Ecology and Environment ›› 2022, Vol. 31 ›› Issue (6): 1272-1277.DOI: 10.16258/j.cnki.1674-5906.2022.06.024
• Research Articles • Previous Articles Next Articles
ZHANG Huiqi1,2(), LI Zizhong1,*(
), QI Yan1,3
Received:
2021-12-27
Online:
2022-06-18
Published:
2022-07-29
Contact:
LI Zizhong
通讯作者:
李子忠
作者简介:
张慧琦(1991生),男,博士,研究方向为土地保护与可持续利用。E-mail: zhanghuiqi@caas.cn; zhq_cau@foxmail.com
基金资助:
CLC Number:
ZHANG Huiqi, LI Zizhong, QI Yan. Effects of Corn Straw-based Biochar Amount on Pores and Water Holding Capacity of Sandy Soil[J]. Ecology and Environment, 2022, 31(6): 1272-1277.
张慧琦, 李子忠, 秦艳. 玉米秸秆生物炭用量对砂土孔隙和持水性的影响[J]. 生态环境学报, 2022, 31(6): 1272-1277.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.06.024
材料 Materials | w(OM)/ (g·kg-1) | w(TN)/ (g∙kg-1) | w(TC)/ w(TN) | w(AP)/ (mg·kg-1) | w(AK)/ (mg·kg-1) |
---|---|---|---|---|---|
砂土S andy soil | 1.8 | 0.2 | 10.09 | 0.82 | 28.80 |
生物炭 Biochar | 660.5 | 27.4 | 24.07 | 6532.82 | 29543.92 |
玉米秸秆Maize straw | 431.5 | 27.8 | 15.51 | 3531.86 | 12027.53 |
Table 1 Chemical analysis of sandy soil, biochar and maize straw
材料 Materials | w(OM)/ (g·kg-1) | w(TN)/ (g∙kg-1) | w(TC)/ w(TN) | w(AP)/ (mg·kg-1) | w(AK)/ (mg·kg-1) |
---|---|---|---|---|---|
砂土S andy soil | 1.8 | 0.2 | 10.09 | 0.82 | 28.80 |
生物炭 Biochar | 660.5 | 27.4 | 24.07 | 6532.82 | 29543.92 |
玉米秸秆Maize straw | 431.5 | 27.8 | 15.51 | 3531.86 | 12027.53 |
Figure 1 Effect of biochar amount on soil particle density CK, 1BC, 2BC, 3BC, 4BC, 6BC, 8BC and 10BC represent the mass fraction (dry weight, W/W) mixing of corn straw-based biochar and tested soil at the ratios of 0, 1%, 2%, 3%, 4%, 6%, 8% and 10%, respectively. The same below
处理 Treatment | θ r/(cm3∙cm-3) | θ S/(cm3∙cm-3) | α | n | r2 |
---|---|---|---|---|---|
CK | 0.036 | 0.400c | 0.1123 | 1.1984 | 0.9838 |
2BC | 0.036 | 0.380d | 0.1108 | 1.1626 | 0.9944 |
6BC | 0.036 | 0.470b | 0.1761 | 1.1811 | 0.9925 |
10BC | 0.036 | 0.500a | 0.1233 | 1.1920 | 0.9950 |
Table 2 Simulation parameters of pF curve
处理 Treatment | θ r/(cm3∙cm-3) | θ S/(cm3∙cm-3) | α | n | r2 |
---|---|---|---|---|---|
CK | 0.036 | 0.400c | 0.1123 | 1.1984 | 0.9838 |
2BC | 0.036 | 0.380d | 0.1108 | 1.1626 | 0.9944 |
6BC | 0.036 | 0.470b | 0.1761 | 1.1811 | 0.9925 |
10BC | 0.036 | 0.500a | 0.1233 | 1.1920 | 0.9950 |
处理 Treatment | ≥50 μm | 50-20 μm | <20 μm |
---|---|---|---|
CK | 32%a | 11%a | 57%b |
2BC | 28%b | 9%a | 63%a |
6BC | 35%a | 10%a | 55%b |
10BC | 33%a | 10%a | 57%b |
Table 3 Percentage of soil pore size distribution
处理 Treatment | ≥50 μm | 50-20 μm | <20 μm |
---|---|---|---|
CK | 32%a | 11%a | 57%b |
2BC | 28%b | 9%a | 63%a |
6BC | 35%a | 10%a | 55%b |
10BC | 33%a | 10%a | 57%b |
[1] | BAIAMONTE G, CRESCIMANNO G, PARRINO F, et al., 2019. Effect of biochar on the physical and structural properties of a sandy soil[J]. Catena, 175: 294-303. |
[2] | BASSO A S, MIGUEZ F E, LAIRD D A, 2013. Assessing potential of biochar for increasing water-holding capacity of sandy soils[J]. Global Change Biology Bioenergy, 5: 132-143. |
[3] | BIKBULATOVA S, TAHMASEBI A, ZHANG Z, et al., 2018. Understanding water retention behavior and mechanism in bio-char[J]. Fuel Processing Technology, 169: 101-111. |
[4] | BLANCO-CANQUI H, 2017. Biochar and soil physical properties[J]. Soil Science Society of America Journal, 81: 687-711. |
[5] | BROWN R A, KERCHER A K, NGUYEN T H, et al., 2006. Production and characterization of synthetic wood chairs for use as surrogates for natural sorbents[J]. Organic Geochemistry, 37(3): 321-333. |
[6] | BURRELL L D, ZEHETNER F, RAMPAZZO N, et al., 2016. Long-term effects of biochar on soil physical properties[J]. Geoderma, 282: 96-102. |
[7] | CORNELISSEN G, MARTINSEN V, SHITUMBANUMA V, et al., 2013. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia[J]. Agronomy, 3(2): 256-274. |
[8] | EDEH I G, MAŠEK O, BUSS W, 2020. A meta-analysis on biochar's effects on soil water properties-New insights and future research challenges[J]. Science of the Total Environment, 714: 136857. |
[9] | HARVEY O R, KUO L J, ZIMMERMAN A R, et al., 2012. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (Biochars)[J]. Environmental Science and Technology, 46(3): 1415-1421. |
[10] | HE L Z, ZHONG H, LIU G X, et al., 2019. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China[J]. Environmental Pollution, 252(Part A): 846-855. |
[11] | HERAWATI A, MUJIYO, SYAMSIYAH J, et al., 2021. Application of soil amendments as a strategy for water holding capacity in sandy soils[J]. IOP Conference Series: Earth and Environmental Science, 724(1): 012014. |
[12] | JEFFERY S, VERHEIJEN F G A, VAN DER VELDE M, et al., 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis[J]. Agriculture, Ecosystems and Environment, 144(1): 175-187. |
[13] | KARHU K, MATTILA T, BERGSTROM I, et al., 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short-term pilot field study[J]. Agriculture, Ecosystems and Environment, 140(1-2): 309-313. |
[14] | KEILUWEIT M, NICO P S, JOHNSON M G, et al., 2010. Dynamic molecular structure of plant biomass-derived black carbon (Biochar)[J]. Environmental Science and Technology, 44(4): 1247-1253. |
[15] | LESK C, ROWHANI P, RAMANKUTTY N, 2016. Influence of extreme weather disasters on global crop production[J]. Nature, 529(7584): 84-87. |
[16] | LI H, AND TAN Z, 2021. Preparation of high water-retaining biochar and its mechanism of alleviating drought stress in the soil and plant system[J]. Biochar, 3(9): 579-590. |
[17] | LI J S, SHAO X Q, HUANG D, et al., 2022. Short-term biochar effect on soil physicochemical and microbiological properties of a degraded alpine grassland[J]. Pedosphere, 32(3): 426-437. |
[18] | MUKOME F N D, ZHANG X, SILVA L C R, et al., 2013. Use of chemical and physical characteristics to investigate trends in biochar feedstocks[J]. Journal of agricultural and food chemistry, 61(9): 2196-2204. |
[19] | NOVAK J M, LIMA I, XING B, 2009. Characterization of designer biochar produced at different temperature and their effects on loamy sand[J]. Annals of Environmental Science, 3: 195-206. |
[20] | OBOUR P B, DANSO E O, POULADI N, et al., 2020. Soil structure characteristics, functional properties and consistency limits response to corn cob biochar particle size and application rates in a 36-month pot experiment[J]. Soil Research, 58(5): 488-497. |
[21] | QIU Y P, ZHENG Z Z, ZHOU Z L, 2009. Effectiveness and mechanisms of dye adsorption on a straw-based biochar[J]. Bioresource Technology, 100(21): 5348-5351. |
[22] |
RAZZAGHI F, OBOUR P B, ARTHUR E, 2020. Does biochar improve soil water retention? A systematic review and meta-analysis[J]. Geoderma, DOI: 10.1016/j.geoderma.2019.114055.
DOI URL |
[23] | SOLAIMAN Z M, MURPHY D V, ABBOTT L K, 2012. Biochars influence seed germination and early growth of seedlings[J]. Plant Soil, 353(1-2): 273-287. |
[24] | SONG Z Z, PENG Y X, LI Z Z, et al., 2022. Two irrigation events can achieve relatively high, stable corn yield and water productivity in aeolian sandy soil of Northeast China[J]. Agricultural Water Management, 260: 107291. |
[25] | TABOADA M A, MICUCCI F G, COSENTINO D J, et al., 1985. Comparison of compaction induced by conventional and zero tillage in two soils of the Rolling Pampa of Argentina[J]. Soil and Tillage Research, 49: 57-63. |
[26] | TANG J C, ZHU W Y, KOOKANA R, et al., 2013. Characteristics of biochar and its application in remediation of contaminated soil[J]. Journal of Bioscience and Bioengineering, 116(6): 653-659. |
[27] | TRENBERTH K E, FASULLO J T, SHEPHERD T G, 2015. Attribution of climate extreme events[J]. Nature Climate Change, 5: 725-730. |
[28] | VAN GENUCHTEN M TH, 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 44: 892-898. |
[29] | WANG D Y, LI C Y, PARIKH S J, et al., 2019. Impact of biochar on water retention of two agricultural soils-A multi-scale analysis[J]. Geoderma, 340: 185-191. |
[30] | YANG C D, AND LU S G, 2021. Effects of five different biochars on aggregation, water retention and mechanical properties of paddy soil: A field experiment of three-season crops[J]. Soil and Tillage Research, 205: 104798. |
[31] | YANG C D, LIU J J, LU S G, 2021. Pyrolysis temperature affects pore characteristics of rice straw and canola stalk biochars and biochar-amended soils[J]Geoderma, 397(9): 115097. |
[32] | YUAN H R, LU T, HUANG H Y, et al., 2015. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge[J]. Journal of Analytical and Applied Pyrolysis, 112: 284-289. |
[33] | ZHANG J, AMONETTE J E, FLURY M, 2021. Effect of biochar and biochar particle size on plant-available water of sand, silt loam, and clay soil[J]. Soil and Tillage Research, 212: 104992. |
[34] | 房彬, 李心清, 赵斌, 等, 2014. 生物炭对旱作农田土壤理化性质及作物产量的影响[J]. 生态环境学报, 23(8): 1292-1297. |
FANG B, LI X Q, ZHAO B, et al., 2014. Influence of biochar on soil physical and chemical properties and crop yields in rainfed field[J]. Ecology and Environmental Sciences, 23(8): 1292-1297. | |
[35] | 国家林业和草原局, 国家公园管理局, 2015. 中国荒漠化和沙化状况公报[R/OL]. http://www.forestry.gov.cn/main/58/content-832363.html. [2015-12-29](2021-12-27). |
National Forestry and Grassland Administration, National Park Administration, 2015. A bulletin of status quo of desertification and sandification in China[R/OL]. http://www.forestry.gov.cn/main/58/content-832363.html. [2015-12-29] (2021-12-27). | |
[36] | 刘祥宏, 2013. 生物炭在黄土高原典型土壤中的改良作用[D]. 北京: 中国科学院. |
LIU X H, 2013. Effects of biochar application on soil improvement on the Loess Plateau[D]. Beijing: Chinese Academy of Sciences. | |
[37] | 尚熳廷, 冯杰, 刘佩贵, 等, 2009. SWCC测定时吸力计算公式与最佳离心时间的探讨[J]. 河海大学学报, 37(1): 12-16. |
SHANG M T, FENG J, LIU P G, et al., 2009. On formulas for soil suction and optimum centrifugal time by use of SWCC[J]. Journal of Hohai University (Natural Sciences), 37(1): 12-16. | |
[38] | 石祖梁, 2018. 中国秸秆资源化利用现状及对策建议[J]. 世界环境 (5): 16-18. |
SHI Z L, 2018. Current situation of utilization of straw resources in China and relevant countermeasures and suggestions[J]. World Environment (5): 16-18. | |
[39] | 孙丽惠, 李中强, 2020. 北方旱地农田主要温室气体排放研究进展[J]. 辽宁农业科学 (2): 52-56. |
SUN L H, AND LI Z Q, 2020. Progresses in the research on major greenhouse gas emissions in the northern dry farmland[J]. Liaoning Agricultural Sciences (2): 52-56. | |
[40] | 谢立勇, 叶丹丹, 张贺, 等, 2011. 旱地土壤温室气体排放影响因子及减排增汇措施分析[J]. 中国农业气象, 32(4): 481-487. |
XIE L Y, YE D D, ZHANG H, et al., 2011. Review of influence factors on greenhouse gases emission from upland soils and relevant adjustment practices[J]. Chinese Journal of Agrometeorology, 32(4): 481-487. | |
[41] | 闫辰啸, 洪明, 秦佳豪, 等, 2021. 生物炭对和田风沙土水力特性的影响[J]. 干旱地区农业研究, 39(4): 21-28. |
YAN X C, HONG M, QIN J H, et al., 2021. Effects of biochar on hydraulic characteristics of aeolian sandy soil in Hetian[J]. Agricultural Research in the Arid Areas, 39(4): 21-28. | |
[42] | 曾爱, 廖允成, 张俊丽, 等, 2013. 生物炭对塿土土壤含水量、有机碳及速效养分含量的影响[J]. 农业环境科学学报, 32(5): 1009-1015. |
ZENG A, LIAO Y C, ZHANG J L, et al., 2013. Effects of biochar on soil moisture, organic carbon and available nutrient contents in manurall loessial soils[J]. Journal of Agro-Environment Science, 32(5): 1009-1015. | |
[43] | 赵雅琼, 2015. 非饱和带土壤水分特征曲线的测定与预测[D]. 西安: 长安大学. |
ZHAO Y Q, 2015. Determination and prediction of soil water characteristic curve in unsaturated zone[D]. Xi'an: Chang'an University. |
[1] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[2] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[3] | YOU Hongjian, ZHANG Wenwen, LAN Zhengfang, MA Lan, ZHANG Baodi, MU Xiaokun, LI Wenhui, CAO Yune. Effects of Earthworm in-situ Composting and Biochar on Cucumber Root-knot Nematodes and Rhizosphere Microorganisms [J]. Ecology and Environment, 2023, 32(1): 99-109. |
[4] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[5] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[6] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[7] | QIAN Lianwen, YU Tiantian, LIANG Xujun, WANG Yixiang, CHEN Yongshan. Stability of Biochar after Application for 5 Years in the Amendment of Acidified Tea Garden Soil [J]. Ecology and Environment, 2022, 31(7): 1442-1447. |
[8] | DENG Xiao, WU Chunyuan, YANG Guisheng, LI Yi, LI Qinfen. Improvement Effect of Coconut-shell Biochar on Coastal Soil in Hainan [J]. Ecology and Environment, 2022, 31(4): 723-731. |
[9] | WEI Lan, HUANG Lianxi, LI Xiang, WANG Zehuang, CHEN Weisheng, HUANG Qing, HUANG Yufen, LIU Zhongzhen. Biochar Medium Could Significantly Improve Banana Seedling Growth [J]. Ecology and Environment, 2022, 31(4): 732-739. |
[10] | ZHAO Chaofan, ZHOU Dandan, SUN Jiancai, QIAN Kunpeng, LI Fangfang. The Effect of Soluble Components on the Adsorption of Cadmium on Biochar [J]. Ecology and Environment, 2022, 31(4): 814-823. |
[11] | CHENG Wenyuan, LI Fayun, LÜ Jianhua, LIN Meixia, WANG Wei. Sorption Characteristics of Polycyclic Aromatic Hydrocarbons Phenanthrene on Sunflower Straw Biochar Modified with Alkali [J]. Ecology and Environment, 2022, 31(4): 824-834. |
[12] | SU Yan, QUAN Yanhong, HUAN Ziyan, YAO Jia, SU Xiaojuan. Effect of phosphate-modified Biochar on Remediation of Pb- and Zn-polluted Farmlands Around A Pb/Zn Mine in Yunnan Province, China [J]. Ecology and Environment, 2022, 31(3): 593-602. |
[13] | CONG Xin, WANG Yu, LI Yao, HE Yangyang. Adsorption Characteristics of Biochars and Graphene Oxide/biochar Composites for Antibiotics from Aqueous Solution [J]. Ecology and Environment, 2022, 31(2): 326-334. |
[14] | QIN Kun, WANG Zhikang, WANG Zhanghong, YANG Cheng, LIU Jiegang, SHEN Dekui. Cd(II) Adsorption Capability of the Biochar Derived from Co-pyrolysis of Lignin and Polyethylene [J]. Ecology and Environment, 2022, 31(2): 344-353. |
[15] | MEI Chuang, CAI Kunzheng, LI Zishan, XU Meili, HUANG Fei. Effects of Rice-straw Biochar on the Transformation of Cadmium Fractions and Microbial Community in Paddy Soils [J]. Ecology and Environment, 2022, 31(2): 380-390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn