Ecology and Environment ›› 2022, Vol. 31 ›› Issue (7): 1448-1455.DOI: 10.16258/j.cnki.1674-5906.2022.07.018
• Research Articles • Previous Articles Next Articles
DONG Leheng1,2(), WANG Xugang1,*(
), CHEN Manjia2,*(
), WANG Zihao1, SUN Lirong1, SHI Zhaoyong1, Wu Qiqi2
Received:
2022-03-03
Online:
2022-07-18
Published:
2022-08-31
Contact:
WANG Xugang,CHEN Manjia
董乐恒1,2(), 王旭刚1,*(
), 陈曼佳2,*(
), 王子豪1, 孙丽蓉1, 石兆勇1, 吴琪琪2
通讯作者:
王旭刚,陈曼佳
作者简介:
董乐恒(1997年生),男,硕士,主要从事土壤化学方面研究,E-mail: donglh1015@163.com
基金资助:
CLC Number:
DONG Leheng, WANG Xugang, CHEN Manjia, WANG Zihao, SUN Lirong, SHI Zhaoyong, Wu Qiqi. Interaction of Iron Redox and Cu Activities in Calcareous Paddy Soil under Light and Dark Condition[J]. Ecology and Environment, 2022, 31(7): 1448-1455.
董乐恒, 王旭刚, 陈曼佳, 王子豪, 孙丽蓉, 石兆勇, 吴琪琪. 光照和避光条件下石灰性水稻土Fe氧化还原与Cu活性关系研究[J]. 生态环境学报, 2022, 31(7): 1448-1455.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.07.018
处理 Treatment | 铁还原容量 Fe reduction capacity/(mg∙g-1) | 速率常数 Rate constant/d-1 | 铁最大还原速率 Max iron reduction rate/(mg∙g-1∙d-1) | 决定系数 r2 | 统计学概率 P |
---|---|---|---|---|---|
空白对照 Control | 9.49±0.22 | 0.24±0.05 | 0.57±0.16a | 0.91 | <0.01 |
轻度污染 Light polluted | 9.96±0.15 | 0.20±0.03 | 0.50±0.09b | 0.98 | <0.01 |
中度污染 Moderate polluted | 9.86±0.28 | 0.19±0.04 | 0.47±0.08bc | 0.99 | <0.01 |
重度污染 Hight polluted | 10.45±0.52 | 0.15±0.03 | 0.39±0.06d | 0.93 | <0.01 |
Table 1 Fitting parameters of logistic equation for iron reduction under dark condition
处理 Treatment | 铁还原容量 Fe reduction capacity/(mg∙g-1) | 速率常数 Rate constant/d-1 | 铁最大还原速率 Max iron reduction rate/(mg∙g-1∙d-1) | 决定系数 r2 | 统计学概率 P |
---|---|---|---|---|---|
空白对照 Control | 9.49±0.22 | 0.24±0.05 | 0.57±0.16a | 0.91 | <0.01 |
轻度污染 Light polluted | 9.96±0.15 | 0.20±0.03 | 0.50±0.09b | 0.98 | <0.01 |
中度污染 Moderate polluted | 9.86±0.28 | 0.19±0.04 | 0.47±0.08bc | 0.99 | <0.01 |
重度污染 Hight polluted | 10.45±0.52 | 0.15±0.03 | 0.39±0.06d | 0.93 | <0.01 |
[1] |
BALINT R, SAID-PULLICINO D, AJMONE-MARSAN F, 2015. Copper dynamics under alternating redox conditions is influenced by soil properties and contamination source[J]. Journal of Contaminant Hydrology, 173: 83-91.
DOI URL |
[2] |
BINGJIE O, XIANCIA L, HUAN L, et al., 2014. Reduction of jarosite by shewanella oneidensis MR-1 and secondary mineralization[J]. Geochimica et Cosmochimica Acta, 124: 54-71.
DOI URL |
[3] |
DAVRANCHE M, BOLINGER J, 2000. Heavy Metals Desorption from Synthesized and Natural Iron and Manganese Oxyhydroxides: Effect of Reductive Conditions[J]. Journal of Colloid and Interface Science, 227(2): 531-539.
DOI URL |
[4] |
FAVARO M A, ROESCHLIN R A, RIBERO G G, et al., 2017. Relationships between copper content in orange leaves, bacterial biofilm formation and citrus canker disease control after different copper treatments[J]. Crop Protection, 92: 182-189.
DOI URL |
[5] |
FRIERDICH A J, LUO Y, CATALANO J G, et al., 2011. Trace element cycling through iron oxide minerals during redox-driven dynamic recrystallization[J]. Geology (Boulder), 39(11): 1083-1086.
DOI URL |
[6] |
KAPPLER A, 2005. Geomicrobiological cycling of iron[J]. Reviews in mineralogy and geochemistry, 59(1): 85-108.
DOI URL |
[7] |
KUMPIENE J, LAGERKVIST A, MAURICE C, 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments: A review[J]. Waste Management, 28(1): 215-225.
DOI URL |
[8] |
LAMICHHANE J R, OSDAGHI E, BEHLAU F, et al., 2018. Thirteen decades of antimicrobial copper compounds applied in agriculture: A review[J]. Agronomy for sustainable development, 38(3): 1-18.
DOI URL |
[9] |
LATTA D E, BACHMAN J E, SCHERER M M, 2012. Fe electron transfer and atom exchange in goethite: Influence of Al-substitution and anion sorption[J]. Environmental Science & Technology, 46(19): 10614-10623.
DOI URL |
[10] |
LATTA D E, GORSKI C A, SCHERER M M, 2012. Influence of Fe2+- catalysed iron oxide recrystallization on metal cycling[J]. Biochemical Society Transactions, 40(6): 1191-1197.
DOI URL |
[11] | LOVLEY D R, HOLMES D E, NEVIN K P, 2004. Dissimilatory Fe(III) and Mn(IV) Reduction[J]. Advances in Microbial Physiology, 55: 259-287. |
[12] |
MAIZ I, ARAMBARRI I, GARCIA R, et al., 2000. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis[J]. Environ Pollut, 110(1): 3-9.
DOI URL |
[13] |
MATOCHA C J, KARATHANASIS A D, RAKSHIT S, et al., 2005. Reduction of copper(II) by iron(II)[J]. Journal of Environmental Quality, 34(5): 1539-1546.
DOI URL |
[14] |
NEUBAUER S C, EMERSON D, MEGONIGAL J P, 2002. Life at the energetic edge: kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere[J]. Applied and Environmental Microbiology, 68(8): 3988-3995.
DOI URL |
[15] |
OHADI S, GODAR A, MADSEN J, et al., 2021. Response of Rice Algal Assemblage to Fertilizer and Chemical Application: Implications for Early Algal Bloom Management[J]. Agronomy, 11(3): 542.
DOI URL |
[16] |
RAURET G, LÓPEZ-SÁNCHEZ J F, SAHUQUILLO A, et al., 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring Jem, 1(1): 57-61.
DOI URL |
[17] |
SANTANA LIMA J, 1994. Copper balances in cocoa agrarian ecosystems: effects of differential use of cupric fungicides[J]. Agriculture, Ecosystems & Environment, 48(1): 19-25.
DOI URL |
[18] |
SCHNELL S, SCHINK B, WIDDEL F, et al., 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria[J]. Nature (London), 362(6423): 834-836.
DOI URL |
[19] |
SHEN J, LI R, ZHANG F, et al., 2004. Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil[J]. Field Crops Research, 86(2-3): 225-238.
DOI URL |
[20] |
TAO L, ZHU Z K, LI F B, et al., 2017. Fe(II)/Cu(II) interaction on goethite stimulated by an iron-reducing bacteria aeromonas hydrophila HS01 under anaerobic conditions[J]. Chemosphere, 187: 43-51.
DOI URL |
[21] |
TAVARES-DIAS M, 2021. Toxic, physiological, histomorphological, growth performance and antiparasitic effects of copper sulphate in fish aquaculture[J]. Aquaculture, DOI: 10.1016/j.aquaculture.2021.736350.
DOI |
[22] |
TESSIER A, FORTIN D, BELZILE N, et al., 1996. Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: Narrowing the gap between field and laboratory measurements[J]. Geochimica et Cosmochimica Acta, 60(3): 387-404.
DOI URL |
[23] |
WANG X G, SUN L R, CHEN Z H, et al., 2020. Light inhibition of carbon mineralization associated with iron redox processes in calcareous paddy soil[J]. Journal of Soils and Sediments, 20(8): 3171-3180.
DOI URL |
[24] |
WEBER K A, ACHENBACH L A, COATES J D, 2006. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 4(10): 752-764.
DOI URL |
[25] | WU L S, ZENG D M, MO X R, et al., 2015. Immobilization impact of different fixatives on heavy metals contaminated soil[J]. Environmental Science, 36(1): 309-313. |
[26] | 郝汉舟, 靳孟贵, 李瑞敏, 等, 2010. 耕地土壤铜、镉、锌形态及生物有效性研究[J]. 生态环境学报, 19(1): 92-96. |
HAO H Z, JIN M G, LI R M, et al., 2010. Fractionations and bioavailability of Cu, Cd and Zn in cultivated land[J]. Ecology and Environmental Sciences, 19(1): 92-96. | |
[27] | 刘勇, 刘燕, 朱光旭, 等, 2019. 石灰对Cu、Cd、Pb、Zn复合污染土壤中重金属化学形态的影响[J]. 环境工程, 37(2): 158-164. |
LIU Y, LIU Y, ZHU G X, et al., 2019. Effects of lime on chemical forms of heavy metals under combined pollution of Cu, Cd, Pb and Zn in soil[J]. Environmental Engineering, 37(2): 158-164. | |
[28] | 鲁如坤, 1999. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社. |
LU R K, 1999. Analytical methods for soil and agro-chemistry[M]. Beijing: China Agricultural Science and Technology Press. | |
[29] | 马小兰, 丁琳洁, 董军, 等, 2012. 地下环境中铁氧化物生物异化还原耦合降解硝基苯的影响因素研究[J]. 生态环境学报, 21(6): 1109-1114. |
MA X L, DING L J, DONG J, et al., 2012. Influences of coupled degradation of nitrobenzene by iron oxides bacterial dissimilatory reduction in groundwater[J]. Ecology and Environmental Sciences, 21(6): 1109-1114. | |
[30] | 钱子妍, 吴川, 何璇, 等, 2021. 铁循环微生物对环境中重金属的影响研究进展[J]. 环境化学, 40(3): 834-850. |
QIAN Z Y, WU C, HE X, et al., 2021. Study on the influence of redox cycling microorganisms on heavy metals in the environment[J]. Environmental Chemistry, 40(3): 834-850. | |
[31] | 全国土壤污染状况调查公报(2014-04-17)[J]. 环境教育, 2014, 06: 8-10. |
Report on the national general survey of soil contamination (2014-04-17)[J]. Environmental education, 2014, 06: 8-10. | |
[32] | 孙丽蓉, 黄海霞, 王旭刚, 等, 2013. 褐土中铁的氧化还原与碳素转化[J]. 土壤学报, 50(3): 540-547. |
SUN L R, HUANG H X, WANG X G, et al., 2013. Relationship between anaerobic redox of iron oxides and carbon transformation in cinnamon soil[J]. Acta pedologica sinica, 50(3): 540-547. | |
[33] | 孙丽蓉, 曲东, 卫亚红, 2008. 光照对水稻土中铁氧化还原的影响[J]. 土壤学报, 45(4): 628-634. |
SUN L R, QU D, WEI Y H, 2008. Effect of illumination on iron oxide reduction in anaerobic paddy soils[J]. Acta Pedologica Sinaca, 45(4): 628-634. | |
[34] | 王春, 童辉, 华建, 等, 2020. 铬取代针铁矿异化铁还原过程及铬的环境行为研究[J]. 生态环境学报, 29(9): 1883-1889. |
WANG C, TONG H, HUA J, et al., 2020. Dissimilatory reduction of Cr-substituted goethite and its effect on Cr behavior[J]. Ecology and Environmental Sciences, 29(9): 1883-1889. | |
[35] | 王静, 田然, 周辉, 等, 2010. 铜污染胁迫条件下农田土壤酶活性及微生物多样性对大气CO2浓度升高的响应[J]. 农业环境科学学报, 29(9): 1706-1711. |
WANG J, TIAIN R, ZHOU H, et al., 2010. Response of soil enzymes and microbial communities to elevated concentration of atmospheric CO2 under stress of Cu pollution[J]. Journal of Agro-Environment Science, 29(9): 1706-1711. | |
[36] | 王秀丽, 徐建民, 谢正苗, 等, 2002. 重金属铜和锌污染对土壤环境质量生物学指标的影响[J]. 浙江大学学报 (农业与生命科学版), 28(2): 74-78. |
WANG X L, XU J M, XIE Z M, et al., 2002. Effects of Cu and Zn contamination on soil biological indicators of environmental quality[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 28(2): 74-78. | |
[37] | 王旭刚, 孙丽蓉, 马林娟, 等, 2018. 黄河中下游湿地土壤铁还原氧化过程的温度敏感性[J]. 土壤学报, 55(2): 380-389. |
WANG X G, SUN L R, MA L J, et al., 2018. Temperature Sensitivity of Iron Redox Processes in Wetland Soil in the Middle and Lower Reaches of the Yellow River[J]. Acta Pedologica Sinica, 55(2): 380-389. | |
[38] | 吴春艳, 陈义, 闵航, 等, 2006. Cd2+和Cu2+对水稻土微生物及酶活性的影响[J]. 浙江农业科学 (3): 303-307. |
WU C Y, CHEN Y, MIN H, et al., 2006. Effects of Cd2+ and Cu2+ on microbial and enzyme activities in paddy soil[J]. Journal of Zhejiang Agricultural Sciences (3): 303-307. | |
[39] | 徐丽娜, 李忠佩, 车玉萍, 2009. 淹水厌氧条件下腐殖酸对红壤中铁异化还原过程的影响[J]. 环境科学, 30(1): 221-226. |
XU L N, LI Z P, CHE Y P, 2009. Influences of humic acids on the dissimilatory iron reduction of red soil in anaerobic condition[J]. Environmental Science, 30(1): 221-226. | |
[40] | 周会程, 姚玉娇, 梁婷, 等, 2020. 天祝不同退化梯度高寒草甸土壤重金属污染及风险评价[J]. 生态环境学报, 29(10): 2102-2109. |
ZHOU H C, YAO Y J, LIANG T, et al., 2020. Risk of Heavy Metal Pollution in Soil of Alpine Meadow with Different Degradation Gradients in Tianzhu County[J]. Ecology and Environmental Sciences, 29(10): 2102-2109. | |
[41] | 朱先强, 石林, 2017. 矿物质钝化剂对铅铜复合型污染土壤的修复作用[J]. 生态环境学报, 26(4): 708-713. |
ZHU X Q, SHI L, 2017. Remediation Effects of Mineral Amendment on Pb and Cu Contaminated Soil[J]. Ecology and Environmental Sciences, 26(4): 708-713. |
[1] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[2] | FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil [J]. Ecology and Environment, 2023, 32(4): 776-783. |
[3] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[4] | XIAO Jieyun, ZHOU Wei, SHI Peiqi. Hyperspectral Inversion of Soil Heavy Metals [J]. Ecology and Environment, 2023, 32(1): 175-182. |
[5] | HAUNG Hong, ZHENG Xinyun, LI Yingdong, ZHAO Xu, YU Jinchen, WANG Zhenhua. A study on Enrichment of Heavy Metals in Sebastiscus marmoratus at Different Ages in Dachen Islands Sea Area [J]. Ecology and Environment, 2022, 31(9): 1885-1891. |
[6] | MA Chuang, WANG Yuyang, ZHOU Tong, WU Longhua. Enrichment Characteristics and Desorption Behavior of Cadmium and Zinc in Particulate Organic Matter of Polluted Soil [J]. Ecology and Environment, 2022, 31(9): 1892-1900. |
[7] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[8] | LI Ying, ZHANG Zhou, YANG Gaoming, ZU Yanqun, LI Bo, CHEN Jianjun. The Relationship between the Radial Oxygen Loss and the Iron Plaque on Root Surfaces to Wetland Plants Absorb Heavy Metals [J]. Ecology and Environment, 2022, 31(8): 1657-1666. |
[9] | LUO Songying, LI Qiuxia, QIU Jinkun, DENG Suyan, LI Yifeng, CHEN Bishan. Speciation Characteristics, Migration and Transformation of Heavy Metals in Mangrove Soil-plant System in Nansan Island [J]. Ecology and Environment, 2022, 31(7): 1409-1416. |
[10] | PENG Hongli, TAN Haixia, WANG Ying, WEI Jianmei, FENG Yang. The Discrepancy of Heavy Metals Morphological Distribution in Soil and Its Associated Ecological Risk Evaluation under Different Planting Patterns [J]. Ecology and Environment, 2022, 31(6): 1235-1243. |
[11] | HUANG Min, ZHAO Xiaofeng, LIANG Rongxiang, WANG Pengzhong, DAI Anran, HE Xiaoman. Comparison of Three Chelating Agents to Remove the Cd and Cu in Contaminated Soil [J]. Ecology and Environment, 2022, 31(6): 1244-1252. |
[12] | ZHU Li'an, ZHANG Huihua, CHENG Jiong, LI Ting, LIN ZI, LI Junjie. Potential Ecological Risk Pattern Analysis of Heavy Metals in Soil of Forestry Land in The Pearl River Delta [J]. Ecology and Environment, 2022, 31(6): 1253-1262. |
[13] | SHI Jianfei, JIN Zhengzhong, ZHOU Zhibin, WANG Xin. Evaluation of Heavy Metal Pollution in the Soil Around A Typical Tailing Reservoir in Irtysh River Basin [J]. Ecology and Environment, 2022, 31(5): 1015-1023. |
[14] | QIAN Xueshi, LI Yong, QIAN Zhuangzhuang, GE Xiaomin, TANG Luozhong. Changes of Cadmium, Lead and Arsenic Contents during Precipitation in the Secondary Broad-leaved Forest in the Eastern Area of North Subtropics, China [J]. Ecology and Environment, 2022, 31(5): 979-989. |
[15] | YANG Xianfang, CHEN Zhao, ZHENG Lin, WAN Zhiwei, CHEN Yonglin, WANG Yuandong. Characteristics and Network of Soil Bacterial Communities in Different Land Use Types in Rare Earth Mining Areas [J]. Ecology and Environment, 2022, 31(4): 793-801. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn