Ecology and Environment ›› 2022, Vol. 31 ›› Issue (11): 2169-2179.DOI: 10.16258/j.cnki.1674-5906.2022.11.008
• Research Articles • Previous Articles Next Articles
ZHANG Licong1(), XIAO Kai1,*(
), ZHANG Peng1, LI Hailong1, WANG Junjian1, LI Zhenyang2, WANG Fangfang3, XU Hualin4, GUO Yuehua5
Received:
2022-06-09
Online:
2022-11-18
Published:
2022-12-22
Contact:
XIAO Kai
张丽聪1(), 肖凯1,*(
), 张鹏1, 李海龙1, 王俊坚1, 李镇扬2, 王芬芳3, 徐华林4, 郭跃华5
通讯作者:
肖凯
作者简介:
张丽聪(1998年生),女(壮族),硕士研究生,主要从事海岸带水文地质学和近海水质评价研究。E-mail: 12132234@mail.sustech.edu.cn
基金资助:
CLC Number:
ZHANG Licong, XIAO Kai, ZHANG Peng, LI Hailong, WANG Junjian, LI Zhenyang, WANG Fangfang, XU Hualin, GUO Yuehua. Tidal Variation Characteristics of Heavy Metals and Dissolved Organic Matter and Environmental Impact in a Silt Tidal Flat[J]. Ecology and Environment, 2022, 31(11): 2169-2179.
张丽聪, 肖凯, 张鹏, 李海龙, 王俊坚, 李镇扬, 王芬芳, 徐华林, 郭跃华. 淤泥质潮滩重金属和溶解性有机质的潮汐变化特征及其环境影响评价[J]. 生态环境学报, 2022, 31(11): 2169-2179.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.11.008
指标 Index | 缩写 Abbreviation | 单位 units | 计算方法 Computing method | 含义描述 Meaning | 参考文献 References |
---|---|---|---|---|---|
单位质量有机质特定吸收 Specific ultraviolet absorbance at 254 nm per mass | SUVA254 | L·mg-1·m-1 | 单位光程下254 nm处紫外吸光度与溶解有机碳质量浓度比 | 芳香性化合物在溶解有机质中的相对贡献越高,表征芳香性,值越大芳香性越强 | 2003 |
吸收系数比值 Absorption coefficient ratio | E2/E3 | - | 吸光系数254 nm与365 nm比 | 指示溶解有机质中分子量, 与平均分子量大小成反比 | 2009 |
254 nm处的吸光系数 Absorption coefficient at 254 nm | a254 | m-1 | - | 用于计算吸收系数比值E2/E3 | |
350 nm处的吸光系数 Absorption coefficient at 350 nm | a350 | m-1 | - | 有色溶解有机质(CDOM)含量 | 2004 |
365 nm处的吸光系数 Absorption coefficient at 365 nm | a365 | m-1 | - | 用于计算吸收系数比值E2/E3 |
Table 1 Meaning of spectral characteristic index of chromophoric dissolved organic matter
指标 Index | 缩写 Abbreviation | 单位 units | 计算方法 Computing method | 含义描述 Meaning | 参考文献 References |
---|---|---|---|---|---|
单位质量有机质特定吸收 Specific ultraviolet absorbance at 254 nm per mass | SUVA254 | L·mg-1·m-1 | 单位光程下254 nm处紫外吸光度与溶解有机碳质量浓度比 | 芳香性化合物在溶解有机质中的相对贡献越高,表征芳香性,值越大芳香性越强 | 2003 |
吸收系数比值 Absorption coefficient ratio | E2/E3 | - | 吸光系数254 nm与365 nm比 | 指示溶解有机质中分子量, 与平均分子量大小成反比 | 2009 |
254 nm处的吸光系数 Absorption coefficient at 254 nm | a254 | m-1 | - | 用于计算吸收系数比值E2/E3 | |
350 nm处的吸光系数 Absorption coefficient at 350 nm | a350 | m-1 | - | 有色溶解有机质(CDOM)含量 | 2004 |
365 nm处的吸光系数 Absorption coefficient at 365 nm | a365 | m-1 | - | 用于计算吸收系数比值E2/E3 |
Figure 7 Time series of groundwater level and groundwater-surface water exchange rates during the monitoring period The gray background represents the sampling period
Figure 8 Calculated connective and diffusive fluxes for heavy metals and DOC The units of convective fluxes of heavy metals and DOC are μg·m-2·h-1 and mg·m-2·h-1, respectively, but 10-3 μg·m-2·h-1 and 10-3 mg·m-2·h-1 for diffusion fluxes; Zn/10 and Ba/20 represent the flux of Zn and Ba divided by 10 and 20, respectively, to facilitate visual comparison with other elements
Figure 9 The pollution index of heavy metals in the groundwater and surface water The whiskers, horizontal lines, and points represent the range (min-max), median, and average values, respectively
Figure 10 Correlations between environmental factors (Factor 1: tide/groundwater table+salinity; Factor 2: DO+pH) and heavy metal content and DOM properties by partial Mantel test. Line width corresponds to the partial Mantel’s r statistic, and line color denotes the statistical significance based on permutations. Pairwise comparisons of environmental factors are also shown, with a color gradient denoting Pearson’s correlation coefficient, and these parameters are synthesized into two groups based on attribute of data surveyed
地区 Area | 通量类型 Flux pattern | 溶解性重金属SGD通量 SGD flux of dissolved heavy metals/(μg·m-2·d-1) | 参考文献 Conferences | ||||||
---|---|---|---|---|---|---|---|---|---|
Cr | Cu | Zn | As | Ba | Pb | Hg | |||
漳江口淤泥质潮滩,中国福建省 Mudflat in Zhangjiang Estuary, Fujian Province, China | 对流 | 0.32 | 0.32 | 36.59 | 2.00 | 155.00 | 0.21 | 0.19 | 本研究 |
胶州湾砂质海滩,中国山东省 Sandy beach in Jiaozhou Bay, Shandong Province, China | 对流 | 6300 | 6200 | 840 | 210 | - | 1100 | - | 2020 |
胶州湾淤泥质潮滩,中国山东省 Mudflat in Jiaozhou Bay, Shandong Province, China | 对流 | 620 | 370 | 250 | 9.7 | - | 330 | - | 2020 |
胶州湾盐沼,中国山东省 Salt marsh in Jiaozhou Bay, Shandong Province, China | 对流 | 2.2 | 3.5 | 1.6 | 0.058 | - | 0.21 | - | 2020 |
胶州湾河口湿地,中国山东省 Estuarine wetland in Jiaozhou Bay, Shandong Province, China | 对流 | 56 | 57 | 26 | 3 | - | 0.01 | - | 2020 |
粤港澳大湾区,中国广东省 Guangdong-Hong Kong-Macao Greater Bay Area, China | 对流+弥散 | 54.70 | 57.77 | 877.92 | 214.77 | - | 45.21 | - | 2022 |
渤海湾,中国河北省 Bohai Bay, Hebei Province, China | 对流+弥散 | 87-239 | - | 1211-3310 | - | - | - | - | 2019 |
Coleroon River Estuary,印度 Coleroon River Estuary, Tamil Nadu, India | 对流+弥散 | 9.6-14.9 | 11-63 | 63.3-119.6 | - | 54.6-259.9 | 3.23-8.9 | - | 2021 |
Jamaica Bay,美国 Jamaica Bay, New York, USA | 对流+弥散 | - | 2.46-11.08 | 87.5-401.3 | - | - | 0.56-2.79 | - | 2009 |
North western Mediterranean Sea,西班牙 North western Mediterranean Sea, Spain | 对流+弥散 | - | 0.09-1.85 | 0.38-11.87 | - | - | 0.01-0.19 | - | 2016 |
Table 2 Comparisons of heavy metal fluxes transported by convection and diffusion globally
地区 Area | 通量类型 Flux pattern | 溶解性重金属SGD通量 SGD flux of dissolved heavy metals/(μg·m-2·d-1) | 参考文献 Conferences | ||||||
---|---|---|---|---|---|---|---|---|---|
Cr | Cu | Zn | As | Ba | Pb | Hg | |||
漳江口淤泥质潮滩,中国福建省 Mudflat in Zhangjiang Estuary, Fujian Province, China | 对流 | 0.32 | 0.32 | 36.59 | 2.00 | 155.00 | 0.21 | 0.19 | 本研究 |
胶州湾砂质海滩,中国山东省 Sandy beach in Jiaozhou Bay, Shandong Province, China | 对流 | 6300 | 6200 | 840 | 210 | - | 1100 | - | 2020 |
胶州湾淤泥质潮滩,中国山东省 Mudflat in Jiaozhou Bay, Shandong Province, China | 对流 | 620 | 370 | 250 | 9.7 | - | 330 | - | 2020 |
胶州湾盐沼,中国山东省 Salt marsh in Jiaozhou Bay, Shandong Province, China | 对流 | 2.2 | 3.5 | 1.6 | 0.058 | - | 0.21 | - | 2020 |
胶州湾河口湿地,中国山东省 Estuarine wetland in Jiaozhou Bay, Shandong Province, China | 对流 | 56 | 57 | 26 | 3 | - | 0.01 | - | 2020 |
粤港澳大湾区,中国广东省 Guangdong-Hong Kong-Macao Greater Bay Area, China | 对流+弥散 | 54.70 | 57.77 | 877.92 | 214.77 | - | 45.21 | - | 2022 |
渤海湾,中国河北省 Bohai Bay, Hebei Province, China | 对流+弥散 | 87-239 | - | 1211-3310 | - | - | - | - | 2019 |
Coleroon River Estuary,印度 Coleroon River Estuary, Tamil Nadu, India | 对流+弥散 | 9.6-14.9 | 11-63 | 63.3-119.6 | - | 54.6-259.9 | 3.23-8.9 | - | 2021 |
Jamaica Bay,美国 Jamaica Bay, New York, USA | 对流+弥散 | - | 2.46-11.08 | 87.5-401.3 | - | - | 0.56-2.79 | - | 2009 |
North western Mediterranean Sea,西班牙 North western Mediterranean Sea, Spain | 对流+弥散 | - | 0.09-1.85 | 0.38-11.87 | - | - | 0.01-0.19 | - | 2016 |
[1] | ANDERSON D, GREGORICH E, 1984. Effect of soil erosion on soil quality and productivity[C]// Soil erosion and degradation. Processings. Annual Western Provincial Conference on Rationalization of Water and Soil Research and Manage, 105-113. |
[2] |
BECK A J, COCHRAN J K, SANUDO-WILHELMY S A, 2009. Temporal trends of dissolved trace metals in Jamaica Bay, NY: Importance of wastewater input and submarine groundwater discharge in an urban estuary[J]. Estuaries and Coasts, 32(3): 535-550.
DOI URL |
[3] |
BECK M, DELLWIG L, SCHNETGER B, et al., 2008. Cycling of trace metals (Mn, Fe, Mo, U, V, Cr) in deep pore waters of intertidal flat sediments[J]. Geochimica Et Cosmochimica Acta, 72(12): 2822-2840.
DOI URL |
[4] |
BONE S E, GONNEEA M E, CHARETTE M A, 2006. Geochemical cycling of arsenic in a coastal aquifer[J]. Environmental Science & Technology, 40(10): 3273-3278.
DOI URL |
[5] | BURDIGE D J, 2006. Geochemistry of marine sediments[M]. Princeton: Princeton University Press. |
[6] |
CHEN X G, ZHANG F F, LAO Y L, et al., 2018. Submarine groundwater discharge-derived carbon fluxes in mangroves: An important component of blue carbon budgets?[J]. Journal of Geophysical Research-Oceans, 123(9): 6962-6979.
DOI URL |
[7] |
COX R A, CULKIN F, RILEY, J P, 1967. The electrical conductivity/chlorinity relationship in natural sea water[J]. Deep Sea Research and Oceanographic Abstracts, 14(2): 203-220.
DOI URL |
[8] |
DHARMAPRAKASH S M, RAO P M, 1989. Diffusion-coefficient of barium ions from liesegang ring formation[J]. Journal of Materials Science Letters, 8(2): 141-143.
DOI URL |
[9] |
DITTMAR T, PAENG J, 2009. A heat-induced molecular signature in marine dissolved organic matter[J]. Nature Geoscience, 2(3): 175-179.
DOI URL |
[10] |
FERREIRA A M, MARQUES J C, SEIXAS S, 2017. Integrating marine ecosystem conservation and ecosystems services economic valuation: Implications for coastal zones governance[J]. Ecological Indicators, 77: 114-122.
DOI URL |
[11] |
FICK A, 1855. Ueber diffusion[J]. Annalen der Physik, 170(1): 59-86.
DOI URL |
[12] |
GOODWIN P M A J, ZEDLER J B, 2001. Tidal wetland restoration: An introduction[J]. Journal of Coastal Research, 27: 1-6.
DOI URL |
[13] |
GREGORICH E G, CARTER M R, ANGERS D A, et al., 1994. Towards a minimum data set to assess soil organic matter quality in agricultural soils[J]. Canadian Journal of Soil Science, 74(4): 367-385.
DOI URL |
[14] |
HAKANSON L, 1980. An ecological risk index for aquatic pollution control: A sedimentological approach[J]. Water Research, 14(8): 975-1001.
DOI URL |
[15] |
HE R, TIAN B H, ZHANG Q Q, et al., 2015. Effect of fenton oxidation on biodegradability, biotoxicity and dissolved organic matter distribution of concentrated landfill leachate derived from a membrane process[J]. Waste Management, 38: 232-239.
DOI PMID |
[16] |
HONG H L, ZHANG B H, LU H L., 2021. Seasonal variation and ecological risk assessment of heavy metal in an estuarine mangrove wetland[J]. Water, 13(15): 1-10.
DOI URL |
[17] |
HOU L J, LI H L, ZHENG C M, et al., 2016. Seawater-groundwater exchange in a silty tidal flat in the south coast of Laizhou Bay, China[J]. Journal of Coastal Research, 74(sp1): 136-148.
DOI URL |
[18] |
KALNEJAIS L H, MARTIN W R, BOTHNER M H, 2015. Porewater dynamics of silver, lead and copper in coastal sediments and implications for benthic metal fluxes[J]. Science of the Total Environment, 517: 178-194.
DOI URL |
[19] |
KUSS J, HOLZMANN J, LUDWIG R, 2009. An elemental mercury diffusion coefficient for natural waters determined by molecular dynamics simulation[J]. Environmental Science & Technology, 43(9): 3183-3186.
DOI URL |
[20] |
LEONARDI N, GANJU N K, FAGHERAZZI S, 2016. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(1): 64-68.
DOI PMID |
[21] |
LIU Y, NOT C, JIAO J, et al., 2019. Tidal induced dynamics and geochemical reactions of trace metals (Fe, Mn, and Sr) in the salinity transition zone of an intertidal aquifer[J]. Science of the Total Environment, 664: 1133-1149.
DOI URL |
[22] | LUO M H, ZHANG Y, LI H L, et al., 2022. Pollution assessment and sources of dissolved heavy metals in coastal water of a highly urbanized coastal area: The role of groundwater discharge[J]. Science of the Total Environment, 807(3): 1-12. |
[23] |
MARCHAND C, FERNANDEZ J M, MORETON B, 2016. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia)[J]. Science of the Total Environment, 562: 216-227.
DOI URL |
[24] |
O′CONNOR A E, KRASK J L, CANUEL E A, et al., 2018. Seasonality of major redox constituents in a shallow subterranean estuary[J]. Geochimica Et Cosmochimica Acta, 224: 344-361.
DOI URL |
[25] |
PAIN A J, MARTIN J B, YOUNG C R, et al., 2019. Organic matter quantity and quality across salinity gradients in conduit- vs. diffuse flow-dominated subterranean estuaries[J]. Limnology and Oceanography, 64(3): 1386-1402.
DOI URL |
[26] | PAN F, XIAO K, GUO Z R, LI H L, 2022. Effects of fiddler crab bioturbation on the geochemical migration and bioavailability of heavy metals in coastal wetlands[J]. Journal of Hazardous Materials, 437: 1-11. |
[27] |
POISSON A, PAPAUD A, 1983. Diffusion coefficients of major ions in seawater[J]. Marine Chemistry, 13(4): 265-280.
DOI URL |
[28] |
PRAKASH R, SRINIVASAMOORTHY K, SUNDARAPANDIAN S M, et al., 2021. Submarine groundwater discharge from an urban estuary to Southeastern Bay of Bengal, India: Revealed by trace element fluxes[J]. Archives of Environmental Contamination and Toxicology, 80(1): 208-233.
DOI PMID |
[29] |
QU W J, LI H L, HUANG H, et al., 2017. Seawater-groundwater exchange and nutrients carried by submarine groundwater discharge in different types of wetlands at Jiaozhou Bay, China[J]. Journal of Hydrology, 555: 185-197.
DOI URL |
[30] | QU W J, WANG C Y, LUO M H, et al., 2020. Distributions, quality assessments and fluxes of heavy metals carried by submarine groundwater discharge in different types of wetlands in Jiaozhou Bay, China[J]. Marine Pollution Bulletin, 157: 1-10. |
[31] |
RICHARD J H, BISCHOFF C, AHRENS C G M, et al., 2016. Mercury (Ⅱ) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater[J]. Science of the Total Environment, 539: 36-44.
DOI URL |
[32] |
ROY M, MARTIN J B, SMITH C G, et al., 2011. Reactive-transport modeling of iron diagenesis and associated organic carbon remineralization in a Florida (USA) subterranean estuary[J]. Earth and Planetary Science Letters, 304(1-2): 191-201.
DOI URL |
[33] |
SEIDEL M, BECK M, RIEDEL T, et al., 2014. Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank[J]. Geochimica Et Cosmochimica Acta, 140: 418-434.
DOI URL |
[34] | SUN X, LI B S, LIU X L, et al., 2020. Spatial variations and potential risks of heavy metals in seawater, sediments, and living organisms in Jiuzhen Bay, China[J]. Journal of Chemistry, 2020: 1-13. |
[35] | TANG J F, WANG W D, YANG L, et al., 2020. Seasonal variation and ecological risk assessment of dissolved organic matter in a peri-urban critical zone observatory watershed[J]. Science of the Total Environment, 707: 1-11. |
[36] |
TREZZI G, GARCIA-ORELLANA J, RODELLAS V, et al., 2016. Submarine groundwater discharge: A significant source of dissolved trace metals to the North Western Mediterranean Sea[J]. Marine Chemistry, 186: 90-100.
DOI URL |
[37] |
ULLMAN W J, SANDSTROM M W, 1987. Dissolved nutrient fluxes from the nearshore sediments of Bowling Green Bay, central Great Barrier Reef Lagoon (Australia)[J]. Estuarine Coastal and Shelf Science, 24(3): 289-303.
DOI URL |
[38] |
VIGNUDELLI S, SANTINELLI C, MURRU E, et al., 2004. Distributions of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) in coastal of the northern Tyrrhenian Sea (Italy)[J]. Estuarine Coastal and Shelf Science, 60(1): 133-149.
DOI URL |
[39] | WANG F F, XIAO K, SANTOS I R, et al., 2022. Porewater exchange drives nutrient cycling and export in a mangrove-salt marsh ecotone[J]. Journal of Hydrology, 606: 1-11. |
[40] | WANG Q Q, LI H L, ZHANG Y, et al., 2019. Evaluations of submarine groundwater discharge and associated heavy metal fluxes in Bohai Bay, China[J]. Science of the Total Environment, 695: 1-14. |
[41] |
WANG X J, LI H L, YANG J Z, et al., 2014. Measuring in situ vertical hydraulic conductivity in tidal environments[J]. Advances in Water Resources, 70: 118-130.
DOI URL |
[42] | WANG Y P, GAO S, JIA J J, et al., 2012. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China[J]. Marine Geology, 291: 147-161. |
[43] |
WANG Y, DING S M, GONG M D, et al., 2016. Diffusion characteristics of agarose hydrogel used in diffusive gradients in thin films for measurements of cations and anions[J]. Analytica Chimica Acta, 945: 47-56.
DOI PMID |
[44] |
WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al., 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 37(20): 4702-4708.
DOI URL |
[45] | XIAO K, PAN F, SANTOS I R, et al., 2022. Crab bioturbation drives coupled iron-phosphate-sulfide cycling in mangrove and salt marsh soils[J]. Geoderma, 424: 1-12. |
[46] |
XIAO K, WILSON A M, LI H L, et al., 2021. Large CO2 release and tidal flushing in salt marsh crab burrows reduce the potential for blue carbon sequestration[J]. Limnology and Oceanography, 66(1): 14-29.
DOI URL |
[47] | XIAO K, WU J P, LI H L, et al., 2018. Nitrogen fate in a subtropical mangrove swamp: Potential association with seawater-groundwater exchange[J]. Science of thr Total Environment, 635: 586-597. |
[48] | YANG D, LIU J C, ZHAO W W, et al., 2020. Iron mineralogy and speciation of sediment iron-bearing minerals in mangrove forest: Case study of Zhangjiang Estuary, China[J]. Marine Pollution Bulletin, 151: 1-9. |
[49] |
YAO H, ZHAO Y J, LIN C J, et al., 2020. Development of a novel composite resin for dissolved divalent mercury measurement using diffusive gradients in thin films[J]. Chemosphere, DOI: 10.1016/j.chemosphere.2020.126231.
DOI |
[50] | ZHANG X H, CAO F, HUANG Y, et al., 2022. Variability of dissolved organic matter in two coastal wetlands along the Changjiang River Estuary: Responses to tidal cycles, seasons, and degradation processes[J]. Science of the Total Environment, 807(3): 1-14. |
[51] |
ZHOU H C, WEI S D, ZENG Q, et al., 2010. Nutrient and caloric dynamics in Avicennia marina leaves at different developmental and decay stages in Zhangjiang River Estuary, China[J]. Estuarine Coastal and Shelf Science, 87(1): 21-26.
DOI URL |
[52] | 陈思明, 2018. 粉砂淤泥质潮滩表层沉积物侵蚀特性探讨[D]. 上海: 华东师范大学. |
CHEN S M, 2018. Study on erosion charateristics of surface sediments in muddy tidal flat[D]. Shanghai: East Chaina Normal University. | |
[53] | 李海龙, 王学静, 2015. 海底地下水排泄研究回顾与进展[J]. 地球科学进展, 30(6): 636-646. |
LI H L, WANG X J, 2015. Submarine groundwater discharge: A review[J]. Advances in Earth Science, 30(6): 636-646. | |
[54] | 国家标准化管理委员会, 2017. 地下水质量标准: GB/T 14848-2017[S]. |
Standardization administration of China, 2017. Standard for groundwater quality: GB/T 14848-2017[S]. | |
[55] | 王亚丽, 2020. 北部湾典型红树林区域海底地下水排放的碳通量及其光学特征[D]. 上海: 华东师范大学. |
WANG Y L, 2020. Carbon fluxes by submarine groundwater diacharge and its optical charateristics in typical mangrove areas of the BeibuGulf[D]. Shanghai: East Chaina Normal University. | |
[56] | 王颖, 1990. 中国的潮滩[J]. 第四纪研究 (4): 291-300. |
WANG Y, 1990. Tidals of China[J]. Quaternary Science (4): 291-300. | |
[57] | 薛博, 2007. 漳江口红树林湿地沉积物有机质来源追溯[D]. 厦门: 厦门大学. |
XUE B, 2007. Distinguished the source of organic matter from mangrove wetland sediments in zhangjiang estuary[D]. Xiamen: Xiamen University. | |
[58] | 杨世伦, 2003. 海岸环境和地貌过程导论[M]. 北京: 海洋出版社. |
YANG S L, 2003. Introduction to coastal environment and geomorphic processes[M]. Beijing: Marine Press. | |
[59] | 张耀玲, 2013. 近海环境中天然有机质的分离与表征[D]. 上海: 华东师范大学. |
ZHANG Y L, 2013. Isolation and charaterization of natural organic matter in coastal environments[D]. Shanghai: East Chaina Normal University. | |
[60] | 中国环境保护总局, 2002. 地表水环境质量标准(GB 3838- 2002)[S]. |
Ministry of ecology and environment of China, 2002. Environmental quality standards for surface water (GB 3838-2002)[S]. |
[1] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[2] | FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil [J]. Ecology and Environment, 2023, 32(4): 776-783. |
[3] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[4] | YANG Qiu, CAO Yingjie, ZHANG Yu, CHEN Jianyao, WANG Shizhong, TIAN Di. Hydrochemical Characteristics and Its Cause Analysis of Groundwater and Mine Water in Closed Lead Zinc Mining Area [J]. Ecology and Environment, 2023, 32(2): 361-371. |
[5] | LI Shaoning, LI Tingting, TAO Xueying, ZHAO Na, XU Xiaotian, LU Shaowei. Comparative Study on the Release of Beneficial Volatile Organic Compounds from Four Deciduous Tree Species [J]. Ecology and Environment, 2023, 32(1): 123-128. |
[6] | XU Min, XU Chao, YU Guanghui, YIN Lichu, ZHANG Quan, ZHU Hanhua, ZHU Qihong, ZHANG Yangzhu, HUANG Daoyou. Effects of Groundwater Level and Long-term Straw Return on Soil Cadmium Availability and Cadmium Concentration in Rice [J]. Ecology and Environment, 2023, 32(1): 150-157. |
[7] | XIAO Jieyun, ZHOU Wei, SHI Peiqi. Hyperspectral Inversion of Soil Heavy Metals [J]. Ecology and Environment, 2023, 32(1): 175-182. |
[8] | HAUNG Hong, ZHENG Xinyun, LI Yingdong, ZHAO Xu, YU Jinchen, WANG Zhenhua. A study on Enrichment of Heavy Metals in Sebastiscus marmoratus at Different Ages in Dachen Islands Sea Area [J]. Ecology and Environment, 2022, 31(9): 1885-1891. |
[9] | MA Chuang, WANG Yuyang, ZHOU Tong, WU Longhua. Enrichment Characteristics and Desorption Behavior of Cadmium and Zinc in Particulate Organic Matter of Polluted Soil [J]. Ecology and Environment, 2022, 31(9): 1892-1900. |
[10] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[11] | LI Ying, ZHANG Zhou, YANG Gaoming, ZU Yanqun, LI Bo, CHEN Jianjun. The Relationship between the Radial Oxygen Loss and the Iron Plaque on Root Surfaces to Wetland Plants Absorb Heavy Metals [J]. Ecology and Environment, 2022, 31(8): 1657-1666. |
[12] | LUO Songying, LI Qiuxia, QIU Jinkun, DENG Suyan, LI Yifeng, CHEN Bishan. Speciation Characteristics, Migration and Transformation of Heavy Metals in Mangrove Soil-plant System in Nansan Island [J]. Ecology and Environment, 2022, 31(7): 1409-1416. |
[13] | DONG Leheng, WANG Xugang, CHEN Manjia, WANG Zihao, SUN Lirong, SHI Zhaoyong, Wu Qiqi. Interaction of Iron Redox and Cu Activities in Calcareous Paddy Soil under Light and Dark Condition [J]. Ecology and Environment, 2022, 31(7): 1448-1455. |
[14] | PENG Hongli, TAN Haixia, WANG Ying, WEI Jianmei, FENG Yang. The Discrepancy of Heavy Metals Morphological Distribution in Soil and Its Associated Ecological Risk Evaluation under Different Planting Patterns [J]. Ecology and Environment, 2022, 31(6): 1235-1243. |
[15] | HUANG Min, ZHAO Xiaofeng, LIANG Rongxiang, WANG Pengzhong, DAI Anran, HE Xiaoman. Comparison of Three Chelating Agents to Remove the Cd and Cu in Contaminated Soil [J]. Ecology and Environment, 2022, 31(6): 1244-1252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn