Ecology and Environment ›› 2023, Vol. 32 ›› Issue (1): 47-55.DOI: 10.16258/j.cnki.1674-5906.2023.01.006
• Research Articles • Previous Articles Next Articles
LI Weiwen1(), HUANG Jinquan1,2,3,*(
), QI Yujie1, LIU Xiaolan1, LIU Jigen2,3, MAO Zhichao1, GAO Xiufang1
Received:
2022-08-02
Online:
2023-01-18
Published:
2023-04-06
Contact:
HUANG Jinquan
李威闻1(), 黄金权1,2,3,*(
), 齐瑜洁1, 刘小岚1, 刘纪根2,3, 毛治超1, 高绣纺1
通讯作者:
黄金权
作者简介:
李威闻(1996年生),女,硕士研究生,研究方向为土壤侵蚀与碳循环。E-mail: 13080128997@163.com
基金资助:
CLC Number:
LI Weiwen, HUANG Jinquan, QI Yujie, LIU Xiaolan, LIU Jigen, MAO Zhichao, GAO Xiufang. Meta-analysis of Soil Microbial Biomass Carbon Content and Its Influencing Factors under Soil Erosion[J]. Ecology and Environment, 2023, 32(1): 47-55.
李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.01.006
土壤类型 | 土壤容重 | 土地利用方式 | 水力侵蚀类型区 | 年均降雨量 | 年均温度 |
---|---|---|---|---|---|
紫色土 | ≥1.3 (高容重) | 坡耕地 | 西南土石山区 | 1000-2000 mm | ≥20 ℃ |
黑土 | <1.3 (低容重) | 草地 | 东北黑土区 | 500-1000 mm | 10-20 ℃ |
黄土 | 农田 | 南方红壤丘陵区 | ≤500 mm | 5-10 ℃ | |
红壤 | 林地 | 西北黄土高原区 | <5 ℃ |
Table1 Data grouping
土壤类型 | 土壤容重 | 土地利用方式 | 水力侵蚀类型区 | 年均降雨量 | 年均温度 |
---|---|---|---|---|---|
紫色土 | ≥1.3 (高容重) | 坡耕地 | 西南土石山区 | 1000-2000 mm | ≥20 ℃ |
黑土 | <1.3 (低容重) | 草地 | 东北黑土区 | 500-1000 mm | 10-20 ℃ |
黄土 | 农田 | 南方红壤丘陵区 | ≤500 mm | 5-10 ℃ | |
红壤 | 林地 | 西北黄土高原区 | <5 ℃ |
[1] |
ACOSTA-MARTÍNEZ V, MIKHA M M, VIGIL M F, 2007. Microbial communities and enzyme activities in soils under alternative crop rotations compared to wheat-fallow for the Central Great Plains[J]. Applied Soil Ecology, 37(1-2): 41-52.
DOI URL |
[2] |
BERGSTROM D W, MONREAL C M, KING D J, 1998. Sensitivity of soil enzyme activities to conservation practices[J]. Soil Science Society of America, 62(5): 1286-1295.
DOI URL |
[3] |
CHEN X Y, HUANG Y H, ZHAO Y, et al., 2015. Comparison of loess and purple rill erosions measured with volume replacement method[J]. Journal of Hydrology, 530: 476-483.
DOI URL |
[4] |
CHU H Y, GROGAN P, 2009. Soil microbial biomass, nutrient availability and nitrogen mineralization potential among vegetation-types in a low arctic tundra landscape[J]. Plant and Soil, 329(1): 411-420.
DOI URL |
[5] |
DOMISCH T, FINER L, LEHTO T, et al., 2002. Effect of soil temperature on nutrient allocation and mycorrhizas in scots pine seedlings[J]. Plant and Soil, 239(2): 173-185.
DOI URL |
[6] |
FANG X M, WANG Q L, ZHOU W M, et al., 2014. Land use effects on soil organic carbon, microbial biomass and microbial activity in Changbai Mountains of northeast China[J]. Chinese Geographical Science, 24(3): 297-306.
DOI URL |
[7] |
GUO W, LI Z W, SHEN W P, et al., 2012. Effects of soil and water conservation and its interactions with soil properties on soil productivity[J]. Journal of Central South University, 19(8): 2279-2285.
DOI URL |
[8] |
HEDGES L V, GUREVITCH J, CURTIS P S, 1999. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 80(4): 1150-1156.
DOI URL |
[9] |
HERAS M D L, 2009. Development of soil physical structure and biological functionality in mining spoils affected by soil erosion in a Mediterranean-Continental environment[J]. Geoderma, 149(3-4): 249-256.
DOI URL |
[10] |
HOU S, XIN M X, WANG L, et al., 2014. The effects of erosion on the microbial populations and enzyme activity in black soil of northeastern China[J]. Acta Ecologica Sinica, 34(6): 295-301.
DOI URL |
[11] |
HUANG J Q, LI Z W, ZENG G M, et al., 2013. Microbial responses to simulated water erosion in relation to organic carbon dynamics on a hilly cropland in subtropical China[J]. Ecological Engineering, 60: 67-75.
DOI URL |
[12] |
JOERGENSEN R G, BROOKES P C, JENKINSON D S, 1990. Survival of the soil microbial biomass at elevated temperatures[J]. Soil Biology & Biochemistry, 22(8): 1129-1136.
DOI URL |
[13] |
LAJEUNESSE M J, 2011. On the meta-analysis of response ratios for studies with correlated and multi-group designs[J]. Ecology, 92(11): 2049-2055.
PMID |
[14] |
LAL, 2019. Accelerated Soil erosion as a source of atmospheric CO2[J]. Soil and Tillage Research, 188: 35-40.
DOI |
[15] |
LEGOUT C, LEGU DOIS S, BISSONNAIS Y L, et al., 2005. Splash distance and size distributions for various soils[J]. Geoderma, 124(3-4): 279-292.
DOI URL |
[16] |
LEPCHA N T, DEVI N B, 2020. Effect of land use, season, and soil depth on soil microbial biomass carbon of eastern Himalayas[J]. Ecological Processes, 9(1): 1-14.
DOI |
[17] |
MA W M, LI Z W, DING K Y, et al., 2014. Effect of soil erosion on dissolved organic carbon redistribution in subtropical red soil under rainfall simulation[J]. Geomorphology, 226(1): 217-225.
DOI URL |
[18] |
MABUHAY J A, NAKAGOSHI N, ISAGI Y, 2004. Influence of erosion on soil microbial biomass, abundance and community diversity[J]. Land Degradation & Development, 15(2): 183-195.
DOI URL |
[19] |
MANDAL D, CHANDRAKALA M, ALAM N M, et al., 2021. Assessment of soil quality and productivity in different phases of soil erosion with the focus on land degradation neutrality in tropical humid region of India[J]. Catena, 204(8): 105440.
DOI URL |
[20] |
MARINARI S, MANCINELLI R, CAMPIGLIA E, et al., 2006. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy[J]. Ecological Indicators, 6(4): 701-711.
DOI URL |
[21] |
NACHIMUTHU G, KING K, KRISTIANSEN P, et al., 2007. Comparison of methods for measuring soil microbial activity using cotton strips and a respirometer[J]. Journal of Microbiological Methods, 69(2): 322-329.
PMID |
[22] |
NIE X J, ZHANG J H, SU Z G, 2013. Dynamics of soil organic carbon and microbial biomass carbon in relation to water erosion and tillage erosion[J]. Plos One, 8(5): e64059.
DOI URL |
[23] |
PATERSON E, THORNTON B, MIDWOOD A J, et al., 2008. Atmospheric CO2 enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant- and soil C-sources[J]. Soil Biology & Biochemistry, 40(9): 2434-2440.
DOI URL |
[24] |
QIU L P, ZHANG Q, ZHU H S, et al., 2021. Erosion reduces soil microbial diversity, network complexity and multifunctionality[J]. The ISME Journal, 15(8): 2474-2489.
DOI |
[25] |
SCHIETTECATTE W, JIN K, YAO Y, et al., 2005. Influence of simulated rainfall on physical properties of a conventionally tilled loess soil[J]. Catena, 64(2-3): 209-221.
DOI URL |
[26] |
SUN T T, WANG Y G, HUI D F, et al., 2020. Soil properties rather than climate and ecosystem type control the vertical variations of soil organic carbon, microbial carbon, and microbial quotient[J]. Soil Biology and Biochemistry, 148(1): 107905.
DOI URL |
[27] |
WANG B W, ZHAO X L, WANG X, et al., 2020. Spatial and temporal variability of soil erosion in the black soil region of northeast China from 2000 to 2015[J]. Environmental Monitoring and Assessment, 192(6): 1-14.
DOI |
[28] | WANG X L, HU F, LI H X, et al., 2006. Effects of different land used patterns on soil microbial biomass carbon and nitrogen in small red soil watershed[J]. Journal of Agro-environment Science, 25(1): 143-147. |
[29] | WANG X Z, SHENG L X, 2012. Effect of grazing intensity on microorganisms quantity and microbial biomass of soil in grassland under protection forest of Songnen Plain[J]. Journal of Animal and Veterinary Advances, 11(24): 4549-4552. |
[30] |
WANG X, CAMMERAAT E, CERLI C, et al., 2014. Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition[J]. Soil Biology & Biochemistry, 72: 55-65.
DOI URL |
[31] |
XIAO H B, SHI Z H, LI Z W, et al., 2020. Responses of soil respiration and its temperature sensitivity to nitrogen addition: A meta-analysis in China[J]. Applied Soil Ecology, 150: 103484.
DOI URL |
[32] |
ZELLER V, BARDGETT R D, TAPPEINER U, 2001. Site and management effects on soil microbial properties of subalpine meadows: A study of land abandonment along a north-south gradient in the European Alps[J]. Soil Biology & Biochemistry, 33(4-5): 639-649.
DOI URL |
[33] | 樊军, 郝明德, 2003. 长期轮作施肥对土壤微生物碳氮的影响[J]. 水土保持研究, 10(1): 85-87. |
FAN J, HAO M D, 2003. Effects of long-term rotations and fertilizations on soil microbial biomass carbon and nitrogen[J]. Research of Soil and Water Conversation, 10(1): 85-87. | |
[34] | 范如芹, 梁爱珍, 杨学明, 等, 2011. 耕作与轮作方式对黑土有机碳和全氮储量的影响[J]. 土壤学报, 48(4): 788-796. |
FAN R Q, LIANG A Z, YANG X M, et al., 2011. Effects of tillage and rotation on soil organic carbon and total nitrogen stocks of black soil[J]. Acta Pedologica Sinica, 48(4): 788-796. | |
[35] | 冯志珍, 郑粉莉, 易祎, 2017. 薄层黑土微生物生物量碳氮对土壤侵蚀——沉积的响应[J]. 土壤学报, 54(6): 1332-1344. |
FENG Z Z, ZHENG F L, YI Y, 2017. Response of microbial biomass carbon and nitrogen to erosion and deposition in black soil thin in depth[J]. Acta Pedologica Sinica, 54(6): 1332-1344. | |
[36] | 韩学坤, 吴伯志, 安瞳昕, 等, 2010. 溅蚀研究进展[J]. 水土保持研究, 17(4): 46-51. |
HAN X K, WU B Z, AN T X, et al., 2010. Advance of research for splash erosion[J]. Research of Soil and Water Conversation, 17(4): 46-51. | |
[37] | 郝燕芳, 刘宝元, 杨扬, 等, 2018. 中国5种典型土壤的侵蚀泥沙粒径分布特征[J]. 水土保持学报, 32(2): 150-159. |
HAO Y F, LIU B Y, YANG Y, et al., 2018. Size distribution characteristics of sediments eroded from five typical soils in China[J]. Journal of Soil and Water Conservation, 32(2): 150-159. | |
[38] | 胡婵娟, 刘国华, 郭雷, 等, 2014. 土壤侵蚀对土壤理化性质及土壤微生物的影响[J]. 干旱区研究, 31(4): 702-708. |
HU C J, LIU G H, GUO L, et al., 2014. Effects of soil erosion on soil physicochemical properties and soil microorganisms[J]. Arid Zone Research, 31(4): 702-708. | |
[39] | 景可, 焦菊英, 2011. 基于全球气候变暖的土壤侵蚀态势初见[J]. 中国水土保持, 7(6): 7-9. |
JING K, JIAO J Y, 2011. Soil erosion situation based on global warming[J]. Soil and Water Conservation in China, 7(6): 7-9. | |
[40] | 刘若馨, 2017. 粘土矿物含量对崩岗土体抗剪强度的影响[D]. 福州: 福建农林大学:24-38. |
LIU R X, 2017. Effects of clay mineral content on soil shear strength[D]. Fuzhou: Fujian Agriculture and Forestry University:24-38. | |
[41] | 刘文娜, 吴文良, 王秀斌, 等, 2006. 不同土壤类型和农业用地方式对土壤微生物量碳的影响[J]. 植物营养与肥料学报, 12(3): 406-411. |
LIU W N, WU W L, WANG X B, et al., 2006. Effects of soil type and land use pattern on microbial biomass carbon[J]. Plant Nutrition and Fertilizer Science, 12(3): 406-411. | |
[42] | 龙训建, 翁薛柔, 叶琰, 等, 2022. 近10年重庆市降雨侵蚀力时空分布特征[J]. 西南大学学报(自然科学版), 44(6): 171-184. |
LONG X J, WENG X R, YE Y, et al., 2022. Temporal and spatial distribution characteristics of rainfall erosivity in Chongqing in recent 10 years[J]. Journal of Southwset University (Natural Science Edition), 44(6): 171-184. | |
[43] | 卢茜, 陈晖, 许燕萍, 等, 2010. 武夷山不同类型土壤活性碳含量对比研究[J]. 安徽农业科学, 38(14): 7471-7473. |
LU Q, CHENG H, XU Y P, et al., 2010. Comparison of content of different types of soil labile carbon in Wuyi Mountain[J]. Journal of Anhui Agricultural Sciences, 38(14): 7471-7473. | |
[44] |
马志良, 赵文强, 刘美, 等, 2019. 增温对高寒灌丛根际和非根际土壤微生物生物量碳氮的影响[J]. 应用生态学报, 30(6): 1893-1900.
DOI |
MA Z L, ZHAO W Q, LIU M, et al., 2019. Effects of warming on microbial biomass carbon and nitrogen in the rhizosphere and bulk soil in an alpine scrub ecosystem[J]. Chinese Journal of Applied Ecology, 30(6): 1893-1900. | |
[45] | 钱秋颖, 秦富仓, 李龙, 等, 2021. 自然降雨条件下坡面侵蚀地表粗糙度的空间异质性[J]. 水土保持学报, 35(3): 46-52. |
QIAN Q Y, QIN F C, LI L, et al., 2021. Spatial heterogeneity of surface roughness of slope erosion under natural rainfall[J]. Journal of Soil and Water Conservation, 35(3): 46-52. | |
[46] |
任凤玲, 张旭博, 孙楠, 等, 2018. 施用有机肥对中国农田土壤微生物量影响的整合分析[J]. 中国农业科学, 51(1): 119-128.
DOI |
REN F L, ZHANG X B, SUN N, et al., 2018. A meta-analysis of manure application impact on soil microbial biomass across China’s croplands[J]. Scientia Agricultura Sinica, 51(1): 119-128.
DOI |
|
[47] | 覃乾, 朱世硕, 夏彬, 等, 2019. 黄土丘陵区侵蚀坡面土壤微生物量碳时空动态及影响因素[J]. 环境科学, 40(4): 1973-1980. |
QIN Q, ZHU S S, XIA B, et al., 2019. Temporal and spatial dynamics of soil microbial biomass carbon and its influencing factors on an eroded slope in the Hilly Loess Plateau Region[J]. Environmental Science, 40(4): 1973-1980. | |
[48] | 王超华, 许明祥, 冉宜凡, 等, 2015. 黄土丘陵区不同有机碳水平侵蚀坡面土壤微生物量碳的分布特征[J]. 环境科学学报, 35(10): 3284-3291. |
WANG C H, XU M X, RAN Y F, et al., 2015. Distribution of soil microbial biomass on eroded sloping land with different organic carbon contents in the hilly loess plateau region[J]. Acta Scientiae Circumstantiae, 35(10): 3284-3291. | |
[49] | 王群, 尹飞, 郝四平, 等, 2009. 下层土壤容重对玉米根际土壤微生物数量及微生物量碳、氮的影响[J]. 生态学报, 29(6): 3096-3104. |
WANG Q, YIN F, HAO S P, et al., 2009. Effects of subsoil bulk density on rhizospheric soil microbial population,microbial biomass carbon and nitrogen of corn field[J]. Acta Ecologica Sinica, 29(6): 3096-3104. | |
[50] | 文小琴, 舒英格, 何欢, 2018. 喀斯特山区土地不同利用方式的土壤养分及微生物特征[J]. 西南农业学报, 31(6): 1227-1233. |
WEN X Q, SHU Y G, HE H, 2018. Soil nutrients and microbial characteristics under different land utilization patterns in karst mountainous area[J]. Southwest China Journal of Agricultural Sciences, 31(6): 1227-1233. | |
[51] | 吴洁玲, 查轩, 陈世发, 等, 2021. 1951—2018年韶关不同量级降雨侵蚀力变化[J]. 水土保持学报, 35(4): 21-26. |
WU J L, ZHA X, CHEN S F, et al., 2021. Variations of rainfall erosivity of different magnitudes in Shaoguan from 1951 to 2018[J]. Journal of Soil and Water Conservation, 35(4): 21-26. | |
[52] | 熊泳, 文星跃, 苟明忠, 等, 2022. 成都粘土可蚀性K值及其对土地利用的响应研究[J]. 西华师范大学学报 (自然科学版), 43(2): 202-209. |
XIONG Y, WEN X Y, GOU M Z, et al., 2022. Soil erodibility k value of Chengdu clay and its response to land utilization[J]. Journal of China West Normal University (Natural Sciences), 43(2): 202-209. | |
[53] | 徐华勤, 章家恩, 冯丽芳, 等, 2009. 广东省不同土地利用方式对土壤微生物量碳氮的影响[J]. 生态学报, 29(8): 4112-4118. |
XU H Q, ZHANG J E, FENG L F, et al., 2009. Effects of different land use patterns on microbial biomass carbon and nitrogen in Guangdong province[J]. Acta Ecologica Sinica, 29(8): 4112-4118. | |
[54] | 张光辉, 杨扬, 刘瑛娜, 等, 2022. 东北黑土区土壤侵蚀研究进展与展望[J]. 水土保持学报, 36(2): 1-12. |
ZHANG G H, YANG Y, LIU Y N, et al., 2022. Advances and prospects of soil erosion research in the black soil region of northeast China[J]. Journal of Soil and Water Conservation, 36(2): 1-12. | |
[55] |
张彦军, 党水纳, 任媛媛, 等, 2020. 基于Meta分析的土壤呼吸对凋落物输入的响应[J]. 生态环境学报, 29(3): 447-456.
DOI URL |
ZHANG Y J, DANG S N, REN Y Y, et al., 2020. Response of soil respiration to surface litter input based on a meta-analysis[J]. Ecology and Environmental Sciences, 29(3): 447-456. | |
[56] | 赵亚丽, 郭海斌, 薛志伟, 等, 2015. 耕作方式与秸秆还田对土壤微生物数量、酶活性及作物产量的影响[J]. 应用生态学报, 26(6): 1785-1792. |
ZHAO Y L, GUO H B, XUE Z W, et al., 2015. Effects of tillage and straw returning on microorganism quantity, enzyme activities in soils and grain yield[J]. Chinese Journal of Applied Ecology, 26(6): 1785-1792. | |
[57] |
郑海峰, 陈亚梅, 杨林, 等, 2017. 高山林线土壤微生物群落结构对模拟增温的响应[J]. 应用生态学报, 28(9): 2840-2848.
DOI |
ZHENG H F, CHEN Y M, YANG L, et al., 2017. Responses of soil microbial community structure to simulated warming in alpine timberline in western Sichuan, China[J]. Chinese Journal of Applied Ecology, 28(9): 2840-2848.
DOI |
|
[58] | 郑世清, 周佩华, 1988. 土壤容重和降雨强度与土壤侵蚀和入渗关系的定量分析[J]. 水土保持研究 (1): 53-56. |
ZHENG S Q, ZHOU P H, 1988. A quantitative study of relationship between soil density and soil erosion[J]. Research of Soil and Water Conversation (1): 53-56. | |
[59] | 朱世硕, 夏彬, 郝旺林, 等, 2020. 黄土区侵蚀坡面土壤微生物群落功能多样性研究[J]. 中国环境科学, 40(9): 4099-4105. |
ZHU S S, XIA B, HAO W L, et al., 2020. Functional diversity of soil microbial community on eroded slope in the Loess Plateau Region[J]. China Environmental Science, 40(9): 4099-4105. |
[1] | GE Yuankai, ZHAO Longlong, CHEN Jinsong, REN Yanni, LI Hongzhong. Spatio-temporal Evolution Trend of Meteorological Drought and Identification of Drought Events in Southwest China from 1983 to 2020 [J]. Ecology and Environment, 2023, 32(5): 920-932. |
[2] | SHENG Meijun, LI Shengjun, YANG Xinyue, WANG Rui, LI Jie, LI Gang, XIU Weiming. Changes of Soil Enzyme Activities in Cropland with Different Land Use Intensities in Fluvo-aquic Soil Area, North China [J]. Ecology and Environment, 2023, 32(2): 299-308. |
[3] | JI Bingjing, LIU Yi, WU Yang, GAO Shutao, ZENG Xiangying, YU Zhiqiang. Occurrence, Source and Potential Ecological Risk of Parent and Oxygenated Polycyclic Aromatic Hydrocarbons in Sediments of Yangtze River Estuary and Adjacent East China Sea [J]. Ecology and Environment, 2022, 31(7): 1400-1408. |
[4] | KE Qihua, ZHANG Keli. Scale Effect on Water and Soil Loss in China: A Bibliometric Analysis [J]. Ecology and Environment, 2022, 31(7): 1489-1498. |
[5] | ZHAO Rui, ZHAN Liping, ZHOU Liang, ZHANG Junke. Identification of Driving Factors of PM2.5 Based on Geographic Detector Combined with Geographically Weighted Ridge Regression [J]. Ecology and Environment, 2022, 31(2): 307-317. |
[6] | JIANG Bin, CHEN Duohong, ZHANG Tao, YUAN Luan, ZHOU Yan, SHEN Jing, ZHANG Chunlin, WANG Boguang. Characteristics and Sources of Carbonaceous Aerosols during the Crop Straw Burning Seasons in Southern China [J]. Ecology and Environment, 2022, 31(12): 2358-2366. |
[7] | XING Ran, SHEN Guofeng, CHENG Hefa, TAO Shu. Changes of Residential Energy Structure and Regional Pollutant Emissions in Rural Areas of Northeast China [J]. Ecology and Environment, 2022, 31(12): 2367-2373. |
[8] | SHI Zhiyu, WANG Yating, ZHAO Qing, ZHANG Lianpeng, ZHU Changming. The Spatiotemporal Changes of NPP and Its Driving Mechanisms in China from 2001 to 2020 [J]. Ecology and Environment, 2022, 31(11): 2111-2123. |
[9] | XI Huihui, WU Lixin, FENG Jingqiu, YIN Genshen. A New Record of Naturalized Species in Mainland China: Phytolacca icosandra L. [J]. Ecology and Environment, 2021, 30(8): 1555-1560. |
[10] | HU Rui, FANG Huanying, XIAO Shengsheng, DUAN Jian, ZHANG Jie, LIU Hongguang, TANG Chongjun. Soil Carbon Sink Effect of Main Management Models in Typical Granite Erosion Area of Red Soil in South China [J]. Ecology and Environment, 2021, 30(8): 1617-1626. |
[11] | ZHANG Kai, GUO Ziwei, WANG Qian, HAN Ya, LI Kuangjia, ZHANG Zhongshuai. Distribution Pattern of Antibiotic Resistant Bacteria in Water Supply Reservoirs of Central China [J]. Ecology and Environment, 2021, 30(5): 1017-1022. |
[12] | LU Qiaoqian, JIANG Tao, LIU Danli, LIU Zhiyong. The Response Characteristics of NDVI with Different Vegetation Cover Types to Temperature and Precipitation in China [J]. Ecology and Environment, 2020, 29(1): 23-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn