Ecology and Environment ›› 2022, Vol. 31 ›› Issue (4): 824-834.DOI: 10.16258/j.cnki.1674-5906.2022.04.021
• Research Articles • Previous Articles Next Articles
CHENG Wenyuan1,2(), LI Fayun2,3,*(), LÜ Jianhua1,*, LIN Meixia4, WANG Wei2,3
Received:
2020-12-11
Online:
2022-04-18
Published:
2022-06-22
Contact:
LI Fayun,LÜ Jianhua
程文远1,2(), 李法云2,3,*(), 吕建华1,*, 吝美霞4, 王玮2,3
通讯作者:
李法云,吕建华
作者简介:
程文远(1987年生),男,硕士研究生。E-mail: wenyuancheng2020@163.com
基金资助:
CLC Number:
CHENG Wenyuan, LI Fayun, LÜ Jianhua, LIN Meixia, WANG Wei. Sorption Characteristics of Polycyclic Aromatic Hydrocarbons Phenanthrene on Sunflower Straw Biochar Modified with Alkali[J]. Ecology and Environment, 2022, 31(4): 824-834.
程文远, 李法云, 吕建华, 吝美霞, 王玮. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 2022, 31(4): 824-834.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.04.021
名称 Name | 分子结构 Molecular formula | 化学结构 Chemical structure | 分子质量 Molecular mass/ (g∙mol-1) | 辛醇-水分配系数 Octanol-water partition coefficients | 溶解度 Solubility/ (mg∙L-1) | 分子体积 Molecular volume/ nm3 |
---|---|---|---|---|---|---|
菲 Phenanthrene | C14H10 | 178.23 | 4.57 | 1.18 | 0.347 |
Table 1 Physicochemical properties of phenanthrene
名称 Name | 分子结构 Molecular formula | 化学结构 Chemical structure | 分子质量 Molecular mass/ (g∙mol-1) | 辛醇-水分配系数 Octanol-water partition coefficients | 溶解度 Solubility/ (mg∙L-1) | 分子体积 Molecular volume/ nm3 |
---|---|---|---|---|---|---|
菲 Phenanthrene | C14H10 | 178.23 | 4.57 | 1.18 | 0.347 |
Sample | C, H, N, O contents/% | Atomic ratios | BET/ (m2∙g-1) | ||||||
---|---|---|---|---|---|---|---|---|---|
C | H | N | O | (N+O)/C | O/C | H/C | |||
BC300 | 45.27 | 2.24 | 1.57 | 27.82 | 0.65 | 0.61 | 0.05 | 19.72 | |
BC500 | 51.69 | 1.35 | 1.62 | 16.16 | 0.34 | 0.31 | 0.03 | 93.26 | |
BC700 | 55.30 | 0.66 | 1.71 | 10.45 | 0.22 | 0.19 | 0.01 | 523.57 | |
A-BC500 | 42.71 | 0.73 | 1.26 | 19.51 | 0.49 | 0.46 | 0.02 | 529.14 |
Table 2 Elemental compositions and atomic ratios of biochars
Sample | C, H, N, O contents/% | Atomic ratios | BET/ (m2∙g-1) | ||||||
---|---|---|---|---|---|---|---|---|---|
C | H | N | O | (N+O)/C | O/C | H/C | |||
BC300 | 45.27 | 2.24 | 1.57 | 27.82 | 0.65 | 0.61 | 0.05 | 19.72 | |
BC500 | 51.69 | 1.35 | 1.62 | 16.16 | 0.34 | 0.31 | 0.03 | 93.26 | |
BC700 | 55.30 | 0.66 | 1.71 | 10.45 | 0.22 | 0.19 | 0.01 | 523.57 | |
A-BC500 | 42.71 | 0.73 | 1.26 | 19.51 | 0.49 | 0.46 | 0.02 | 529.14 |
Sample | qe | Pseudo-first Order Kinetic Model | Pseudo-second Order Kinetic Model | Intra-particle diffusion model | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
qe, 1 | k1 | R2 | qe, 2 | k2 | R2 | qe, id | kid | C | R2 | ||||
BC300 | 3.71 | 3.39 | 0.53 | 0.9319 | 3.78 | 0.19 | 0.9990 | 3.87 | 0.46 | 1.62 | 0.8104 | ||
BC500 | 4.25 | 3.94 | 0.77 | 0.9073 | 4.27 | 0.27 | 0.9986 | 4.43 | 0.41 | 2.43 | 0.7540 | ||
BC700 | 5.19 | 5.06 | 2.14 | 0.8547 | 5.17 | 1.34 | 0.9938 | 5.25 | 0.13 | 4.62 | 0.6147 | ||
A-BC500 | 4.79 | 4.63 | 1.72 | 0.8177 | 4.78 | 0.89 | 0.9977 | 4.87 | 0.18 | 3.99 | 0.6657 |
Table 3 Fitting parameters of the sorption kinetics of phenanthrene by biochars
Sample | qe | Pseudo-first Order Kinetic Model | Pseudo-second Order Kinetic Model | Intra-particle diffusion model | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
qe, 1 | k1 | R2 | qe, 2 | k2 | R2 | qe, id | kid | C | R2 | ||||
BC300 | 3.71 | 3.39 | 0.53 | 0.9319 | 3.78 | 0.19 | 0.9990 | 3.87 | 0.46 | 1.62 | 0.8104 | ||
BC500 | 4.25 | 3.94 | 0.77 | 0.9073 | 4.27 | 0.27 | 0.9986 | 4.43 | 0.41 | 2.43 | 0.7540 | ||
BC700 | 5.19 | 5.06 | 2.14 | 0.8547 | 5.17 | 1.34 | 0.9938 | 5.25 | 0.13 | 4.62 | 0.6147 | ||
A-BC500 | 4.79 | 4.63 | 1.72 | 0.8177 | 4.78 | 0.89 | 0.9977 | 4.87 | 0.18 | 3.99 | 0.6657 |
Sample | Langmuir model | Freundlich model | |||||
---|---|---|---|---|---|---|---|
qm | kl | R2 | kf | n | R2 | ||
BC300 | 8.60 | 3.95 | 0.97 | 8.60 | 0.53 | 0.96 | |
BC500 | 9.98 | 5.50 | 0.96 | 12.00 | 0.54 | 0.93 | |
BC700 | 8.43 | 18.98 | 0.94 | 12.50 | 0.39 | 0.90 | |
A-BC500 | 8.62 | 11.54 | 0.99 | 11.97 | 0.44 | 0.96 |
Table 4 Fitting parameters of the sorption isotherms of phenanthrene by biochars
Sample | Langmuir model | Freundlich model | |||||
---|---|---|---|---|---|---|---|
qm | kl | R2 | kf | n | R2 | ||
BC300 | 8.60 | 3.95 | 0.97 | 8.60 | 0.53 | 0.96 | |
BC500 | 9.98 | 5.50 | 0.96 | 12.00 | 0.54 | 0.93 | |
BC700 | 8.43 | 18.98 | 0.94 | 12.50 | 0.39 | 0.90 | |
A-BC500 | 8.62 | 11.54 | 0.99 | 11.97 | 0.44 | 0.96 |
[1] |
ALI N, IMI I, KHDER M, et al., 2017. Polycyclic aromatic hydrocarbons (PAHs) in the settled dust of automobile workshops, health and carcinogenic risk evaluation[J]. Science of the Total Environment, 601-602: 478-484.
DOI URL |
[2] |
CAGNON B, PY X, GUILLOT A, et al., 2009. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors[J]. Bioresource Technology, 100(1): 292-298.
DOI URL |
[3] |
CHEN B L, JOHNSON E J, CHEFETZ B, et al., 2005. Sorption of polar andnonpolar aromatic organic contaminants by plant cuticular materials: The role of polarity andaccessibility[J]. Environmental Science & Technology, 39(16): 6138-6146.
DOI URL |
[4] |
CHEN B L, ZHOU D D, ZHU L Z, 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science and Technology, 42(14): 5137-5143.
DOI URL |
[5] |
EDOKPAYI J, ODIYO J, POPOOLA O, et al., 2016. Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in Vhembe District, South Africa[J]. International Journal of Environmental Research and Public Health, 13(4): 387.
DOI URL |
[6] |
El-ASHTOUKHY E S Z, AMIN N K, ABDELWAHAB O, 2008. Removal of lead (Ⅱ) and copper (Ⅱ) from aqueous solution using pomegranate peel as a new adsorbent[J]. Desalination, 223(1-3): 162-173.
DOI URL |
[7] | ERTUGAY N, MALKOC E, 2014. Adsorption isotherm, kinetic, and thermodynamic studies for methylene blue from aqueous solution by needles of Pinus sylvestris L.[J]. Polish Journal of Environmental Studies, 23(6): 1995-2006. |
[8] |
FLOTRON V, DELTEIL C, PADELLEC Y, et al., 2005. Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process[J]. Chemosphere, 59(10): 1427-1437.
DOI URL |
[9] | GAO J, WANG Y, ZHOU S, et al., 2017. A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible-light photocatalytic performance[J]. Chem Cat Chem, 9(9): 1708-1715. |
[10] |
HOSSAIN M K, STREVOZ V, CHAN K Y, et al., 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. Journal of Environmental Management, 92(1): 223-228.
DOI URL |
[11] |
INYANG M, GAO B, PULLAMMANAPPALLIL P, et al., 2010. Biochar from anaerobically digested sugarcane bagasse[J]. Bioresource Technology, 101(22): 8868-8872.
DOI URL |
[12] |
JIANG L, LIU Y, LIU S, et al., 2017. Adsorption of estrogen contaminants by graphene nanomaterials under natural organic matter preloading: comparison to carbon nanotube, biochar, and activated carbon[J]. Environmental Science & Technology, 51: 6352-6359.
DOI URL |
[13] |
KEILUWEIT M, NICO P S, JOHNSON M G, et al., 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science and Technology, 44(4): 1247-1253.
DOI URL |
[14] |
KUBATOVA A, JANSEN B, VAUDOISOT J F, et al., 2002. Thermodynamic and kinetic models for the extraction of essential oil from savory and polycyclic aromatic hydrocarbons from soil with hot (subcritical) water and supercritical CO2[J]. Journal of Chromatography A, 975(1): 175-188.
DOI URL |
[15] |
LI F Y, LIN M X, 2020. Synthesis of biochar-supported K-doped g-C3N4 photocatalyst for enhancing the polycyclic aromatic hydrocarbon degradation activity[J]. International Journal of Environmental Research and Public Health, 17(6): 2065.
DOI URL |
[16] |
LIAN F, SUN B B, SONG Z G, et al., 2014. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole[J]. Chemical Engineering Journal, 248: 128-134.
DOI URL |
[17] |
LIOU T H, WU S J, 2009. Characteristics of microporous/mesoporous carbons prepared from rice husk under base and acid-treated conditions[J]. Journal of Hazardous Materials, 171(1-3): 693-703.
DOI URL |
[18] | LYU H H, GAO B, HE F, et al., 2017. Ball-milled carbon nanomaterials for energy and environmental applications[J]. ACS Sustainable Chemistry & Engineering, 5(11): 9568-9585. |
[19] |
LYU H H, ZHANG Q R, SHEN B X, et al., 2020. Application of biochar and its composites in catalysis[J]. Chemosphere, 240: 124842.
DOI URL |
[20] |
MISHRA A K, AROCKIADOSS T, RAMAPRABHU S, 2010. Study of removal of azo dye by functionalized multi walled carbon nanotubes[J]. Chemical Engineering Journal, 162(3): 1026-1034.
DOI URL |
[21] |
MOHAN D, SARSWAT A, Ok Y S, et al., 2014. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-A critical review[J]. Bioresource Technology, 160: 191-202.
DOI URL |
[22] |
NGUYEN V H, THI L A P, LE Q V, et al., 2020. Tailored photocatalysts and revealed reaction pathways for photodegradation of polycyclic aromatic hydrocarbons (PAHs) in water, soil and other sources[J]. Chemosphere, 260: 127529.
DOI URL |
[23] | OZAKI N, NAKAZATO A, NAKASHIMA K, et al., 2017. Loading and removal of PAHs, fragrance compounds, triclosan and toxicity by composting process from sewage sludge[J]. Science of the Total Environment, 605: 860-866. |
[24] |
POTIN O, VEIGNIE E, RAFIN C, 2004. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil[J]. FEMS Microbiology Ecology, 51(1): 71-78.
DOI URL |
[25] |
RAO M A, DI R S G, SCELZA R, et al., 2017. Biochar based remediation of water and soil contaminated by phenanthrene and pentachlorophenol[J]. Chemosphere, 186: 193-201.
DOI URL |
[26] |
SCHWANNINGER M, RODRIGUES J C, PEREIRA H, et al., 2004. Effects of short-time vibratory ball milling on the shape of FTIR spectra of wood and cellulose[J]. Vibrational Spectroscopy, 36(1): 23-40.
DOI URL |
[27] |
TANG J C, LV H H, GONG Y Y, et al., 2015. Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal[J]. Bioresource Technology, 196: 355-363.
DOI URL |
[28] |
TSAI W T, LIU S C, CHEN H R, et al., 2012. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment[J]. Chemosphere, 89: 198-203.
DOI URL |
[29] |
YANG X, KWON E E, DOU X M, et al., 2018. Fabrication of spherical biochar by a two-step thermal process from waste potato peel[J]. Science of Total Environment, 626: 478-485.
DOI URL |
[30] |
YUAN H R, LU T, ZHAO D D, et al., 2013. Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis[J]. Journal of Material Cycles and Waste Management, 15: 357-361.
DOI URL |
[31] |
ZHANG J M, LIU G J, WANG R J, et al., 2017. Polycyclic aromatic hydrocarbons in the water-SPM-sediment system from the middle reaches of Huai River, China: distribution, partitioning, origin tracing and ecological risk assessment[J]. Environmental Pollution, 230: 61-71.
DOI URL |
[32] |
ZHANG J, LIU J, LIU R L, 2015. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate[J]. Bioresource Technology, 176: 288-291.
DOI URL |
[33] | ZHANG L, TONG L, ZHU P G, et al., 2018. Adsorption of chlortetracycline onto biochar derived from corn cob and sugarcane bagasse[J]. Water Science & Technology, 78(5-6): 1336-1347. |
[34] |
ZHANG P, O’CONNOR D, WANG Y N, et al., 2020. A green biochar/iron oxide composite for methylene blue removal[J]. Journal of Hazardous Materials, 384: 121286.
DOI URL |
[35] | 曹云者, 柳晓娟, 谢云峰, 等, 2012. 我国主要地区表层土壤中多环芳烃组成及含量特征分析[J]. 环境科学学报, 32(1): 197-203. |
CAO Y Z, LIU X J, XIE Y F, et al., 2012. Patterns of PAHs concentrations and components in surface soils of main areas in China[J]. Acta Scientiae Circumstantiae, 32(1): 197-203. | |
[36] | 陈再明, 陈宝梁, 周丹丹, 2013. 水稻秸秆生物碳的结构特征及其对有机污染物的吸附性能[J]. 环境科学学报, 33(1): 9-19. |
CHEN Z M, CHEN B L, ZHOU D D, 2013. Composition and sorption properties of rice-straw derived biochars[J]. Acta Scientiae Circumstantiae, 33(1): 9-19. | |
[37] | 戴中民, 2017. 生物炭对酸化土壤的改良效应与生物化学机理研究[D]. 杭州: 浙江大学. |
DAI Z M, 2017. The effects of biochar on acid soil improvement and the related biochemical mechanisms[D]. Hangzhou: Zhejiang Uniwersity. | |
[38] | 丁思惠, 方升佐, 田野, 等, 2020. 不同热解温度下杨树各组分生物炭的理化特性分析与评价[J]. 南京林业大学学报(自然科学版), 44(6): 193-200. |
DING S H, FANG S Z, TIAN Y, et al., 2020. Analysis and evaluation on physicochemical properties of poplar biochar at different pyrolysis temperatures[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 44(6): 193-200. | |
[39] | 韩林, 2017. 生物炭和改性生物炭对有机污染物的吸附-转化性能及作用机理[D]. 杭州: 浙江大学. |
HAN L, 2017. Adsorption-transformation performance and mechanism of organic polutants on biochar and modified biochar[D]. Hangzhou: Zhejiang Uniwersity. | |
[40] | 杭嘉祥, 李法云, 梁晶, 等, 2020. 镁改性芦苇生物炭对水环境中磷酸盐的吸附特性[J]. 生态环境学报, 29(6): 1235-1244. |
HANG J X, LI F Y, LIANG J, et al., 2020. The characteristics of phosphate adsorption in water environment by magnesium modified biochar from wetland reed[J]. Ecology and Environmental Sciences, 29(6): 1235-1244. | |
[41] | 黄华, 王雅雄, 唐景春, 等, 2014. 不同烧制温度下玉米秸秆生物炭的性质及对萘的吸附性能[J]. 环境科学, 35(5): 1884-1890. |
HUANG H, WANG Y X, TANG J C, et al., 2014. Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene[J]. Environmental Science, 35(5): 1884-1890. | |
[42] | 李洋, 宋洋, 王芳, 等, 2015. 小麦秸秆生物炭对高氯代苯的吸附过程与机制研究[J]. 土壤学报, 52(5): 1096-1105. |
LI Y, SONG Y, WANG F, et al., 2015. Effect of wheat straw biochar on high chlorinated benzene sorption process and mechanism[J]. Acta Pedologica Sinica, 52(5): 1096-1105. | |
[43] | 蒲生彦, 上官李想, 刘世宾, 等, 2019. 生物炭及其复合材料在土壤污染修复中的应用研究进展[J]. 生态环境学报, 28(3): 629-635. |
PU S Y, SAHNGGUAN L X, LIU S B, et al., 2019. A review of the application of biochar and its composites in soil remediation[J]. Ecology and Environmental Sciences, 28(3): 629-635. | |
[44] | 乔印虎, 张春燕, 何春霞, 等, 2019. 预处理与低温热解对向日葵秸秆炭N2的吸附性能研究[J]. 太阳能学报, 40(8): 2128-2134. |
QIAO Y H, ZHANG C Y, HE C X, et al., 2019. Effect of different pre-treatments and low-temperature pyrolysis on sunflower straw biochar for N2 adsorption[J]. Acta Energiae Solaris Sinica, 40(8): 2128-2134. | |
[45] | 王蒙, 2018. 碱改性生物炭的制备及其作为替代硅源的潜能研究[D]. 杨凌: 西北农林科技大学. |
WANG M, 2018. Alkali-enhanced biochar production and its potential as an alternative silicon source[D]. Yangling: Northwest A & F University. | |
[46] | 王毅斌, 王学斌, 谭厚章, 等, 2015. 生物质燃烧过程中碱金属的结晶行为[J]. 燃烧科学与技术, 21(5): 435-439. |
WANG Y B, WANG X B, TAN H Z, et al., 2015. Condensation behaviors of alkali salt vapors in biomass combustion[J]. Journal of Combustion Science and Technology, 21(5): 435-439. | |
[47] | 韦思业, 2017. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所). |
WEI S Y, 2017. Influence of biomass feedstocks and pyrolysis temperatures on physical and chemical properties of biochar[D]. Guangzhou: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, | |
[48] | 吴晴雯, 孟梁, 张志豪, 等, 2016. 芦苇秸秆生物炭对水中菲和1, 1-二氯乙烯的吸附特性[J]. 环境科学, 37(2): 680-688. |
WU Q W, MENG L, ZHANG Z H, et al., 2016. Sorption characteristics of phenanthrene and 1, 1-dichloroethene onto reed straw biochar in aquatic solutions[J]. Environmental Science, 37(2): 680-688. |
[1] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[2] | LIN Xin, DUAN Kunyu, GUO Hong, JIANG Dongsheng, JI Xiaoting, WANG Hong. The Causes of the Abnormal Increase of Ozone in Fuzhou City under Extreme High Temperature [J]. Ecology and Environment, 2023, 32(2): 320-330. |
[3] | FU Rong, WU Xinmei, CHEN Bin. Analysis on the Spatial Stratified Heterogeneity and Driving Factors Differences of the Urban Land Surface Temperature: A Case Study of Hefei [J]. Ecology and Environment, 2023, 32(1): 110-122. |
[4] | JIANG Tiantian, YANG Chun, LIAO Wei, HU Li, LIU Huanyao, REN Bo, LI Xiaoma. Path Analysis of the Urban Greenspace Landscape Pattern Impacts on Land Surface Temperature: A Case Study in Changsha [J]. Ecology and Environment, 2023, 32(1): 18-25. |
[5] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[6] | YOU Hongjian, ZHANG Wenwen, LAN Zhengfang, MA Lan, ZHANG Baodi, MU Xiaokun, LI Wenhui, CAO Yune. Effects of Earthworm in-situ Composting and Biochar on Cucumber Root-knot Nematodes and Rhizosphere Microorganisms [J]. Ecology and Environment, 2023, 32(1): 99-109. |
[7] | MA Chuang, WANG Yuyang, ZHOU Tong, WU Longhua. Enrichment Characteristics and Desorption Behavior of Cadmium and Zinc in Particulate Organic Matter of Polluted Soil [J]. Ecology and Environment, 2022, 31(9): 1892-1900. |
[8] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[9] | RUAN Huihua, XU Jianhui, ZHANG Feifei. Spatiotemporal Changes of Vegetation and Land Surface Temperature during 2001 and 2020 in the Guangdong-Hong Kong-Macao Greater Bay Area of China [J]. Ecology and Environment, 2022, 31(8): 1510-1520. |
[10] | QI Yue, ZHANG Qiang, HU Shujuan, CAI Dihua, ZHAO Funian, ZHANG Kai, WANG Heling, WANG Runyuan. Climate Change and Its Impact on Winter Wheat Potential Productivity of Loess Plateau in China [J]. Ecology and Environment, 2022, 31(8): 1521-1529. |
[11] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[12] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[13] | CUI Qiao, LI Zongxing, ZHANG Baijuan, ZHAO Yue, NAN Fusen. A Meta-analysis of the Effects of Freezing and Thawing on Soil Dissolved Carbon and Nitrogen and Microbial Biomass Carbon and Nitrogen Contents [J]. Ecology and Environment, 2022, 31(8): 1700-1712. |
[14] | QIAN Lianwen, YU Tiantian, LIANG Xujun, WANG Yixiang, CHEN Yongshan. Stability of Biochar after Application for 5 Years in the Amendment of Acidified Tea Garden Soil [J]. Ecology and Environment, 2022, 31(7): 1442-1447. |
[15] | LEI Jun, ZHANG Jian, ZHAO Funian, QI Yue, ZHANG Xiuyun, LI Qiang, SHANG Junlin. Response of Photosynthetic Parameters for Spring Wheat at Flowering Stage to Soil Moisture and Temperature [J]. Ecology and Environment, 2022, 31(6): 1151-1159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn