Ecology and Environment ›› 2022, Vol. 31 ›› Issue (4): 814-823.DOI: 10.16258/j.cnki.1674-5906.2022.04.020
• Research Articles • Previous Articles Next Articles
ZHAO Chaofan(), ZHOU Dandan*(
), SUN Jiancai, QIAN Kunpeng, LI Fangfang
Received:
2021-10-08
Online:
2022-04-18
Published:
2022-06-22
Contact:
ZHOU Dandan
通讯作者:
周丹丹
作者简介:
赵超凡(1996年生),男,硕士研究生,从事土壤重金属污染修复研究。E-mail: 2361623132@qq.com
基金资助:
CLC Number:
ZHAO Chaofan, ZHOU Dandan, SUN Jiancai, QIAN Kunpeng, LI Fangfang. The Effect of Soluble Components on the Adsorption of Cadmium on Biochar[J]. Ecology and Environment, 2022, 31(4): 814-823.
赵超凡, 周丹丹, 孙建财, 钱坤鹏, 李芳芳. 生物炭中可溶性组分对其吸附镉的影响[J]. 生态环境学报, 2022, 31(4): 814-823.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.04.020
生物炭 Biochar | SBETα/ (m2·g-1) | w(ash)/ % | pH | w/% | Element ratio | w/(mg·kg-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | H | O | H/C | O/C | K+ | Ca2+ | Mg2+ | PO43- | ||||||
PC | 7.581 | 1.71 | 5.83 | 47.1 | 6.44 | 64.4 | 1.64 | 1.03 | 744.6 | 848.5 | 103.3 | 96.20 | ||
PC2 | 6.305 | 1.55 | 5.69 | 50.0 | 6.64 | 64.6 | 1.59 | 0.97 | 1113 | 527.6 | 69.14 | 85.51 | ||
PC4 | 3.996 | 4.41 | 7.75 | 76.7 | 4.17 | 18.9 | 0.65 | 0.19 | 386.6 | 728.0 | 30.67 | 66.18 | ||
PC6 | 321.6 | 7.26 | 9.09 | 84.9 | 2.59 | 9.53 | 0.37 | 0.08 | 36.04 | 408.6 | 53.86 | 53.88 | ||
PC2W | 7.040 | 1.15 | 5.39 | 49.5 | 6.87 | 44.9 | 1.67 | 0.68 | 304.3 | 486.9 | 50.10 | 34.01 | ||
PC4W | 8.631 | 4.16 | 7.59 | 74.6 | 4.21 | 20.7 | 0.68 | 0.21 | 145.2 | 587.3 | 23.62 | 33.23 | ||
PC6W | 292.0 | 6.78 | 8.43 | 88.2 | 2.66 | 9.92 | 0.36 | 0.08 | 24.94 | 267.8 | 22.65 | 21.97 | ||
CS | 7.513 | 8.64 | 9.24 | 38.8 | 5.48 | 40.1 | 1.69 | 0.77 | 3979 | 551.4 | 65.83 | 5165 | ||
CS2 | 5.486 | 4.34 | 6.55 | 45.7 | 6.11 | 41.9 | 1.61 | 0.69 | 4614 | 178.5 | 453.5 | 3775 | ||
CS4 | 8.443 | 24.7 | 10.3 | 68.2 | 3.87 | 20.3 | 0.68 | 0.22 | 3225 | 6.274 | 16.93 | 2930 | ||
CS6 | 15.94 | 31.5 | 10.8 | 61.4 | 2.27 | 14.0 | 0.45 | 0.17 | 1950 | — | 7.219 | 1384 | ||
CS2W | 5.910 | 2.50 | 6.23 | 48.7 | 6.51 | 43.0 | 1.61 | 0.66 | 4284 | 164.4 | 273.6 | 1632 | ||
CS4W | 15.31 | 21.8 | 9.18 | 68.7 | 3.53 | 19.8 | 0.62 | 0.22 | 2438 | 3.984 | 16.43 | 993.6 | ||
CS6W | 19.42 | 27.8 | 10.2 | 52.0 | 2.09 | 13.0 | 0.48 | 0.19 | 1178 | — | 4.294 | 184.1 |
Table 1 Physical and chemical properties of biomass and their biochars
生物炭 Biochar | SBETα/ (m2·g-1) | w(ash)/ % | pH | w/% | Element ratio | w/(mg·kg-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | H | O | H/C | O/C | K+ | Ca2+ | Mg2+ | PO43- | ||||||
PC | 7.581 | 1.71 | 5.83 | 47.1 | 6.44 | 64.4 | 1.64 | 1.03 | 744.6 | 848.5 | 103.3 | 96.20 | ||
PC2 | 6.305 | 1.55 | 5.69 | 50.0 | 6.64 | 64.6 | 1.59 | 0.97 | 1113 | 527.6 | 69.14 | 85.51 | ||
PC4 | 3.996 | 4.41 | 7.75 | 76.7 | 4.17 | 18.9 | 0.65 | 0.19 | 386.6 | 728.0 | 30.67 | 66.18 | ||
PC6 | 321.6 | 7.26 | 9.09 | 84.9 | 2.59 | 9.53 | 0.37 | 0.08 | 36.04 | 408.6 | 53.86 | 53.88 | ||
PC2W | 7.040 | 1.15 | 5.39 | 49.5 | 6.87 | 44.9 | 1.67 | 0.68 | 304.3 | 486.9 | 50.10 | 34.01 | ||
PC4W | 8.631 | 4.16 | 7.59 | 74.6 | 4.21 | 20.7 | 0.68 | 0.21 | 145.2 | 587.3 | 23.62 | 33.23 | ||
PC6W | 292.0 | 6.78 | 8.43 | 88.2 | 2.66 | 9.92 | 0.36 | 0.08 | 24.94 | 267.8 | 22.65 | 21.97 | ||
CS | 7.513 | 8.64 | 9.24 | 38.8 | 5.48 | 40.1 | 1.69 | 0.77 | 3979 | 551.4 | 65.83 | 5165 | ||
CS2 | 5.486 | 4.34 | 6.55 | 45.7 | 6.11 | 41.9 | 1.61 | 0.69 | 4614 | 178.5 | 453.5 | 3775 | ||
CS4 | 8.443 | 24.7 | 10.3 | 68.2 | 3.87 | 20.3 | 0.68 | 0.22 | 3225 | 6.274 | 16.93 | 2930 | ||
CS6 | 15.94 | 31.5 | 10.8 | 61.4 | 2.27 | 14.0 | 0.45 | 0.17 | 1950 | — | 7.219 | 1384 | ||
CS2W | 5.910 | 2.50 | 6.23 | 48.7 | 6.51 | 43.0 | 1.61 | 0.66 | 4284 | 164.4 | 273.6 | 1632 | ||
CS4W | 15.31 | 21.8 | 9.18 | 68.7 | 3.53 | 19.8 | 0.62 | 0.22 | 2438 | 3.984 | 16.43 | 993.6 | ||
CS6W | 19.42 | 27.8 | 10.2 | 52.0 | 2.09 | 13.0 | 0.48 | 0.19 | 1178 | — | 4.294 | 184.1 |
FM | LM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Adsorbent | Kf | n | radj2 | Kd/(L∙kg-1) | Qm/ (mg∙g-1) | KL | radj2 | Kd/(L∙kg-1) | ||
1 | 10 | 1 | 10 | |||||||
PC | 1.68 | 0.57 | 0.96 | 1.68 | 0.62 | 6.26 | 0.38 | 0.97 | 1.73 | 0.50 |
PC2 | 1.65 | 0.43 | 0.96 | 1.65 | 0.44 | 4.14 | 0.73 | 0.98 | 1.75 | 0.36 |
PC4 | 0.96 | 0.26 | 0.96 | 0.96 | 0.17 | 1.72 | 1.32 | 0.97 | 0.98 | 0.16 |
PC6 | 1.15 | 0.31 | 0.89 | 1.12 | 0.23 | 2.29 | 0.98 | 0.95 | 1.14 | 0.21 |
CS | 1.56 | 0.55 | 0.95 | 1.56 | 0.55 | 6.67 | 0.28 | 0.99 | 1.46 | 0.49 |
CS2 | 3.98 | 0.46 | 0.97 | 3.98 | 1.06 | 9.58 | 0.81 | 0.98 | 4.28 | 0.85 |
CS4 | 6.74 | 0.46 | 0.96 | 6.74 | 1.92 | 15.31 | 0.97 | 0.98 | 7.55 | 1.39 |
CS6 | 6.63 | 0.40 | 0.98 | 6.63 | 1.66 | 12.21 | 1.64 | 0.93 | 7.59 | 1.15 |
Table 2 Fit parameters of Cd2+ adsorption isotherm for biochar by LM and FM models
FM | LM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Adsorbent | Kf | n | radj2 | Kd/(L∙kg-1) | Qm/ (mg∙g-1) | KL | radj2 | Kd/(L∙kg-1) | ||
1 | 10 | 1 | 10 | |||||||
PC | 1.68 | 0.57 | 0.96 | 1.68 | 0.62 | 6.26 | 0.38 | 0.97 | 1.73 | 0.50 |
PC2 | 1.65 | 0.43 | 0.96 | 1.65 | 0.44 | 4.14 | 0.73 | 0.98 | 1.75 | 0.36 |
PC4 | 0.96 | 0.26 | 0.96 | 0.96 | 0.17 | 1.72 | 1.32 | 0.97 | 0.98 | 0.16 |
PC6 | 1.15 | 0.31 | 0.89 | 1.12 | 0.23 | 2.29 | 0.98 | 0.95 | 1.14 | 0.21 |
CS | 1.56 | 0.55 | 0.95 | 1.56 | 0.55 | 6.67 | 0.28 | 0.99 | 1.46 | 0.49 |
CS2 | 3.98 | 0.46 | 0.97 | 3.98 | 1.06 | 9.58 | 0.81 | 0.98 | 4.28 | 0.85 |
CS4 | 6.74 | 0.46 | 0.96 | 6.74 | 1.92 | 15.31 | 0.97 | 0.98 | 7.55 | 1.39 |
CS6 | 6.63 | 0.40 | 0.98 | 6.63 | 1.66 | 12.21 | 1.64 | 0.93 | 7.59 | 1.15 |
FM | LM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Adsorbent | Kf | n | radj2 | Kd/(L∙kg-1) | Qm/ (mg∙g-1) | KL | radj2 | Kd/(L∙kg-1) | ||
1 | 10 | 1 | 10 | |||||||
PC2W | 0.89 | 0.43 | 0.93 | 0.89 | 0.24 | 2.48 | 0.54 | 0.97 | 0.87 | 0.21 |
PC4W | 0.44 | 0.43 | 0.96 | 0.44 | 0.12 | 1.37 | 0.41 | 0.97 | 0.40 | 0.11 |
PC6W | 0.60 | 0.45 | 0.96 | 0.60 | 0.17 | 1.94 | 0.39 | 0.97 | 0.55 | 0.16 |
CS2W | 3.32 | 0.37 | 0.95 | 3.32 | 0.77 | 7.15 | 0.99 | 0.97 | 3.56 | 0.65 |
CS4W | 4.56 | 0.35 | 0.95 | 4.56 | 1.03 | 8.82 | 1.42 | 0.96 | 5.17 | 0.82 |
CS6W | 4.16 | 0.34 | 0.96 | 4.16 | 0.92 | 7.75 | 1.54 | 0.91 | 4.70 | 0.73 |
Table 3 Fit parameters of Cd2+ adsorption isotherm of biochar after the removal of soluble components by LM and FM models
FM | LM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Adsorbent | Kf | n | radj2 | Kd/(L∙kg-1) | Qm/ (mg∙g-1) | KL | radj2 | Kd/(L∙kg-1) | ||
1 | 10 | 1 | 10 | |||||||
PC2W | 0.89 | 0.43 | 0.93 | 0.89 | 0.24 | 2.48 | 0.54 | 0.97 | 0.87 | 0.21 |
PC4W | 0.44 | 0.43 | 0.96 | 0.44 | 0.12 | 1.37 | 0.41 | 0.97 | 0.40 | 0.11 |
PC6W | 0.60 | 0.45 | 0.96 | 0.60 | 0.17 | 1.94 | 0.39 | 0.97 | 0.55 | 0.16 |
CS2W | 3.32 | 0.37 | 0.95 | 3.32 | 0.77 | 7.15 | 0.99 | 0.97 | 3.56 | 0.65 |
CS4W | 4.56 | 0.35 | 0.95 | 4.56 | 1.03 | 8.82 | 1.42 | 0.96 | 5.17 | 0.82 |
CS6W | 4.16 | 0.34 | 0.96 | 4.16 | 0.92 | 7.75 | 1.54 | 0.91 | 4.70 | 0.73 |
[1] |
CAO X D, HARRIS W, 2010. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 101(14): 5222-5228.
DOI URL |
[2] |
CAO X D, MA L N, GAO B, et al., 2009. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 43(9): 3285-3291.
DOI URL |
[3] |
CASE S, MCNAMARA N P, REAY D S, et al., 2013. Can biochar reduce soil greenhouse gas emissions from a Miscanthus bioenergy crop?[J]. Global Change Biology Bioenergy, 6(1): 76-89.
DOI URL |
[4] |
CHOUDHARY M, KUMAR R, NEOGI S, 2020. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu2+ and Ni2+from water[J]. Journal of Hazardous Materials, DOI: 10.1016/j.jhazmat.2020.122441.
DOI |
[5] |
CUI X Q, FANG S Y, YAO Y Q, et al., 2016. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar[J]. Science of the Total Environment, 562: 517-525.
DOI URL |
[6] |
EDVALDO, SAGRILO, JEFFERY, et al., 2015. Emission of CO2 from biochar-amended soils and implications for soil organic carbon[J]. Global change biology bioenergy, 7(6):1294-1304.
DOI URL |
[7] |
HAN B, ANTHONY J M, KATHRY M, et al., 2022. Modification of naturally abundant resources for remediation of potentially toxic elements: A review[J]. Journal of Hazardous Materials, DOI: 10.1016/j.jhazmat.2021.126755.
DOI |
[8] | HE Z Q, MAO J D, HONEYCUTT C W, et al., 2009. Characterization of plant-derived water extractable organic matter by multiple spectroscopic techniques[J]. Biology & Fertility of Soils, 45(6): 609-616. |
[9] |
HUA Y, ZHENG X B, XUE L H, et al., 2020. Microbial aging of hydrochar as a way to increase cadmium ion adsorption capacity: Process and mechanism[J]. Bioresource Technology, DOI: 10.1016/j.biortech.2019.122708.
DOI |
[10] |
INYANG M I, GAO B, YAO Y, et al., 2016. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 46(4): 406-403.
DOI URL |
[11] |
KEILUWEIT M, NICO P S, JOHNSON M G, et al., 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 44(4): 1247-1253.
DOI URL |
[12] |
KLASSON K T, UCHIMIYA M, LIMA I M, 2014. Uncovering surface area and micropores in almond shell biochars by rainwater wash[J]. Chemosphere, 111: 129-134.
DOI URL |
[13] |
LI H B, DONG X L, SILVA E, et al., 2017. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemosphere, 178: 466-478.
DOI URL |
[14] |
LI H, MAHYOUB S, LIAO W J, et al., 2017. Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue[J]. Bioresource Technology, 223: 20-26.
DOI URL |
[15] |
LU H L, ZHANG W H, YANG Y X, et al., 2012. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 46(3): 854-862.
DOI URL |
[16] | MUKOME F, ZHANG X, SILVA L, et al., 2013. Use of chemical and physical characteristics to investigate trends in biochar feedstocks[J]. Journal of Agricultural & Food Chemistry, 61(9): 2196-2204 |
[17] |
PENG H B, GAO P, CHU G, et al., 2017. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars[J]. Environmental Pollution, 229: 846-853.
DOI URL |
[18] |
PENG Z, SUN H W, LI Y, et al., 2013. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars[J]. Journal of Hazardous Materials, 244-245: 217-224.
DOI URL |
[19] |
RAMLOW M, COTRUFO M F, 2018. Woody biochar's greenhouse gas mitigation potential across fertilized and unfertilized agricultural soils and soil moisture regimes[J]. Global Change Biology Bioenergy, 10(2): 108-122.
DOI URL |
[20] |
SAGRILO E, JEFFERY S, HOFFLAND E, et al., 2015. Emission of CO2 from biochar-amended soils and implications for soil organic carbon[J]. Global Change Biology Bioenergy, 7(6): 1294-1304.
DOI URL |
[21] |
TAN Y H, WAN X R ZHOU T, et al., 2022. Novel Zn-Fe engineered kiwi branch biochar for the removal of Pb(II) from aqueous solution[J]. Journal of Hazardous Materials, 424: 127349.
DOI URL |
[22] |
WANG J W, ZHANG Y S, LIU Z, et al., 2019. Coeffect of air pollution control devices on trace element emissions in an ultralow emission coal-fired power plant[J]. Energy & Fuels, 33: 248-256.
DOI URL |
[23] |
WANG L L, WANG X F, ZOU B, et al., 2011. Preparation of carbon black from rice husk by hydrolysis, carbonization and pyrolysis[J]. Bioresource Technology, 102(17): 8220-8224.
DOI URL |
[24] |
WANG R Z, HUANG D L, LIU Y G, et al., 2018. Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock[J]. Bioresource Technology, 261: 265-271.
DOI URL |
[25] |
WANG Z Y, LIU G C, ZHENG H, et al., 2015. Investigating the mechanisms of biochar's removal of lead from solution[J]. Bioresource Technology, DOI: 10.1016/j.biortech.2014.11.077.
DOI |
[26] |
WU J W, WANG T, ZHANG Y S, et al., 2019. The distribution of Pb(II)/ Cd(II) adsorption mechanisms on biochars from aqueous solution: Considering the increased oxygen functional groups by HCl treatment[J]. Bioresource Technology, DOI: 10.1016/j.biortech.2019. 121859.
DOI |
[27] | XU X Y, CAO X D, LING Z, et al., 2013. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science & Pollution Research International, 20(1): 358-368. |
[28] |
YANG X W, CUI C X, ZHENG A Q, et al., 2020. Ultrasonic and microwave assisted organosolv pretreatment of pine wood for producing pyrolytic sugars and phenols[J]. Industrial Crops and Products, DOI: 10.1016/j.indcrop.2020.112921.
DOI |
[29] |
YIN Y J, IMPELLITTERI C A, YOU S J, et al., 2002. The importance of organic matter distribution and extract soil: Solution ratio on the desorption of heavy metals from soils[J]. Science of The Total Environment, 287(1-2): 107-119.
DOI URL |
[30] |
YU W B, HU J W, YU Y C, et al., 2021. Facile preparation of sulfonated biochar for highly efficient removal of toxic Pb(II) and Cd(II) from wastewater[J]. Science of The Total Environment, DOI: 10.1016/ j.scitotenv.2020.141545.
DOI |
[31] |
YUAN J H, XU R K, HONG Z, 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 102(3): 3488-3497.
DOI URL |
[32] |
ZHANG C, ZENG G M, HUANG D L, et al., 2019. Biochar for environmental management: Mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts[J]. Chemical Engineering Journal, 373: 902-922.
DOI URL |
[33] |
ZHENG X B, MA X G, HUA Y, et al., 2021. Nitric acid-modified hydrochar enhance Cd2+ sorption capacity and reduce the Cd2+ accumulation in rice[J]. Chemosphere, DOI: 10.1016/j.chemosphere.2021.131261.
DOI |
[34] |
ZHOU D D, SAIKAT G, ZHANG D, et al., 2016. Role of ash content in biochar for copper immobilization[J]. Environmental Engineering Science, 33(12): 962-969.
DOI URL |
[35] | ALBERTO B C, 王航, 吕春欣, 等, 2015. 不同温度下松木生物质炭对阿特拉津的吸附性能研究[J]. 生态环境学报, 24(3): 505-510. |
ALBERTO B C, WANG H, LV C X, et al., 2015. Adsorption properties of pinus derived biochar for atrazine at different temperature[J]. Ecology and Environmental Sciences, 24(3): 505-510 | |
[36] | 陈再明, 万还, 徐义亮, 等, 2012. 水稻秸秆生物碳对重金属Pb2+的吸附作用及影响因素[J]. 环境科学学报, 32(4): 769-776. |
CHEN Z M, WAN H, XU Y L, et al., 2012. Adsorption of Pb2+ by rice straw derived-biochar and its influential factors[J]. Acta Scientiae Circumstantiae, 32(4): 769-776. | |
[37] | 崔志文, 任艳芳, 王伟, 等, 2020. 碱和磁复合改性小麦秸秆生物炭对水体中镉的吸附特性及机制[J]. 环境科学, 41(7): 3315-3325. |
CUI Z W, REN Y F, WANG W, et al., 2020. Adsorption characteristics and mechanism of cadmium in water by alkali and magnetic composite modified wheat straw biochar[J]. Environmental Science, 41(7): 3315-3325. | |
[38] | 韩林, 2017. 生物炭和改性生物炭对有机污染物的吸附-转化性能及作用机理[D]. 杭州: 浙江大学. |
HAN L, 2017. Adsorption-transformation performance and mechanism of organic pollutants on biochar and modified biochar[D]. Hangzhou: Zhejiang University. | |
[39] | 李力, 陆宇超, 刘娅, 等, 2012. 玉米秸秆生物炭对Cd(Ⅱ) 的吸附机理研究[J]. 农业环境科学学报, 31(11): 2277-2283. |
LI L, LU Y C, LIU Y, et al., 2011. Adsorption mechanisms of cadmium(Ⅱ) on biochars derived from corn straw[J]. Journal of Agro-Environment Science, 31(11): 2277-2283. | |
[40] | 林庆毅, 姜存仓, 张梦阳, 2017. 生物炭老化后理化性质及微观结构的表征[J]. 环境化学, 36(10): 2107-2114. |
LIN Q Y, JIANG C C, ZHANG M Y, 2017. Characterization of the physical and chemical structures of biochar under simulated aging condition[J]. Environmental Chemistry. 36(10): 2107-2114. | |
[41] | 王震宇, 刘国成, Monica Xing, 等, 2014. 不同热解温度生物炭对Cd(Ⅱ)的吸附特性[J]. 环境科学, 35(12): 4735-4744. |
WANG Z Y, LIU G C, MONICA X, et al., 2014. Adsorption of Cd(Ⅱ) varies with biochars derived at different pyrolysis temperatures[J]. Environmental Science, 35(12): 4735-4744. | |
[42] |
郑奎, 张士秋, 刘海峰, 等, 2019. 不同处理方式对生物炭吸附Sr(Ⅱ) 的影响机制[J]. 核化学与放射化学, 41(5): 492-502.
DOI |
ZHENG K, ZHANG S Q, LIU H F, et al., 2019. Effect of different treatments on Sr(Ⅱ) adsorption on biochar[J]. Journal of Nuclear and Radiochemistry, 41(5): 492-502.
DOI |
|
[43] | 周丹丹, 吴文卫, 赵婧, 等, 2016. 花生壳和松木屑制备的生物炭对Cu2+的吸附研究[J]. 生态环境学报, 25(3): 523-530. |
ZHOU D D, WU W W, ZHAO J, et al., 2016. Study on the adsorption of Cu2+ to biochars produced from peanut shells and pine chips[J]. Ecology and Environmental Sciences, 25(3): 523-530. |
[1] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[2] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[3] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[4] | XU Min, XU Chao, YU Guanghui, YIN Lichu, ZHANG Quan, ZHU Hanhua, ZHU Qihong, ZHANG Yangzhu, HUANG Daoyou. Effects of Groundwater Level and Long-term Straw Return on Soil Cadmium Availability and Cadmium Concentration in Rice [J]. Ecology and Environment, 2023, 32(1): 150-157. |
[5] | CUI Yuanyuan, ZHANG Zhengyun, LIU Peng, ZHANG Yunchun, ZHANG Qiaoying. Morphological Characteristics and Fractal Dimension of Brassia chinensis Root System under Cadmium and Polyethylene Microplastic Stress [J]. Ecology and Environment, 2023, 32(1): 158-165. |
[6] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[7] | YOU Hongjian, ZHANG Wenwen, LAN Zhengfang, MA Lan, ZHANG Baodi, MU Xiaokun, LI Wenhui, CAO Yune. Effects of Earthworm in-situ Composting and Biochar on Cucumber Root-knot Nematodes and Rhizosphere Microorganisms [J]. Ecology and Environment, 2023, 32(1): 99-109. |
[8] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[9] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environment, 2022, 31(8): 1629-1636. |
[10] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[11] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[12] | QIAN Lianwen, YU Tiantian, LIANG Xujun, WANG Yixiang, CHEN Yongshan. Stability of Biochar after Application for 5 Years in the Amendment of Acidified Tea Garden Soil [J]. Ecology and Environment, 2022, 31(7): 1442-1447. |
[13] | ZHANG Huiqi, LI Zizhong, QI Yan. Effects of Corn Straw-based Biochar Amount on Pores and Water Holding Capacity of Sandy Soil [J]. Ecology and Environment, 2022, 31(6): 1272-1277. |
[14] | DENG Xiao, WU Chunyuan, YANG Guisheng, LI Yi, LI Qinfen. Improvement Effect of Coconut-shell Biochar on Coastal Soil in Hainan [J]. Ecology and Environment, 2022, 31(4): 723-731. |
[15] | WEI Lan, HUANG Lianxi, LI Xiang, WANG Zehuang, CHEN Weisheng, HUANG Qing, HUANG Yufen, LIU Zhongzhen. Biochar Medium Could Significantly Improve Banana Seedling Growth [J]. Ecology and Environment, 2022, 31(4): 732-739. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn