Ecology and Environment ›› 2023, Vol. 32 ›› Issue (2): 235-244.DOI: 10.16258/j.cnki.1674-5906.2023.02.003
• Research Articles • Previous Articles Next Articles
LANG Man1,2(), XU Liwen2, ZHU Kaiwen3, WU Hongjin3, ZHANG Jiayin3, LI Ping1,2,*(
)
Received:
2022-12-16
Online:
2023-02-18
Published:
2023-05-11
Contact:
LI Ping
郎漫1,2(), 许力文2, 朱恺文3, 吴泓瑾3, 张佳音3, 李平1,2,*(
)
通讯作者:
李平
作者简介:
郎漫(1982年生),女(满族),副教授,博士,主要从事土壤氮循环及其生态环境效应研究。E-mail: mlang@nuist.edu.cn
基金资助:
CLC Number:
LANG Man, XU Liwen, ZHU Kaiwen, WU Hongjin, ZHANG Jiayin, LI Ping. Effects of Carbon and Nitrogen Addition on Nitrogen Transformations and Greenhouse Gas Emissions from Black Cropland Soil[J]. Ecology and Environment, 2023, 32(2): 235-244.
郎漫, 许力文, 朱恺文, 吴泓瑾, 张佳音, 李平. 碳氮施加对农田黑土氮素转化和温室气体排放的影响[J]. 生态环境学报, 2023, 32(2): 235-244.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.02.003
回归公式 | r | |
---|---|---|
NH4+-N2O | y=20.35x+413.46 | 0.701** |
NO3--N2O | y= -0.523x+1033.9 | 0.055 |
Table 1 The correlations of NH4+, NO3- contents in soil and N2O emissions
回归公式 | r | |
---|---|---|
NH4+-N2O | y=20.35x+413.46 | 0.701** |
NO3--N2O | y= -0.523x+1033.9 | 0.055 |
[1] |
BAKKEN L R, BERGAUST L, LIU B B, et al., 2012. Regulation of denitrification at the cellular level: A clue to the understanding of N2O emissions from soils[J]. Philosophical Transactions of the Royal Society Biological Sciences, 367(1593): 1226-1234.
DOI URL |
[2] |
CHEN R R, SENBAYRAM M, BLAGODATSKY S, et al., 2014. Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology, 20(7): 2356-2367.
DOI PMID |
[3] |
CHEN Z X, TU X S, MENG H, et al., 2021. Microbial process-oriented understanding of stimulation of soil N2O emission following the input of organic materials[J]. Environmental Pollution, 284: 117176.
DOI URL |
[4] | CHU G Y, YU D S, WANG X X, et al., 2021. Comparison of nitrite accumulation performance and microbial community structure in endogenous partial denitrification process with acetate and glucose served as carbon source[J]. Bioresource Technology, 320(Part B): 124405. |
[5] |
DALY E J, HERNANDEZ-RAMIREZ G, 2020. Sources and priming of soil N2O and CO2 production: Nitrogen and simulated exudate additions[J]. Soil Biology and Biochemistry, 149(7): 107942.
DOI URL |
[6] |
DUNHAM-CHEATHAM S M, ZHAO Q, OBRIST D, et al., 2020. Unexpected mechanism for glucose-primed soil organic carbon mineralization under an anaerobic-aerobic transition[J]. Geoderma, 376(15): 114535.
DOI URL |
[7] |
ENWALL K, NYBERGA K, BERTILSSONB S, et al., 2007. Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil[J]. Soil Biology and Biochemistry, 39(1): 106-115.
DOI URL |
[8] |
HUYGENS D, RÜTTING T, BOECKX P, et al., 2007. Soil nitrogen conservation mechanisms in a pristine south Chilean Nothofagus forest ecosystem[J]. Soil Biology and Biochemistry, 39(10): 2448-2458.
DOI URL |
[9] | IPCC, 2007. Climate change 2007:Synthesis report. Fourth assessment report of the first, second and third report of the IPCC[R]. Geneva, Switzerland. |
[10] | IPCC, 2014. Climate change 2014:Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change[R]. Geneva. Switzerland. |
[11] |
KEILUWEIT M, BOUGOURE J J, 2015. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change, 5(6): 588-595.
DOI |
[12] |
KHALIL K, MARY B, RENAULT P, 2004. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration[J]. Soil Biology and Biochemistry, 36(4): 687-699.
DOI URL |
[13] |
LAN T, HAN Y, ROELCKE M, et al., 2013. Processes leading to N2O and NO emissions from two different Chinese soils under different soil moisture contents[J]. Plant and Soil, 371(1-2): 611-627.
DOI URL |
[14] |
LEPTIN A, WHITEHEAD D, ANDERSON C R, et al., 2021. Increased soil nitrogen supply enhances root-derived available soil carbon leading to reduced potential nitrification activity[J]. Applied Soil Ecology, 159: 103842.
DOI URL |
[15] | LIN D R, WU S R, LI Z Y, 2010. Impact assessment of climate change on forestry development in china[J]. Chinese Forestry Science and Technology, 9(3): 1-9. |
[16] |
MAAG M, VINTHER F P, 1996. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures[J]. Applied Soil Ecology, 4(1): 5-14.
DOI URL |
[17] |
MASON-JONES K, SCHMÜCKER N, KUZYAKOV Y, 2018. Contrasting effects of organic and mineral nitrogen challenge the N-Mining Hypothesis for soil organic matter priming[J]. Soil Biology and Biochemistry, 124: 38-46.
DOI URL |
[18] |
SCHLEUSNER P, LAMMIRATO C, TIERLING J, et al., 2018. Primed N2O emission from native soil nitrogen: A 15N-tracing laboratory experiment[J]. Journal of Plant Nutrition and Soil Science, 181(4): 621-627.
DOI URL |
[19] |
SONG X T, JU X T, TOPP C F E, et al., 2019. Oxygen regulates nitrous oxide production directly in agricultural soils[J]. Environmental Science and Technology, 53(21): 12539-12547.
DOI PMID |
[20] |
YAMASAKI A, TATENO R, SHIBATA H, 2011. Effects of carbon and nitrogen amendment on soil carbon and nitrogen mineralization in volcanic immature soil in southern kyushu, Japan[J]. Journal of Forest Research, 16(5): 414-423.
DOI URL |
[21] |
YANG L Q, ZHU G D, LIU R, 2020. How nitrification-related N2O is associated with soil ammonia oxidizers in two contrasting soils in China?[J] Science of the Total Environment, 770(9): 143212.
DOI URL |
[22] |
ZHANG J J, PENG C H, ZHU Q, et al., 2016. Temperature sensitivity of soil carbon dioxide and nitrous oxide emissions in mountain forest and meadow ecosystems in China[J]. Atmospheric Environment, 142: 340-350.
DOI URL |
[23] |
ZHU T B, ZHANG J B, CAI Z C, 2011. The contribution of nitrogen transformation processes to total N2O emissions from soils used for intensive vegetable cultivation[J]. Plant and Soil, 343(1-2): 313-327.
DOI URL |
[24] | ZOU W X, LANG M, ZHANG L, et al., 2021. Ammonia-oxiding bacteria rather than ammonia-oxidizing archaea dominate nitrification in a nitrogen-fertilized calcareous soil[J]. Scicence of the Total Environment, 811: 151402. |
[25] | 蔡祖聪, MOSI A R, 1999. 土壤水分状况对CH4氧化, N2O和CO2排放的影响[J]. 土壤, 31(6): 289-294. |
CAI Z C, MOSI A R, 1999. Effect of soil moisture on CH4 oxidation, emissions of N2O and CO2[J]. Soils, 31(6): 289-294. | |
[26] | 高涵, 肖礼, 牛丹, 等, 2019. 宁南山区退耕还林还草对土壤氮素组成及其转化酶活的影响[J]. 环境科学, 40(8): 3825-3832. |
GAO H, XIAO L, NIU D, et al., 2019. Effects of converting farmland into forest and grassland on soil nitrogen component and conversion enzyme activity in the mountainous area of southern Ningxia[J]. Environmental Science, 40(8): 3825-3832. | |
[27] | 高洁, 朱思佳, 高人, 等, 2016. 有机碳源对森林土壤真菌/细菌活性产生的N2O通量的影响[J]. 亚热带资源与环境学报, 11(4): 29-36. |
GAO J, ZHU S J, GAO R, et al., 2016. Effects of exogenous organic carbons on N2O emissions attributable to forest soil fungal/bacterial activities[J]. Journal of Subtropical Resources and Environment, 11(4): 29-36. | |
[28] | 高琳, 潘志华, 杨书运, 等, 2016. 碳源和巨大芽孢杆菌施加对土壤微生物环境及N2O、CH4排放的影响[J]. 中国农业气象, 37(6): 645-653. |
GAO L, PAN Z H, YANG S Y, et al., 2016. Effects of carbon source and bacillus megaterium on soil microbial environment and N2O, CH4 emission[J]. Chinese Journal of Agrometeorology, 37(6): 645-653. | |
[29] | 贾俊仙, 李忠佩, 车玉萍, 2011. 施加葡萄糖对不同肥力黑土氮素转化的影响[J]. 土壤学报, 48(1): 207-211. |
JIA J X, LI Z P, CHE Y P, 2011. Effects of glucose addition on nitrogen transformation in black soils different in organic carbon content[J]. Acta Pedologica Sinica, 48(1): 207-211. | |
[30] |
焦亚鹏, 齐鹏, 王晓娇, 等, 2020. 施氮量对农田土壤有机氮组分及酶活性的影响[J]. 中国农业科学, 53(12): 2423-2434.
DOI |
JIAO Y P, QI P, WANG X J, et al., 2020. Effects of different nitrogen application rates on soil organic nitrogen components and enzyme activities in farmland[J]. Scientia Agricultura Sinica, 53(12): 2423-2434.
DOI |
|
[31] | 李海波, 韩晓增, 王风, 等, 2008. 不同土地利用下黑土密度分组中碳、氮的分配变化[J]. 土壤学报, 45(1): 113-119. |
LI HB, HAN X Z, WANG F, et al., 2008. Distribution of soil organic carbon and nitrogen in density fractions on black soil as affected by land use[J]. Acta Pedologica Sinica, 45(1): 113-119. | |
[32] | 李平, 郎漫, 李煜姗, 等, 2015. 不同施肥处理对黑土硝化作用和矿化作用的影响[J]. 农业环境科学学报, 34(7): 1326-1332. |
LI P, LANG M, LI Y S, et al., 2015. Effects of different fertilization on nitrification and mineralization in black soil[J]. Journal of Aro-Environment Science, 34(7): 1326-1332. | |
[33] | 李青山, 王德权, 杜传印, 等, 2020. 外源碳施加对植烟土壤氮素转化及N2O排放的影响[J]. 中国烟草科学, 41(4): 13-19. |
LI Q S, WANG D Q, DU C Y, et al., 2020. Effects of exogenous carbon sources on nitrogen transformation and N2O emission in tobacco-planting soil[J]. Chinese Tobacco Science, 41(4): 13-19. | |
[34] | 栗方亮, 李忠佩, 刘明, 等, 2012. 氮素浓度和水分对水稻土硝化作用和微生物特性的影响[J]. 中国生态农业学报, 20(9): 1113-1118. |
LI F L, LI Z P, LIU M, et al., 2012. Effects of different concentrations of nitrogen and soil moistures on paddy soil nitrification and microbial characteristics[J]. Chinese Journal of Eco-Agriculture, 20(9): 1113-1118.
DOI URL |
|
[35] | 吕玉, 周龙, 龙光强, 等, 2016. 不同氮水平下间作对玉米土壤硝化势和氨氧化微生物数量的影响[J]. 环境科学, 37(8): 3229-3236. |
LÜ Y, ZHOU L, LONG G Q, et al., 2016. Effect of different nitrogen rates on the nitrification potential and abundance of ammonia-oxidizer in intercropping maize soils[J]. Environmental Science, 37(8): 3229-3236. | |
[36] | 马启翔, 李伟, 潘开文, 等, 2013. 持续碳源施加对油松和连香树林地土壤氮转化的影响[J]. 应用与环境生物学报, 19(3): 426-433. |
MA Q X, LI W, PAN K W, et al., 2013. Effect of continuous glucose addition on soil N transformation of the Pinus tabulaeformis and Cercidiphyllum japonicum plantations[J]. Chinese Journal of Applied and Environmental Biology, 19(3): 426-433.
DOI URL |
|
[37] | 马舒坦, 颜晓元, 2019. 甲酸盐和葡萄糖对两种土壤N2O排放的刺激作用[J]. 农业环境科学学报, 38(1): 235-242. |
MA S T, YAN X Y, 2019. Effect of formate and glucose organic carbon on N2O emission from two soils[J]. Journal of Aro-Environment Science, 38(1): 235-242. | |
[38] | 钱琛, 2008. 亚热带红壤的硝化作用及其对NO3--N淋溶和土水酸化的影响[D]. 南京: 中国科学院南京土壤研究所. |
QIAN C, 2008. Nitrification of subtropical red soil and its influences on nitrate leaching, soil and water acidification[D]. Nanjing: Institute of Soil Science, Chinese Academy of Sciences. | |
[39] | 田亚男, 张水清, 林杉, 等, 2015. 外加碳氮对不同有机碳土壤N2O和CO2排放的影响[J]. 农业环境科学学报, 34(12): 2410-2417. |
TIAN Y N, ZHANG S Q, LIN S, et al., 2015. Influence of soluble carbon and nitrogen additions on N2O and CO2 emissions from two soils with different organic carbon content[J]. Journal of Aro-Environment Science, 34(12): 2410-2417. | |
[40] | 王风, 陈思, 杨厚花, 等, 2017. 葡萄糖施加对室温和冻结过程土壤N2O排放特征影响[J]. 生态科学, 36(3): 31-35. |
WANG F, CHEN S, YANG H H, et al., 2017. Effect of glucose addition on N2O emission from three types of cultivated soils under ambient and freezing temperature[J]. Ecological Science, 36(3): 31-35. | |
[41] | 王琳, 周晓丽, 马银丽, 等, 2016. 铵态氮源和碳源对土壤N2O, CO2释放的影响[J]. 农业资源与环境学报, 33(1): 23-28. |
WANG L, ZHOU X L, MA Y L, et al., 2016. Effect of ammonium nitrogen source and carbon source on the CO2 and N2O emissions of soil[J]. Journal of Agricultural Resources and Environment, 33(1): 23-28. | |
[42] | 王晓维, 徐健程, 龙昌智, 等, 2018. 施氮量和土壤含水量对黑麦草还田红壤氮素矿化的影响[J]. 植物营养与肥料学报, 24(2): 365-374. |
WANG X W, XU J C, LONG C Z, et al., 2018. Effect of nitrogen rates and soil water contents on soil nitrogen mineralization under ryegrass returning into red soil[J]. Journal of Plant Nutrition and Fertilizers, 24(2): 365-374. | |
[43] | 徐鹏, 邬磊, 胡金丽, 等, 2017. 施加葡萄糖、乙酸、草酸对红壤旱地土壤氮素矿化及反硝化的影响[J]. 环境科学学报, 37(12): 4740-4746. |
XU P, WU L, HU J L, et al., 2017. Effects of glucose, acetic acid and oxalic acid additions on nitrogen mineralizaiton and denitrification in red upland soil[J]. Acta Scientiae Circumstantiae, 37(12): 4740-4746. | |
[44] | 杨程, 刘秋香, 2016. 活性碳源对蔬菜地土壤硝态氮及氮氧化物气体的影响[J]. 江苏农业科学, 44(2): 378-381. |
YANG C, LIU Q Z, 2016. Effects of activated carbon sources on nitrate and nitrogen oxides in vegetable soil[J]. Jiangsu Agricultural Sciences, 44(2): 378-381. | |
[45] | 张乐, 何红波, 章建新, 等, 2008. 不同用量葡萄糖对土壤氮素转化的影响[J]. 土壤通报, 39(4): 775-778. |
ZHANG L, HE H B, ZHANG J X, et al., 2008. Effect of glucose addition with different amount on extraneous nitrogen transformation in soil[J]. Chinese Journal of Soil Science, 39(4): 775-778. | |
[46] | 张丽君, 陈锦亮, 李巍, 等, 2018. 添加葡萄糖对果园土壤微生物CO2释放量的影响[J]. 福建农业科技, 49(4): 52-54. |
ZHANG L J, CHEN J L, LI W, et al., 2018. Effects of glucose addition on CO2 release from soil microbes in orchard[J]. Fujian Agricultural Science and Technology, 49(4): 52-54. | |
[47] | 张丽敏, 徐明岗, 娄翼来, 等, 2015. 长期有机无机肥配施增强黄壤性水稻土有机氮的物理保护作用[J]. 植物营养与肥料学报, 21(6): 1481-1486. |
ZHANG L M, XU M G, LOU Y L, et al., 2015. Combined application of chemical and organic fertilizers long-term increase physical protection of organic nitrogen in yellow paddy soil[J]. Journal of Plant Nutrition and Fertilizer, 21(6): 1481-1486. | |
[48] | 周晓丽, 王琳, 张艺磊, 等, 2016. 硝态氮源及碳源有效性对土壤N2O和CO2排放的影响[J]. 农业资源与环境学报, 33(2): 170-175. |
ZHOU X L, WANG L, ZHANG Y L, et al., 2016. Effect of the availability of nitrate nitrogen and carbon source on N2O and CO2 emission from soil[J]. Journal of Agricultural Resources and Environment, 33(2): 170-175. | |
[49] |
朱春权, 韦翠珍, 曹小闯, 等, 2020. 外加碳源和氮源对酸化水稻土温室气体释放的影响[J]. 中国稻米, 26(6): 40-45.
DOI |
ZHU C Q, WEI C Z, CAO X C, et al., 2020. Effects of carbon and nitrogen resources addition on greenhouse gas emission in acidified paddy soils[J]. China Rice, 26(6): 40-45. | |
[50] | 朱霞, 韩晓增, 乔云发, 等, 2009. 外加可溶性碳,氮对不同热量带土壤N2O排放的影响[J]. 农业环境科学学报, 28(12): 2637-2644. |
ZHU X, HAN X Z, QIAO Y F, et al., 2009. Influence of soluble carbon and nitrogen on N2O emission from different thermal zones soil[J]. Journal of Agro-Environment Science, 28(12): 2637-2644. |
[1] | YANG Kai, YANG Jingrui, CAO Peipei, LÜ Chunhua, SUN Wenjuan, YU Lingfei, DENG Xi. Dynamic Response of Rice Plant Height, Tillering and SPAD under Elevated CO2 Concentration and Their Simulation [J]. Ecology and Environment, 2023, 32(5): 933-942. |
[2] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[3] | WANG Xinyu, GAO Dengzhou, LIU Bolin, WANG Bin, ZHENG Yanling, LI Xiaofei, HOU Lijun. The Tidal-cycle Variation and Influencing Factors of Dark Carbon Fixation Process in the Yangtze Estuary [J]. Ecology and Environment, 2023, 32(4): 733-743. |
[4] | TANG Haiming, SHI Lihong, WEN Li, CHENG Kaikai, LI Chao, LONG Zedong, XIAO Zhiwu, LI Weiyan, GUO Yong. Effects of Different Long-term Fertilizer Managements on Rhizosphere Soil Nitrogen in the Double-cropping Rice Field [J]. Ecology and Environment, 2023, 32(3): 492-499. |
[5] | FENG Yongxia, SHANG He, CAO Jixin, NI Xiuya, CHEN Zhan. Interactive Effects of Elevated CO2 and Nitrogen Fertilization on Physiological Characteristics of Schima superba Seedings [J]. Ecology and Environment, 2022, 31(9): 1773-1782. |
[6] | DENG Tianle, XIE Liyong, ZHANG Fengzhe, ZHAO Hongliang, JIANG Yutong. Competition for Growth Space between Barnyard Grass and Rice under Elevated Atmospheric CO2 Concentration [J]. Ecology and Environment, 2022, 31(8): 1566-1572. |
[7] | GONG Lingxuan, WANG Lili, ZHAO Jianning, LIU Hongmei, YANG Dianlin, ZHANG Guilong. Effects of Different Cover Crop Patterns on Soil Physicochemical Properties and Organic Carbon Mineralization in Tea Gardens [J]. Ecology and Environment, 2022, 31(6): 1141-1150. |
[8] | FENG Yiqing, HAO Likai, GUO Yuan, XU Fei, XU Heng. Spatio-temporal Evolution Characteristics of Microbiome in Acid Mine Drainage and Microbial-mineral Interaction Mechanism [J]. Ecology and Environment, 2022, 31(5): 1032-1046. |
[9] | ZHANG Han, TANG Changyuan, XUAN Yingxue, JIANG Tao, HUANG Pinyi, YANG Qiu, CAO Yingjie. The Regular Pattern and Influencing Factors of CO2 and CH4 Fluxes from Mangrove Soil [J]. Ecology and Environment, 2022, 31(5): 939-948. |
[10] | LI Chengwei, LIU Zhangyong, GONG Songling, YANG Wei, LI Shaoqiu, ZHU Bo. Effects of Changing Rice Cropping Patterns on CH4 and N2O Emissions from Paddy Fields [J]. Ecology and Environment, 2022, 31(5): 961-968. |
[11] | LIU Hongmei, HAI Xiang, AN Kerui, ZHANG Haifang, WANH Hui, ZHANG Yanjun, WANG Lili, ZHANG Guilong, YANG Dianlin. Effects of Different Fertilization Regimes on Community Structure Diversity of CO2-assimilating Bacteria in Maize Field of Fluvo-aquic Soil in North China [J]. Ecology and Environment, 2022, 31(4): 715-722. |
[12] | LI Mengli, XU Moxin, CHEN Yongshan, YE Lili, JIANG Jinping. Effects of Different Amounts of Calcium Carbonate on the Mineralization of Straw Organic Carbon in Calcareous Soil [J]. Ecology and Environment, 2022, 31(10): 2002-2009. |
[13] | ZHANG Kai, WANG Liwei, GAO Xining, HE Minghui. Effects of Nitrogen Management on the Potential of N2O Emission Reduction and Yield Increase in Potato Field under Different Precipitation Patterns Based on DNDC Model [J]. Ecology and Environment, 2021, 30(8): 1672-1682. |
[14] | ZOU Chenyi, DING Hong, WANG Yasa, ZHANG Yushu, YU Juhua, ZHENG Xiangzhou. Effect of Straw on Urea Nitrogen Transformation in Soil [J]. Ecology and Environment, 2021, 30(6): 1213-1219. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn