的关联性[J/OL]. 土壤学报,[2024-04-26]. http://kns.cnki.net/kcms/detail/32.1119.P.20221010.1447.002.html. |
ZHAO J, ZHANG J Q, LIN Y L, et al., 2022. Correlation between the stability and function of soil microbial community driven by reductive soil disinfestation[J/OL]. Acta Pedologica Sinica,[2024-04-26]. http://kns.cnki.net/kcms/detail/32.1119.P.20221010.1447.002.html. |
[1] | HUANG Qian, ZHU Shiying, LI Tianshun, LI Mingyan, SUO Nancuo, PU Bu. Distribution Pattern of Soil Protozoa Community along Altitude and Its Correlation with Environmental Factors in Rating National Forest Park in Tibet, China [J]. Ecology and Environment, 2024, 33(4): 499-508. |
[2] | WEI Xixi, CHAO Xinyan, ZHENG Jingming, TANG Kexin, WAN Long, ZHOU Jinxing. Study on Species Diversity of Typical Plant Communities and Their Influencing Factors in the Eastern and Western Helan Mountains [J]. Ecology and Environment, 2024, 33(4): 520-530. |
[3] | DING Hao, LI Changxin, DING Jing, LAN Hao. Genetic and Functional Diversity of N-damo Bacteria in Different Environments [J]. Ecology and Environment, 2024, 33(2): 202-211. |
[4] | LI Qing, ZHANG Mengyue, YU Mingqiao, LI Xiaoxuan, CHANG Ming, CHEN Libin, DING Sen. Community Structure and Influencing Factors of Macroinvertebrate in Urban Rivers of Dongguan [J]. Ecology and Environment, 2024, 33(1): 101-110. |
[5] | LI Xun, ZHANG Yan, SONG Simeng, ZHOU Yang, ZHANG Jian. Bacterial Community Characteristics during the Mixed Decomposition of Litter from Pinus massoniana and Indigenous Broad-leaved Tree Species in Southwestern China [J]. Ecology and Environment, 2024, 33(1): 12-27. |
[6] | SONG Simeng, LIN Dongmei, ZHOU Hengyu, LUO Zongzhi, ZHANG Lili, YI Chao, LIN Hui, LIN Xingsheng, LIU Bin, SU Dewei, ZHENG Dan, YU Shikui, LIN Zhanxi. Effects of Planting Cenchrus fungigraminus on Plant Species Diversity and Soil Physicochemical Properties in the Ulan Buh Desert [J]. Ecology and Environment, 2023, 32(9): 1595-1605. |
[7] | GU Meiying, TANG Guangmu, ZHANG Yunshu, HUANG Jian, ZHANG Zhidong, ZHANG Lijuan, ZHU Jing, TANG Qiyong, CHU Min, XU Wanli. Effects of Organic Fertilizers and Biochar on Microorganism Community Characteristics in Saline-alkali Sandy Soil of Xinjiang [J]. Ecology and Environment, 2023, 32(8): 1392-1404. |
[8] | LIANG Chuan, YANG Yanfang, YU Shanshan, ZHOU Li, ZHANG Jingwei, ZHANG Xiujuan. Differences of Microbial Biomass and Community Structure Characteristics in Sediments under Net-pen and Pond Fish Farming [J]. Ecology and Environment, 2023, 32(8): 1487-1495. |
[9] | ZHAO Xuli, YAO Yutian, CHEN Chao, HUANG Xinqi, MENG Tianzhu. Response of Soil pH and SO42- Content to Remediation by Reductive Soil Disinfestation in Degraded Greenhouse Vegetable Soil [J]. Ecology and Environment, 2023, 32(7): 1218-1225. |
[10] | LI Haipeng, HUANG Yuehua, SUN Xiaodong, CAO Qimin, FU Fangxing, SUN Chuhan. Correlation Analysis of the Occurrence of the Tomato Bacterial Wilt and Different Types of Texture of Latosols and Its Bacterial Community in Cropland in Hainan [J]. Ecology and Environment, 2023, 32(6): 1062-1069. |
[11] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[12] | JIANG Yongwei, DING Zhenjun, YUAN Junbin, ZHANG Zheng, LI Yang, WEN Qingchun, WANG Yeyao, JIN Xiaowei. Study on Benthic Macroinvertebrates Community Structure and Water Quality Evaluation in Main Rivers of Liaoning Province [J]. Ecology and Environment, 2023, 32(5): 969-979. |
[13] | LI Yang, HOU Zhiyong, CHEN Wei, YU Xiaoying, XIE Yonghong, HUANG Xin, TAN Peiyang, LI Jicheng, LI Shanglin, YANG Hui. Plant Diversity and Systematic Composition of Alpine Wetlands in Dawei Mountain [J]. Ecology and Environment, 2023, 32(4): 643-650. |
[14] | LI Shanjia, WANG Xingmin, LIU Haifeng, SUN Mengge, LEI Yuxin. Diversity of Desert Plants in Hexi Corridor and Its Response to Environmental Factors [J]. Ecology and Environment, 2023, 32(3): 429-438. |
[15] | ZHAO Man, ZHANG Xiaoman, YANG Mingjie. Effects of Forest Fire Disturbance on Species Diversity and Soil Physicochemical Properties of Quercus variabilis and Quercus wutaishansea Mixed Forests [J]. Ecology and Environment, 2023, 32(10): 1732-1740. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn