Ecology and Environment ›› 2022, Vol. 31 ›› Issue (9): 1856-1864.DOI: 10.16258/j.cnki.1674-5906.2022.09.016
• Research Articles • Previous Articles Next Articles
HAO Beibei1,2(), WANG Nan1,2, WU Haoping3, ZHOU Zhixin4, ZHANG Siyi1,2, HE Bin1,2,*(
)
Received:
2022-05-07
Online:
2022-09-18
Published:
2022-11-07
Contact:
HE Bin
郝贝贝1,2(), 王楠1,2, 吴昊平3, 周智鑫4, 张思毅1,2, 贺斌1,2,*(
)
通讯作者:
贺斌
作者简介:
郝贝贝(1985年生),女,副研究员,博士,研究方向为面源污染防治与水环境修复。E-mail: bbhao@soil.gd.cn
基金资助:
CLC Number:
HAO Beibei, WANG Nan, WU Haoping, ZHOU Zhixin, ZHANG Siyi, HE Bin. Research on the Reduction Function of Ecological Ditches on Runoff Pollution from Rice Field in the Pearl River Delta[J]. Ecology and Environment, 2022, 31(9): 1856-1864.
郝贝贝, 王楠, 吴昊平, 周智鑫, 张思毅, 贺斌. 生态沟渠对珠三角稻田径流污染的削减功能研究[J]. 生态环境学报, 2022, 31(9): 1856-1864.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.09.016
沟渠编号 Ditch number | 构造类型 Tectonic types | 断面尺寸 Cross-sectional size | 沟渠长度 Ditch length/m | 沟渠坡面植物配置 Plant configurations on slope | 沟渠底部植物配置 Plant configurations on bottom |
---|---|---|---|---|---|
ED1 | 坡面素土夯实, 沟底挖平 | 底宽2.6 m, 高1.1 m, 坡度1:1.25 | 88 | 美人蕉 (C. indica) 和再力花 (T. dealbata), 种植密度16-18 plant∙m-2 | 苦草 (V. natans), 种植密度50-60 plant∙m-2 |
ED2 | 坡面素土夯实, 沟底挖平 | 底宽2.6 m, 高1.0 m, 坡度1:1.25 | 120.5 | 美人蕉 (C. indica)和再力花 (T. dealbata), 种植密度16-18 plant∙m-2 | 荷花 (N. nucifera), 种植密度4-5 plant∙m-2 |
ED3 | 坡面素土夯实后平铺菱形多孔砖, 沟底挖平 | 底宽2.6 m, 高1.1 m, 坡度1:1.25 | 92 | 美人蕉 (C. indica) 和再力花 (T. dealbata), 种植密度16-18 plant∙m-2 | 苦草 (V. natans), 种植密度50-60 plant∙m-2 |
ED4 | 坡面素土夯实后平铺菱形多孔砖, 沟底挖平 | 底宽2.5 m, 高1.1 m, 坡度1:1.25 | 140 | 紫芋 (C. tonoimo) 和再力花 (T. dealbata), 种植密度16 plant∙m-2 | 黄花水龙 (J. stipulacea), 种植密度20-25 plant∙m-2 |
Table1 Engineering measures and plant configuration of four ecological ditches in this study
沟渠编号 Ditch number | 构造类型 Tectonic types | 断面尺寸 Cross-sectional size | 沟渠长度 Ditch length/m | 沟渠坡面植物配置 Plant configurations on slope | 沟渠底部植物配置 Plant configurations on bottom |
---|---|---|---|---|---|
ED1 | 坡面素土夯实, 沟底挖平 | 底宽2.6 m, 高1.1 m, 坡度1:1.25 | 88 | 美人蕉 (C. indica) 和再力花 (T. dealbata), 种植密度16-18 plant∙m-2 | 苦草 (V. natans), 种植密度50-60 plant∙m-2 |
ED2 | 坡面素土夯实, 沟底挖平 | 底宽2.6 m, 高1.0 m, 坡度1:1.25 | 120.5 | 美人蕉 (C. indica)和再力花 (T. dealbata), 种植密度16-18 plant∙m-2 | 荷花 (N. nucifera), 种植密度4-5 plant∙m-2 |
ED3 | 坡面素土夯实后平铺菱形多孔砖, 沟底挖平 | 底宽2.6 m, 高1.1 m, 坡度1:1.25 | 92 | 美人蕉 (C. indica) 和再力花 (T. dealbata), 种植密度16-18 plant∙m-2 | 苦草 (V. natans), 种植密度50-60 plant∙m-2 |
ED4 | 坡面素土夯实后平铺菱形多孔砖, 沟底挖平 | 底宽2.5 m, 高1.1 m, 坡度1:1.25 | 140 | 紫芋 (C. tonoimo) 和再力花 (T. dealbata), 种植密度16 plant∙m-2 | 黄花水龙 (J. stipulacea), 种植密度20-25 plant∙m-2 |
指标 Indicators | 自由度 d.f. | F值 F value | P值 P value |
---|---|---|---|
r(DO) | 3 | 7.081 | 0.002 |
r(NH4+) | 3 | 25.200 | <0.001 |
r(NO3-) | 3 | 3.015 | 0.054 |
r(pH) | 3 | 2.712 | 0.077 |
r(EC) | 3 | 0.864 | 0.479 |
Table 2 One-way ANOVA compare the removal percentage of ρ(DO), pH, ρ(NH4+), ρ(NO3-) and EC among the four different ecological ditches
指标 Indicators | 自由度 d.f. | F值 F value | P值 P value |
---|---|---|---|
r(DO) | 3 | 7.081 | 0.002 |
r(NH4+) | 3 | 25.200 | <0.001 |
r(NO3-) | 3 | 3.015 | 0.054 |
r(pH) | 3 | 2.712 | 0.077 |
r(EC) | 3 | 0.864 | 0.479 |
[1] |
CHEN Y, WEN Y, ZHOU Q, et al., 2014. Effects of plant biomass on denitrifying genes in subsurface-flow constructed wetlands[J]. Bioresource Technology, 157: 341-345.
DOI PMID |
[2] |
FU D F, GONG W J, XU Y, et al., 2014. Nutrient mitigation capacity of agricultural drainage ditches in Tai lake basin[J]. Ecological Engineering, 71: 101-107.
DOI URL |
[3] |
LEVAVASSEUR F, BIARN S A, BAILLY J S, et al., 2014. Time-varying impacts of different management regimes on vegetation cover in agricultural ditches[J]. Agricultural Water Management, 140: 14-19.
DOI URL |
[4] | LI X N, ZHANG W W, ZHAO C Q, et al., 2020. Nitrogen interception and fate in vegetated ditches using the isotope tracer method: A simulation study in northern China[J]. Agricultural Water Management, 228: 105893. |
[5] |
LIN Y F, JING S R, WANG T W, et al., 2002. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands[J]. Environmental Pollution, 119(3): 413-420.
DOI URL |
[6] |
STOTTMEISTER U, WIENER A, KUSCHK P, et al., 2003. Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advances, 22(1-2): 93-117.
PMID |
[7] |
WATSON A M, ORMEROD S J, 2004. The distribution of three uncommon freshwater gastropods in the drainage ditches of British grazing marshes[J]. Biological Conservation, 118(4): 455-66.
DOI URL |
[8] | WOLTEMADE C J. 2000. Ability of restored wetlands to reduce nitrogen and phosphorus concentrations in agricultural drainage water[J]. Journal of Soil and Water Conservation, 55(3): 303-309. |
[9] |
WU H L, WANG X Z, HE X J, et al., 2017. Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland[J]. Science of the Total Environment, 598: 697-703.
DOI URL |
[10] | 陈海生, 王光华, 刘建飞, 等, 2010. 模拟生态沟渠中盘培牧草降解农业面源污染效应的研究[J]. 江西农业学报, 22(9): 143-145, 151. |
CHEN H S, WANG G H, LIU J F, et al., 2010. Research on effects of simulative ecological ditch on degradation of agricultural non-point pollution[J]. Acta Agriculturae Jiangxi, 22(9): 143-145, 151. | |
[11] | 段四喜, 张磊, 杨芳, 等, 2022. 典型生态拦截措施水质净化效果研究[J]. 农业资源与环境学报, 39(3): 493-502. |
DUAN S X, ZHANG L, YANG F, et al., 2022. Study on water purification effect of typical ecological interception measures[J]. Journal of Agricultural Resources and Environment, 39(3): 493-502. | |
[12] | 董晓亮, 陈克勤, 李正兵, 2021. 土地整治中生态沟渠建设研究[J]. 农业与技术, 41(22): 59-61. |
DONG X L. CHEN K Q, LI Z B, 2021. Research on construction of ecological ditches in land consolidation[J]. Agriculture & Technology, 41(22): 59-61. | |
[13] | 国家环境保护总局, 2002. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社. |
State Environmental Protection Administration, 2002. Method for monitoring and analysis water and waste water[M]. Fourth Version. Beijing: China Environmental Science Press. | |
[14] | 韩例娜, 李裕元, 石辉, 等, 2012. 水生植物对农田排水沟渠氮磷迁移生态阻控效果比较研究[J]. 农业现代化研究, 33(1): 117-120. |
HAN L N, LI Y Y, SHI H, et al., 2012. Study on comparison of different aquatic plant on nitrogen and phosphorus ecological control measures in drainage ditch of farmland in southern China[J]. Research of Agricultural Modernization, 33(1): 117-120. | |
[15] | 何佳宁, 刘春敬, 李思安, 等, 2018. 烧结多孔砖基质Fe系改性脱氮除磷效果研究[J]. 河北农业大学学报, 41(6): 104-109. |
HE J N, LIU C J, LI S A, et al., 2018. Study on nitrogen and phosphorus removal performance of sintered porous brick matrix modified by Fe system. Journal of Agricultural University of Hebei, 41(6): 104-109. | |
[16] | 何元庆, 魏建兵, 胡远安, 等, 2012. 珠三角典型稻田生态沟渠型人工湿地的非点源污染削减功能[J]. 生态学杂志, 31(2): 394-398. |
HE Y Q, WEI J B, HU Y A, et al., 2012. Non-point source pollution control functions of constructed wetland in the ditches of paddy field system in Pearl River Delta[J]. Chinese Journal of Ecology, 31(2): 394-398. | |
[17] | 姜翠玲, 崔广柏, 范晓秋, 等, 2004. 沟渠湿地对农业非点源污染物的净化能力研究[J]. 环境科学, 25(2): 125-128. |
JIANG C L, CUI G B, FAN X Q, et al., 2004. Purification capacity of ditch wetland to agricultural non-point pollutants[J]. Environmental Science, 25(2): 125-128. | |
[18] | 李强坤, 胡亚伟, 苏欣, 2017. 排水沟渠水-底泥-植物协同作用下非点源溶质氮运移模拟研究[J]. 中国生态农业学报, 25(3): 460-466. |
LI Q K, HU Y W, SU X, 2017. Simulation of non-point source solute nitrogen transport in drainage ditches under water-sediment-aquatic plant synergy[J]. Chinese Journal of Eco-Agriculture, 25(3): 460-466 | |
[19] | 刘福兴, 陈桂发, 付子轼, 等, 2019. 不同构造生态沟渠的农田面源污染物处理能力及实际应用效果[J]. 生态与农村环境学报, 35(6): 787-794. |
LIU F X, CHEN G F, FU Z S, et al., 2019. Comparison on effects of practical application of ecological ditches with different construction in treating agricultural non-point pollutants[J]. Journal of Ecology and Rural Environment, 35(6): 787-794. | |
[20] | 刘泉, 李占斌, 李鹏, 等, 2016. 汉江水源区生态沟渠对径流氮、磷的生态拦截效应[J]. 水土保持通报, 36(2): 54-58, 64. |
LIU Q, LI Z B, LI P, et al., 2016. Effects of Ecological Ditch Interception of Nitrogen and Phosphorus in Water Source Area of Hanjiang River[J]. Bulletin of Soil And Water Conservation, 36(2): 54-58, 64. | |
[21] | 田上, 沙之敏, 岳玉波, 等, 2016. 不同类型沟渠对农田氮磷流失的拦截效果[J]. 江苏农业科学, 44(4): 361-365. |
TIAN S, SHA Z M, YUE Y B, et al., 2016. The interception effect of different types of ditches on nitrogen and phosphorus loss in farmland[J]. Jiangsu Agricultural Sciences, 44(4): 361-365. | |
[22] | 徐德福, 李映雪, 2007. 用于污水处理的人工湿地的基质、植物及其配置[J]. 湿地科学, 5(1): 32-38. |
XU D F, LI Y X, 2007. Screen plants and substrates of the constructed wetland for treatment of wastewater[J]. Wetland Science, 5(1): 32-38. | |
[23] | 王迪, 李红芳, 刘锋, 等, 2016. 亚热带农区生态沟渠对农业径流中氮素迁移拦截效应研究[J]. 环境科学, 37(5): 1717-1723. |
WANG D, LI H F, LIU F, et al., 2016. Interception effect of ecological ditch on nitrogen transport in agricultural runoff in subtropical China[J]. Environmental Science, 37(5): 1717-1723. | |
[24] | 王晓玲, 乔斌, 李松敏, 等, 2015. 生态沟渠对水稻不同生长期降雨径流氮磷的拦截效应研究[J]. 水利学报, 46(12): 1406-1413. |
WANG X L, QIAO B, LI S M, et al., 2015. Studies on the interception effects of ecological ditch on nitrogen and phosphorus in the rainfall runoff of different rice growth period[J]. Journal of Hydraulic Engineering, 46(12): 1406-1413. | |
[25] | 王晓玲, 涂佳敏, 李松敏, 等, 2014. 稻田沟渠施肥后降雨径流中氮素迁移规律研究[J]. 水利学报, 45(9): 1075-1081. |
WANG X L, TU J M, LI S M, et al., 2014. Nitrogen transport mechanisms in ditches of rainfall-runoff after fertilizing[J]. Journal of Hydraulic Engineering, 45(9): 1075-1081. | |
[26] | 王岩, 王建国, 李伟, 等, 2010. 生态沟渠对农田排水中氮磷的去除机理初探[J]. 生态与农村环境学报, 26(6): 586-590. |
WANG Y, WANG J G, LI W, et al., 2010. Initial exploration of mechanism of ecological ditch intercepting nitrogen and phosphorus in drainage from farmland[J]. Journal of Ecology and Rural Environment, 26(6): 586-590. | |
[27] | 杨林章, 周小平, 王建国, 等, 2005. 用于农田非点源污染控制的生态拦截型沟渠系统及其效果[J]. 生态学杂志, 24(11): 1371-1374. |
YANG L Z, ZHOU X P, WANG J G, et al., 2005. Ecological ditch system with interception function and its effects on controlling farmland non-point pollution[J]. Chinese Journal of Ecology, 24(11): 1371-1374. | |
[28] | 杨继伟, 张辉, 曹秀清, 等, 2022. 农田排水沟渠生态化建设与管理[J]. 治淮, (3): 68-70. |
YANG J W, ZHANG H, CAO X Q, et al., 2022. Ecological Construction and Management of Farmland Drainage Ditch[J]. Harnessing the Huaihe River, (3): 68-70. | |
[29] | 于会彬, 席北斗, 郭旭晶, 等, 2009. 降水对农田排水沟渠中氮磷流失的影响[J]. 环境科学研究, 22(4): 409-414. |
YU H B, XI B D, GUO X J, et al., 2009. Effect of Rainfall Runoff on Nitrogen and Phosphorus Loss in Farming Drainage Ditch[J]. Research of Environmental Sciences, 22(4): 409-414. | |
[30] | 余红兵, 肖润林, 杨知建, 等, 2014. 灌溉和降雨条件下生态沟渠氮、磷输出特征研究[J]. 长江流域资源与环境, 23(5): 686-692. |
YU H B, XIAO R L, YANG Z J, et al., 2014. Study on the characteristics of nitrogen and phosphorus transportation through ecological ditch during irrigation and rainfall[J]. Resources and Environment in the Yangtze Basin, 23(5): 686-692. | |
[31] | 张树楠, 肖润林, 刘锋, 等, 2015. 生态沟渠对氮、磷污染物的拦截效应[J]. 环境科学, 36(12): 4516-4522. |
ZHANG S N, XIAO R L, LIU F, et al., 2015. Interception effect of vegetated drainage ditch on nitrogen and phosphorus from drainage ditches[J]. Environmental Science, 36(12): 4516-4522. | |
[32] | 张燕, 2013. 农田排水沟渠对氮磷的去除效应及管理措施[D]. 长春: 中国科学院研究生院 (东北地理与农业生态研究所). |
ZHANG Y, 2013. Removal effect and management measures of nitrogen and phosphorus in agricultural drainage ditches[D]. Changchun: Northeast Institute of Geography and Agroecology, Graduate University of Chinese Academy of Sciences. |
[1] | HUANG Yingmei, ZHONG Songxiong, ZHU Yiwen, WANG Xiangqin, LI Fangbai. Effects and Mechanism of Element Sulfur Inhibiting Methylmercury Accumulation in Rice Plants [J]. Ecology and Environment, 2023, 32(6): 1115-1122. |
[2] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[3] | FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil [J]. Ecology and Environment, 2023, 32(4): 776-783. |
[4] | DAI Demin, JIANG Xusheng, LIU Jie, WANG Luyang, CHEN Shiqi, HAN Qingkun. Study on Suitability of Pb/Zn Mine Tailings Using Three Different Organic Amendments [J]. Ecology and Environment, 2023, 32(4): 784-793. |
[5] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[6] | LIU Kanghan, ZHENG Liugen, ZHANG Liqun, DING Dan, SHAN Shifeng. Effect of Complex Plant Derived Activator on the Remediation of As Contaminated Soil by Pteris vittata [J]. Ecology and Environment, 2023, 32(3): 635-642. |
[7] | YANG Yu, DENG Renjian, LONG Pei, HUANG Zhongjie, Ren Bozhi, WANG Zhenghua. Isolation and Identification of Arsenic-oxidizing Bacterium Pseudomonas sp. AO-1 and Its Oxidation Properties for As(Ⅲ) [J]. Ecology and Environment, 2023, 32(3): 619-626. |
[8] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[9] | XU Min, XU Chao, YU Guanghui, YIN Lichu, ZHANG Quan, ZHU Hanhua, ZHU Qihong, ZHANG Yangzhu, HUANG Daoyou. Effects of Groundwater Level and Long-term Straw Return on Soil Cadmium Availability and Cadmium Concentration in Rice [J]. Ecology and Environment, 2023, 32(1): 150-157. |
[10] | XIE Jiefen, ZHANG Jiaen, WEI Hui, LIU Ziqiang, CHEN Xuan. Microplastic-based Compound Pollution in Soil: An overview [J]. Ecology and Environment, 2022, 31(12): 2431-2440. |
[11] | REN Jun, PAN Jiaxuan, TAO Ling, TONG Yunlong, WANG Ruo’an, SUN Xinni. Stabilization Remediation of Soil Polluted by Cd Using Palygorskite Modified by NaOH [J]. Ecology and Environment, 2022, 31(12): 2422-2430. |
[12] | WU De, PENG Ou, LIU Yuling, ZHANG Puxin, YIN Xuefei, HUANG Xinming, TIE Boqing. Effects of Chelating Agents and Thier Combinations on Remediation of Two Cadmium Contaminated Soils by Sedum plumbizincicola [J]. Ecology and Environment, 2022, 31(12): 2414-2421. |
[13] | QIN Qin, DUAN Haiqin, SONG Ke, SUN Lijuan, SUN Yafei, ZHOU Bin, XUE Yong. Effect of Conventional Fertilization on the Adsorption-desorption Characteristics and Chemical forms of Cadmium in Soil Water-stable Aggregates [J]. Ecology and Environment, 2022, 31(12): 2403-2413. |
[14] | ZHANG Licong, XIAO Kai, ZHANG Peng, LI Hailong, WANG Junjian, LI Zhenyang, WANG Fangfang, XU Hualin, GUO Yuehua. Tidal Variation Characteristics of Heavy Metals and Dissolved Organic Matter and Environmental Impact in a Silt Tidal Flat [J]. Ecology and Environment, 2022, 31(11): 2169-2179. |
[15] | ZHANG Kaiyue, LIU Zhenghui, WANG Yanhao, WANG Jingkuan, CUI Dejie, LIU Xinwei. Risk Assessment and Spatial Characteristics of PAHs in Soils in the Yellow River Delta Nature Reserve [J]. Ecology and Environment, 2022, 31(11): 2198-2205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn