Ecology and Environment ›› 2023, Vol. 32 ›› Issue (7): 1263-1274.DOI: 10.16258/j.cnki.1674-5906.2023.07.009
• Research Articles • Previous Articles Next Articles
TONG Yongjie1(), WANG Yi1, HUA Yumei1,*(
), ZHAO Jianwei1, LIU Guanglong1, JIANG Yongcan2
Received:
2023-06-16
Online:
2023-07-18
Published:
2023-09-27
Contact:
HUA Yumei
童永杰1(), 汪毅1, 华玉妹1,*(
), 赵建伟1, 刘广龙1, 蒋永参2
通讯作者:
华玉妹
作者简介:
童永杰(1999年生),男,硕士研究生,研究方向为水环境污染研究。E-mail: 1114797026@qq.com
基金资助:
CLC Number:
TONG Yongjie, WANG Yi, HUA Yumei, ZHAO Jianwei, LIU Guanglong, JIANG Yongcan. Transformation of Phosphorus in Sediments Driven by Nitrate and Iron in the Presence of Organic Electron Donor[J]. Ecology and Environment, 2023, 32(7): 1263-1274.
童永杰, 汪毅, 华玉妹, 赵建伟, 刘广龙, 蒋永参. 有机电子供体影响下硝酸盐和铁对磷转化的驱动作用[J]. 生态环境学报, 2023, 32(7): 1263-1274.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.07.009
步骤 | 提取 | 提取目标相 |
---|---|---|
Ⅰ | 10 mL 1 mol·L-1 Na2CO3; pH值4.5, 24 h | 碳酸盐铁 (Fecarb), 碳酸盐铁结合态磷 (P-Fecarb) |
Ⅱ | 10 mL 1 mol·L-1盐酸羟胺 (25%乙酸), 48 h | 易还原铁氧化物 (Feox1), 易还原铁氧化物铁结合态磷 (P-Feox1) |
Ⅲ | 10 mL 50 g·L-1连二亚硫酸钠 (0.35 mol·L-1乙酸/0.2 mol·L-1柠檬酸三钠) 2 h | 可还原铁氧化物 (Feox2), 可还原铁结合态磷 (P-Feox2) |
Ⅳ | 10 mL 0.2 mol·L-1草酸/0.17 mol·L-1草酸铵 (pH值3.26 h) | 磁铁矿 (Femag), 磁铁矿结合态磷 (P-Femag) |
Ⅴ | 5 mL 12 mol·L-1盐酸, 煮沸1 min | 片状硅酸盐铁 (Feprs), 片状硅酸盐铁结合态磷 (P-Feprs) |
Table 1 The iron bound phosphorus simultaneous extraction process of sediments
步骤 | 提取 | 提取目标相 |
---|---|---|
Ⅰ | 10 mL 1 mol·L-1 Na2CO3; pH值4.5, 24 h | 碳酸盐铁 (Fecarb), 碳酸盐铁结合态磷 (P-Fecarb) |
Ⅱ | 10 mL 1 mol·L-1盐酸羟胺 (25%乙酸), 48 h | 易还原铁氧化物 (Feox1), 易还原铁氧化物铁结合态磷 (P-Feox1) |
Ⅲ | 10 mL 50 g·L-1连二亚硫酸钠 (0.35 mol·L-1乙酸/0.2 mol·L-1柠檬酸三钠) 2 h | 可还原铁氧化物 (Feox2), 可还原铁结合态磷 (P-Feox2) |
Ⅳ | 10 mL 0.2 mol·L-1草酸/0.17 mol·L-1草酸铵 (pH值3.26 h) | 磁铁矿 (Femag), 磁铁矿结合态磷 (P-Femag) |
Ⅴ | 5 mL 12 mol·L-1盐酸, 煮沸1 min | 片状硅酸盐铁 (Feprs), 片状硅酸盐铁结合态磷 (P-Feprs) |
t/d | N组TP质量分数 | N-A组TP质量分数 |
---|---|---|
0 | 2.27±0.03 | 2.26±0.01 |
0.5 | 2.19±0.03 | 2.13±0.02 |
1 | 2.21±0.03 | 2.14±0.02 |
2 | 2.20±0.06 | 1.99±0.20 |
6 | 2.07±0.23 | 2.02±0.07 |
10 | 2.12±0.06 | 2.01±0.01 |
15 | 2.12±0.07 | 2.00±0.01 |
Table 2 Change in sediment TP concentrations mg·g-1
t/d | N组TP质量分数 | N-A组TP质量分数 |
---|---|---|
0 | 2.27±0.03 | 2.26±0.01 |
0.5 | 2.19±0.03 | 2.13±0.02 |
1 | 2.21±0.03 | 2.14±0.02 |
2 | 2.20±0.06 | 1.99±0.20 |
6 | 2.07±0.23 | 2.02±0.07 |
10 | 2.12±0.06 | 2.01±0.01 |
15 | 2.12±0.07 | 2.00±0.01 |
[1] |
BONGOUA-DEVISME A J, CEBRON A, KASSIN K E, et al., 2013. Microbial communities involved in Fe reduction and mobility during soil organic matter (SOM) mineralization in two contrasted paddy soils[J]. Geomicrobiology Journal, 30(4): 347-361.
DOI URL |
[2] |
BRYCE C, BLACKWELL N, SCHMIDT C, et al., 2018. Microbial anaerobic Fe(II) oxidation - ecology, mechanisms and environmental implications: Microbial anaerobic Fe(II) oxidation[J]. Environmental Microbiology, 20(10): 3462-3483.
DOI PMID |
[3] |
CORZO A, BERGEIJK S A V, GARCIA-ROBLEDO E, 2009. Effects of green macroalgal blooms on intertidal sediments: net metabolism and carbon and nitrogen contents[J]. Marine Ecology Progress Series, 380: 81-93.
DOI URL |
[4] | DAI J W, HE S B, ZHOU W L, et al., 2018. Integrated ecological floating bed treating wastewater treatment plant effluents: effects of influent nitrogen forms and sediments[J]. Environmental Science & Pollution Research, 25(19): 18793-18801. |
[5] | DANIEL P, JIRI J, DAGMARA S, et al., 2018. Iron and nitrogen cycling, bacterioplankton community composition and mineral transformations involving phosphorus stabilisation in the ferruginous hypolimnion of a post-mining lake[J]. Environmental science. Processes & impacts, 20(10): 1414-1426. |
[6] |
GIBNEY B P, NUSSLEIN K, 2007. Arsenic sequestration by nitrate respiring microbial communities in urban lake sediments[J]. Chemosphere, 70(2): 329-336.
PMID |
[7] |
HAYAKAWA A, HATAKEYAMA M, ASANO R, et al., 2013. Nitrate reduction coupled with pyrite oxidation in the surface sediments of a sulfide-rich ecosystem[J]. Journal of Geophysical Research Biogeosciences, 118(2): 639-649.
DOI URL |
[8] | HEINRICH L, ROTHE M, BRAUN B, et al., 2020. Transformation of redox-sensitive to redox-stable iron-bound phosphorus in anoxic lake sediments under laboratory conditions[J]. Water Research, 89: 116609. |
[9] |
HENDERSON R K, BAKER A, PARSONS S A, et al., 2008. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms[J]. Water Research, 42(13): 3435-3445.
DOI PMID |
[10] |
HEPBURN L E, BUTLER I B, BOYCE A, et al., 2020. The use of operationally-defined sequential Fe extraction methods for mineralogical applications: A cautionary tale from Mssbauer spectroscopy[J]. Chemical Geology, 543: 119584.
DOI URL |
[11] | HOWARTH R, CHAN F, CONLEY D J, et al., 2011. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems[J]. Frontiers in Ecology & the Environment, 9(1): 18-26. |
[12] |
KANAPARTHI D, CONRAD R, 2015. Role of humic substances in promoting autotrophic growth in nitrate-dependent iron-oxidizing bacteria[J]. Systematic and Applied Microbiology, 38(3): 184-188.
DOI PMID |
[13] |
KANG M X, PENG S, TIAN Y M, et al., 2018. Effects of dissolved oxygen and nutrient loading on phosphorus fluxes at the sediment-water interface in the Hai River Estuary, China[J]. Marine Pollution Bulletin, 130: 132-139.
DOI PMID |
[14] |
KLUEGLEIN N, KAPPLER A, 2013. Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1-questioning the existence of enzymatic Fe(II) oxidation[J]. Geobiology, 11(2): 180-190.
DOI URL |
[15] |
KUYPERS M M, MARCHANT H K, KARTAL B, 2018. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 16(5): 263.
DOI PMID |
[16] |
LARESE-CASANOVA P, HADERLEIN S B, KAPPLER A, 2010. Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: Effect of pH, bicarbonate, phosphate, and humic acids[J]. Geochimica Et Cosmochimica Acta, 74(13): 3721-3734.
DOI URL |
[17] |
LI H X, LI D P, ZHANG L, et al., 2019. Fundamental aspects of the corrosion of N80 steel in a formation water system under high CO2 partial pressure at 100 degrees C[J]. RSC advances, 9(21): 11641-11648.
DOI URL |
[18] |
LI S J, LIN Z G, LIU M, et al., 2020. Effect of ferric chloride on phosphorus immobilization and speciation in Dianchi Lake sediments[J]. Ecotoxicology and Environmental Safety, 197: 110637.
DOI URL |
[19] |
LI Y Y, CHAPMAN S J, NICOL G W, et al., 2018. Nitrification and nitrifiers in acidic soils[J]. Soil Biology and Biochemistry, 116: 290-301.
DOI URL |
[20] | MA H, ZHAO B Y, LI L, et al., 2019. Fractionation trends of phosphorus associating with iron fractions: An explanation by the simultaneous extraction procedure[J]. Soil & Tillage Research, 190: 41-49. |
[21] |
MARCEL M M, MARCHANT H, KARTAL B, 2018. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 16(5): 263.
DOI PMID |
[22] |
MEJIA J, RODEN E E, GINDER-VOGEL M, 2016. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling[J]. Environmental Science & Technology, 50(7): 3580-3588.
DOI URL |
[23] |
MELTON E D, SWANNER E D, BEHRENS S, et al., 2014. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle[J]. Nature Reviews Microbiology, 12(12): 797-808.
DOI PMID |
[24] | MOLINUEVO B, GARCIA M C, KARAKASHEV D, et al., 2009. Anammox for ammonia removal from pig manure effluents: Effect of organic matter content on process performance[J]. Bioresource Technology, 99(7): 2171-2175. |
[25] |
ORIHEL D M, BAULCH H M, CASSON N J, et al., 2017. Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis[J]. Canadian Journal of Fisheries and Aquatic Sciences, 74(12): 2005-2029.
DOI URL |
[26] |
PAIPA C, MATEO M, GODOY I, et al., 2005. Comparative study of alternative methods for the simultaneous determination of Fe3+ and Fe2+ in leaching solutions and in acid mine drainages[J]. Minerals Engineering, 18(11): 1116-1119.
DOI URL |
[27] |
POULTON S W, CANFIELD D E, 2005. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates[J]. Chemical Geology, 214(3-4): 209-221.
DOI URL |
[28] | ROH Y, ZHANG C L, VALI H, et al., 2003. Biogeochemical and environmental factors in Fe biomineralization: Magnetite and siderite formation[J]. Clays & Clay Minerals, 51(1): 83-95. |
[29] |
RUBAN V, LÓPEZ-SÁNCHEZ J F, PARDO P, et al., 1999. Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment[J]. Journal of Environmental Monitoring Jem, 1(1): 51-6.
DOI URL |
[30] |
RUTTENBERG K C, 1992. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology and Oceanography, 37(7): 1460-1482.
DOI URL |
[31] |
SCHÄDLER S, BURKHARDT C, HEGLER F, et al., 2009. Formation of Cell-Iron-Mineral Aggregates by Phototrophic and Nitrate-Reducing Anaerobic Fe(II)-Oxidizing Bacteria[J]. Geomicrobiology Journal, 26(2): 93-103.
DOI URL |
[32] |
SMITH M S, TIEDJE J M, 1979. Phases of denitrification following oxygen depletion in soil[J]. Soil Biology and Biochemistry, 11(3): 261-267.
DOI URL |
[33] |
WANG J F, CHEN J A, DING S M, et al., 2015. Effects of temperature on phosphorus release in sediments of Hongfeng Lake, southwest China: an experimental study using diffusive gradients in thin-films (DGT) technique[J]. Environmental Earth Sciences, 74(7): 5885-5894.
DOI URL |
[34] |
WEBER K A, HEDRICK D B, PEACOCK A D, et al., 2009. Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002[J]. Appl Microbiol Biotechnol, 83(3): 555-565.
DOI PMID |
[35] |
XIONG Y J, GUILBAUD R, PEACOCK C L, et al., 2019. Phosphorus cycling in Lake Cadagno, Switzerland: A low sulfate euxinic ocean analogue[J]. Geochimica et Cosmochimica Acta, 251: 116-135.
DOI URL |
[36] |
YUAN H Z, TAI Z Q, LI Q, et al., 2020. In-situ, high-resolution evidence from water-sediment interface for significant role of iron bound phosphorus in eutrophic lake[J]. Science of The Total Environment, 706: 136040.
DOI URL |
[37] |
ZHOU Y, OEHMEN A, LIM M, et al., 2011. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J]. Water Research, 45(15): 4672-4682.
DOI PMID |
[38] | 李奔运, 匡帅, 王臻宇, 等, 2020. 东巢湖沉积物水界面氮,磷,氧迁移特征及意义[J]. 湖泊科学, 32(3): 688-700. |
LI B Y, KUANG S, WANG Z Y, et al., 2020. Migration characteristics and significance of nitrogen, phosphorus, and oxygen at the sediment water interface of Dongchao Lake[J]. Lake Science, 32(3): 688-700. | |
[39] | 李子阳, 陆东亮, 华天予, 等, 2020. 蓝藻发酵液中氮磷回收及其作为反硝化碳源研究[J]. 环境化学, 39(12): 3562-3573. |
LI Z Y, LU D L, HUA T Y, et al., 2020. Recovery of nitrogen and phosphorus from blue-green algae fermentation broth and its use as a denitrification carbon source[J]. Environmental Chemistry, 39(12): 3562-3573. | |
[40] | 李敏, 韦鹤平, 王光谦, 等, 2004. 长江口、杭州湾水域沉积物中磷的化学形态分布特征[J]. 海洋学报, 26(2): 125-131. |
LI M, WEI H P, WANG G Q, et al., 2004. Environmental science distribution characteristics of chemical forms of phosphorus in sediments of Yangtze Estuary and Hangzhou Bay Waters[J]. Journal of Oceanography, 26(2): 125-131. | |
[41] | 王睿喆, 王沛芳, 任凌霄, 等, 2015. 营养盐输入对太湖水体中磷形态转化及藻类生长的影响[J]. 环境科学, 36(4): 1301-1308. |
WANG R Z, WANG P F, REN L X, et al., 2015. Effects of nutrient input on phosphorus speciation transformation and algae growth in the Taihu Lake Lake[J]. Environmental Science, 36(4): 1301-1308. | |
[42] | 余芬芳, 2013. 外源硫酸盐对武汉墨水湖沉积物营养盐和重金属的作用[D]. 武汉: 华中农业大学. |
YU F F, 2013. Effects of exogenous sulfates on nutrients and heavy metals in sediments of Wuhan Ink Lake[D]. Wuhan: Huazhong Agricultural University | |
[43] | 杨文斌, 唐皓, 韩超, 等, 2016. 太湖沉积物铁形态分布特征及磷铁相关性分析[J]. 中国环境科学, 36(4): 1145-1156. |
YANG W B, TANG H, HAN C, et al., 2016. Distribution characteristics of iron forms and correlation analysis of phosphorus and iron in the Taihu Lake Lake sediments[J]. China Environmental Science, 36(4): 1145-1156. |
[1] | WANG Jiayi, SUN Tingting, SHA Runyu, CHEN Tinghong, XING Ran, QIN Boqiang, SHI Wenqing. Study on the Synergic Effect of Algae Salvage on Pollution Control and Carbon Emission Reduction in Eutrophic Lakes [J]. Ecology and Environment, 2023, 32(6): 1108-1114. |
[2] | WANG Chao, YANG Qiannan, ZHANG Chi, LIU Tongxu, ZHANG Xialong, CHEN Jing, LIU Kexue. The Characteristics of Soil Phosphorus Fractions and Their Availability under Different Land Use Types in Danxia Mountain [J]. Ecology and Environment, 2023, 32(5): 889-897. |
[3] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[4] | WANG Tiezheng, QU Xinyue, LIU Chunxiang, LI Youzhi. Spatial and Temporal Changes in Water Quality in the Dongjiang Lake and Their Relationships with Land Use in the Watershed [J]. Ecology and Environment, 2023, 32(4): 722-732. |
[5] | ZHANG Guangyi, ZHANG Jiatao, WANG Xiaowei. Phosphorus Speciation Distribution and Release in Lake Sediment Microbial Fuel Cells [J]. Ecology and Environment, 2023, 32(3): 590-598. |
[6] | LANG Man, XU Liwen, ZHU Kaiwen, WU Hongjin, ZHANG Jiayin, LI Ping. Effects of Carbon and Nitrogen Addition on Nitrogen Transformations and Greenhouse Gas Emissions from Black Cropland Soil [J]. Ecology and Environment, 2023, 32(2): 235-244. |
[7] | FAN Huilin, ZHANG Jiamin, LI Huan, WANG Yanling. Study on the Profile Storage Pattern and Loss Risk of Phosphorus in Sloping Paddy Red Soil [J]. Ecology and Environment, 2023, 32(2): 283-291. |
[8] | YANG Rui, SUN Weimin, LI Yongbin, GUO Lifang, JIAO Nianyuan. Isolation, Identification and Plant Growth Promotion of Rhizosphere Phosphorus-dissolving Bacteria from Tailings Pioneer Plants [J]. Ecology and Environment, 2023, 32(1): 166-174. |
[9] | HUANG Weijia, LIU Chun, LIU Yue, HUANG Bin, LI Dingqiang, YUAN Zaijian. Soil Ecological Stoichiometry and Its Influencing Factors at Different Elevations in Nanling Mountains [J]. Ecology and Environment, 2023, 32(1): 80-89. |
[10] | LIU Ning, LIU Yang, XU Jingping, SONG Huiping, FENG Zhengjun, CHENG Fangqin. Effects of Arbuscular Mycorrhizal Fungi on Plant Growth and Water Purification in Constructed Wetlands [J]. Ecology and Environment, 2022, 31(7): 1434-1441. |
[11] | HE Bin, HU Maochuan. Evaluation of Agriculture Non-point Pollution Load and Its Characteristics in All Districts and Counties of Guangdong [J]. Ecology and Environment, 2022, 31(4): 771-776. |
[12] | SU Yan, QUAN Yanhong, HUAN Ziyan, YAO Jia, SU Xiaojuan. Effect of phosphate-modified Biochar on Remediation of Pb- and Zn-polluted Farmlands Around A Pb/Zn Mine in Yunnan Province, China [J]. Ecology and Environment, 2022, 31(3): 593-602. |
[13] | CUI Jian, DU Yi, DING Chengcheng, LI Jinfeng, GAO Fangshu, CHANG Yajun, ZHANG Jibiao, LIU Xiaojing, YAO Dongrui. Phosphorus Fraction and Abatement of Lakes in China: A Review [J]. Ecology and Environment, 2022, 31(3): 621-633. |
[14] | SHENG Jifeng, LI Yao, YU MeiJia, HAN Yanying, YE Yanhui. Effects of Nitrogen and Phosphorus An Addition on Soil Nutrients and Activity of Related Enzymes in Alpine Grassland [J]. Ecology and Environment, 2022, 31(12): 2302-2309. |
[15] | XU Dongxue, LI Xing, WANG Yong, GOU Mangmang. Spatial Distribution Characteristics and the Response of Different Forms of Nitrogen, Phosphorus and Chlorophyll-a in Lake Ulansuhai during the Frozen Period [J]. Ecology and Environment, 2021, 30(9): 1855-1864. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn