Ecology and Environment ›› 2022, Vol. 31 ›› Issue (9): 1892-1900.DOI: 10.16258/j.cnki.1674-5906.2022.09.020
• Research Articles • Previous Articles Next Articles
MA Chuang1,2(), WANG Yuyang1,2, ZHOU Tong1, WU Longhua1,*(
)
Received:
2022-04-10
Online:
2022-09-18
Published:
2022-11-07
Contact:
WU Longhua
马闯1,2(), 王雨阳1,2, 周通1, 吴龙华1,*(
)
通讯作者:
吴龙华
作者简介:
马闯(1996年生),男,硕士研究生,主要从事土壤重金属污染与修复研究。E-mail: machuang19@mails.ucas.ac.cn
基金资助:
CLC Number:
MA Chuang, WANG Yuyang, ZHOU Tong, WU Longhua. Enrichment Characteristics and Desorption Behavior of Cadmium and Zinc in Particulate Organic Matter of Polluted Soil[J]. Ecology and Environment, 2022, 31(9): 1892-1900.
马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.09.020
供试土壤 Tested soils | 有机质 Organic matter/(g∙kg-1) | pH | 砂粒 Sand/% | 粉粒 Silt/% | 黏粒 Clay/% | Cd质量分数 w(Cd)/(mg∙kg-1) | Zn质量分数 w(Zn)/(mg∙kg-1) |
---|---|---|---|---|---|---|---|
对照土壤 Control soil | 77.00±1.28 | 5.18±0.03 | 56.20 | 36.00 | 7.80 | 0.67±0.07 | 77.04±4.34 |
高污染土壤 High polluted soil | 65.10±3.79 | 5.55±0.03 | 30.20 | 51.00 | 18.80 | 4.03±0.27 | 369.87±3.69 |
Table 1 The physico-chemical properties of tested soils
供试土壤 Tested soils | 有机质 Organic matter/(g∙kg-1) | pH | 砂粒 Sand/% | 粉粒 Silt/% | 黏粒 Clay/% | Cd质量分数 w(Cd)/(mg∙kg-1) | Zn质量分数 w(Zn)/(mg∙kg-1) |
---|---|---|---|---|---|---|---|
对照土壤 Control soil | 77.00±1.28 | 5.18±0.03 | 56.20 | 36.00 | 7.80 | 0.67±0.07 | 77.04±4.34 |
高污染土壤 High polluted soil | 65.10±3.79 | 5.55±0.03 | 30.20 | 51.00 | 18.80 | 4.03±0.27 | 369.87±3.69 |
动力学方程 Kinetic equations | 方程式 Formula | 参考文献 References |
---|---|---|
简化Elovich方程 Simple Elovich equation | Y=a+1/β lnt | Havlin et al., |
抛物线扩散方程 Parabolic diffusion equation | Y=a+R×t 0.5 | Dang et al., |
双常数方程 Two constant equation | Y=a×tb | Havlin et al., |
Table 2 Desorption kinetic model
动力学方程 Kinetic equations | 方程式 Formula | 参考文献 References |
---|---|---|
简化Elovich方程 Simple Elovich equation | Y=a+1/β lnt | Havlin et al., |
抛物线扩散方程 Parabolic diffusion equation | Y=a+R×t 0.5 | Dang et al., |
双常数方程 Two constant equation | Y=a×tb | Havlin et al., |
土壤组分 Soil fractions | 质量分数 w/% | Cd质量分数 w(Cd)/(mg∙kg-1) | Zn质量分数 w(Zn)/(mg∙kg-1) | |||||
---|---|---|---|---|---|---|---|---|
对照 Control | 高污染 High polluted | 对照 Control | 高污染 High polluted | 对照土壤 Control | 高污染 High polluted | |||
POM (2000-250 µm) | 3.88 | 2.17 | 2.30±0.03Ab | 19.33±0.49Aa | 233.45±4.93Ab | 868.86±2.93Aa | ||
POM (250-53 µm) | 5.44 | 5.04 | 1.65±0.02Bb | 12.93±1.80Ba | 226.85±6.32Ab | 632.21±15.08Ba | ||
矿物质 Mineral (2000-250 µm) | 15.01 | 3.76 | 0.07±0.01Db | 1.89±0.30Da | 8.56±0.22Cb | 265.56±19.41Da | ||
矿物质 Mineral (250-53 µm) | 33.77 | 18.43 | 0.06±0.01Db | 0.88±0.20Da | 8.92±1.25Cb | 87.38±12.94Ea | ||
有机-无机复合体 Organic-inorganic composite (<53 µm) | 40.89 | 70.77 | 1.03±0.12Cb | 3.73±0.53Ca | 157.89±2.99Bb | 391.76±3.31Ca |
Table 3 Changes in mass fraction (w) of soil different particulate components and Cd/Zn
土壤组分 Soil fractions | 质量分数 w/% | Cd质量分数 w(Cd)/(mg∙kg-1) | Zn质量分数 w(Zn)/(mg∙kg-1) | |||||
---|---|---|---|---|---|---|---|---|
对照 Control | 高污染 High polluted | 对照 Control | 高污染 High polluted | 对照土壤 Control | 高污染 High polluted | |||
POM (2000-250 µm) | 3.88 | 2.17 | 2.30±0.03Ab | 19.33±0.49Aa | 233.45±4.93Ab | 868.86±2.93Aa | ||
POM (250-53 µm) | 5.44 | 5.04 | 1.65±0.02Bb | 12.93±1.80Ba | 226.85±6.32Ab | 632.21±15.08Ba | ||
矿物质 Mineral (2000-250 µm) | 15.01 | 3.76 | 0.07±0.01Db | 1.89±0.30Da | 8.56±0.22Cb | 265.56±19.41Da | ||
矿物质 Mineral (250-53 µm) | 33.77 | 18.43 | 0.06±0.01Db | 0.88±0.20Da | 8.92±1.25Cb | 87.38±12.94Ea | ||
有机-无机复合体 Organic-inorganic composite (<53 µm) | 40.89 | 70.77 | 1.03±0.12Cb | 3.73±0.53Ca | 157.89±2.99Bb | 391.76±3.31Ca |
POM粒径 Sizes of POM/μm | 污染程度 Pollution degree | Cd | Zn | ||||
---|---|---|---|---|---|---|---|
Elovich方程 Elovich equation | 扩散方程 Diffusion equation | 双常数方程 Two-constant equation | 扩散方程 Diffusion equation | 双常数方程 Two-constant equation | |||
2000-250 | 对照 | 0.715 | 0.462 | 0.687 | 0.887 | 0.974 | |
高污染 | 0.669 | 0.448 | 0.657 | 0.787 | 0.850 | ||
250-53 | 对照 | 0.757 | 0.714 | 0.774 | 0.926 | 0.790 | |
高污染 | 0.910 | 0.654 | 0.900 | 0.892 | 0.900 |
Table 4 The parameters R2 of Cd and Zn desorption kinetics in different soil particulate organic matter fractions
POM粒径 Sizes of POM/μm | 污染程度 Pollution degree | Cd | Zn | ||||
---|---|---|---|---|---|---|---|
Elovich方程 Elovich equation | 扩散方程 Diffusion equation | 双常数方程 Two-constant equation | 扩散方程 Diffusion equation | 双常数方程 Two-constant equation | |||
2000-250 | 对照 | 0.715 | 0.462 | 0.687 | 0.887 | 0.974 | |
高污染 | 0.669 | 0.448 | 0.657 | 0.787 | 0.850 | ||
250-53 | 对照 | 0.757 | 0.714 | 0.774 | 0.926 | 0.790 | |
高污染 | 0.910 | 0.654 | 0.900 | 0.892 | 0.900 |
指标 Index | 污染程度 Pollution degree | Cd | Zn | |||
---|---|---|---|---|---|---|
2000-250 μm | 250-53 μm | 2000-250 μm | 250-53 μm | |||
24 h EDTA提取态 Extraction by EDTA for 24 h, w/(mg∙kg-1) | 对照 | 2.20±0.24Ab | 1.66±0.05Bb | 178.93±2.39Ab | 162.13±4.27Bb | |
高污染 | 16.25±0.63Aa | 9.67±0.19Ba | 613.84±10.35Aa | 369.26±8.18Ba | ||
24 h 提取率 Extracted rate for 24 h/% | 对照 | 95.44±0.10Aa | 100.00±0.01Aa | 76.66±0.01Aa | 71.47±0.01Ba | |
高污染 | 83.95±0.05Ab | 75.74±0.13Bb | 70.65±0.01Ab | 58.45±0.03Bb |
Table 5 The EDTA extractable Cd and Zn concentrations and the extracted rate of soil POM fraction
指标 Index | 污染程度 Pollution degree | Cd | Zn | |||
---|---|---|---|---|---|---|
2000-250 μm | 250-53 μm | 2000-250 μm | 250-53 μm | |||
24 h EDTA提取态 Extraction by EDTA for 24 h, w/(mg∙kg-1) | 对照 | 2.20±0.24Ab | 1.66±0.05Bb | 178.93±2.39Ab | 162.13±4.27Bb | |
高污染 | 16.25±0.63Aa | 9.67±0.19Ba | 613.84±10.35Aa | 369.26±8.18Ba | ||
24 h 提取率 Extracted rate for 24 h/% | 对照 | 95.44±0.10Aa | 100.00±0.01Aa | 76.66±0.01Aa | 71.47±0.01Ba | |
高污染 | 83.95±0.05Ab | 75.74±0.13Bb | 70.65±0.01Ab | 58.45±0.03Bb |
变量 Variables | 污染程度 Pollution degree | POM (2000-250 μm) | POM (250-53 μm) | |||
---|---|---|---|---|---|---|
提取前 Before Extraction | 提取后 After extraction | 提取前 Before Extraction | 提取后 After extraction | |||
C-H/石英 C-H/Quartz | 对照 | 0.11 | 0.12 | 0.081 | 0.092 | |
高污染 | 0.10 | 0.13 | 0.088 | 0.088 | ||
C=O/石英 C=O/Quartz | 对照 | 1.17 | 1.31 | 1.04 | 1.10 | |
高污染 | 1.09 | 1.40 | 1.08 | 1.15 |
Table 6 Mean ratios of peak heights of C-H/quartz and C=O/quartz from FTIR spectra
变量 Variables | 污染程度 Pollution degree | POM (2000-250 μm) | POM (250-53 μm) | |||
---|---|---|---|---|---|---|
提取前 Before Extraction | 提取后 After extraction | 提取前 Before Extraction | 提取后 After extraction | |||
C-H/石英 C-H/Quartz | 对照 | 0.11 | 0.12 | 0.081 | 0.092 | |
高污染 | 0.10 | 0.13 | 0.088 | 0.088 | ||
C=O/石英 C=O/Quartz | 对照 | 1.17 | 1.31 | 1.04 | 1.10 | |
高污染 | 1.09 | 1.40 | 1.08 | 1.15 |
[1] | BERNIER M H, LEVY G J, FINE P, et al., 2013. Organic matter composition in soils irrigated with treated wastewater: FT-IR spectroscopic analysis of bulk soil samples[J]. Geoderma, 209-210: 233-240. |
[2] |
CAPRIEL P, BECK T, BORCHERT H, 1995. Hydrophobicity of the organic matter in arable soils[J]. Soil Biology and Biochemistry, 27(11): 1453-1458.
DOI URL |
[3] | CHEN L, BEIYUAN J Z, HU W F, et al., 2022. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review[J]. Chemosphere, 293: 133577. |
[4] |
CHRISTENSEN B T, 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover[J]. European Journal of Soil Science, 52(3): 345-353.
DOI URL |
[5] |
CORNU J Y, DEPERNET C, GARNIER C, et al., 2017. How do low doses of desferrioxamine B and EDTA affect the phytoextraction of metals in sunflower?[J] Science of the Total Environment, 592: 535-545.
DOI URL |
[6] |
DANG Y P, DALAL R C, EDWARDS D G, et al., 1994. Kinetics of zinc desorption from vertisols[J]. Soil Science Society of America Journal, 58(5): 1392-1399.
DOI URL |
[7] | ELKHATIB E A, MAHDY A M, SALEH M E, et al., 2007. Kinetics of copper desorption from soils as affected by different organic ligands[J]. International Journal of Environmental Science & Technology, 4(3): 331-338. |
[8] |
ELLERBROCK R H, GERKE H H, BOHM C, 2009. In situ DRIFT characterization of organic matter composition on soil structural surfaces[J]. Soil Science Society of America Journal, 73(2): 531-540.
DOI URL |
[9] |
ELLERBROCK R H, GERKE H H, DEUMLICH D, 2016. Soil organic matter composition along a slope in an erosion-affected arable landscape in North East Germany[J]. Soil and Tillage Research, 156: 209-218.
DOI URL |
[10] |
GUO X Y, ZHANG S Z, SHAN X Q, et al., 2006. Characterization of Pb, Cu, and Cd adsorption on particulate organic matter in soil[J]. Environmental Toxicology and Chemistry, 25(9): 2366-2373.
PMID |
[11] |
HAVLIN J L, WESTFALL D G, OLSEN S R, 1985. Mathematical models for potassium release kinetics in calcareous soil[J]. Soil Science Society of America Journal, 49(2): 371-376.
DOI URL |
[12] |
HELLER C, ELLERBROCK R H, ROƁKOPF N, et al., 2015. Soil organic matter characterization of temperate peatland soil with FTIR-spectroscopy: Effects of mire type and drainage intensity[J]. European Journal of Soil Science, 66: 847-858.
DOI URL |
[13] |
LABANOWSKI J, SEBASTIA J, FOY E, et al., 2007. Fate of metal-associated POM in a soil under arable land use contaminated by metallurgical fallout in northern France[J]. Environmental Pollution, 149(1): 59-69.
PMID |
[14] |
LAVALLEE J M, SOONG J L, COTRUFO M F, 2020. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology, 26(1): 1-13.
DOI URL |
[15] |
LI Z, WU L H, LUO Y M, et al., 2014. Dynamics of plant metal uptake and metal changes in whole soil and soil particle fractions during repeated phytoextraction[J]. Plant and Soil, 374(1-2): 857-869.
DOI URL |
[16] |
LUO Y F, WU Y G, SHU J, et al., 2019. Effect of particulate organic matter fractions on the distribution of heavy metals with aided phytostabilization at a zinc smelting waste slag site[J]. Environmental Pollution, 253: 330-341.
DOI PMID |
[17] |
MOHAMED I, AHAMADOU B, LI M, et al., 2010. Fractionation of copper and cadmium and their binding with soil organic matter in a contaminated soil amended with organic materials[J]. Journal of Soils and Sediments, 10(6): 973-982.
DOI URL |
[18] | PANDION K, MOHAMED KHALITH S B, RAVINDRAN B, et al., 2022. Potential health risk caused by heavy metal associated with seafood consumption around coastal area[J]. Environmental Pollution, 294: 118553. |
[19] | RAI R, AGRAWAL M, AGRAWAL S B, 2016. Impact of heavy metals on physiological processes of plants: With special reference to photosynthetic system[M]. Springer: Singapore. |
[20] | RIVERA M B, GIRÁLDEX M I, FERNÁNDEZ-CALIANI J C, 2016. Assessing the environmental availability of heavy metals in geogenically contaminated soils of the Sierra de Aracena Natural Park (SW Spain). Is there a health risk?[J] Science of the Total Environment, 560-561: 254-265. |
[21] |
SEBASTIA J, OORT F V, LAMY I, 2008. Buffer capacity and Cu affinity of soil particulate organic matter (POM) size fractions[J]. European Journal of Soil Science, 59(2): 304-314.
DOI URL |
[22] |
SHI J Y, WU Q H, ZHENG C Q, et al., 2018. The interaction between particulate organic matter and copper, zinc in paddy soil[J]. Environmental Pollution, 243: 1394-1402.
DOI PMID |
[23] |
WEN H J, ZHANG Y X, CLOQUET C, et al., 2015. Tracing sources of pollution in soils from the Jinding Pb-Zn mining district in China using cadmium and lead isotopes[J]. Applied Geochemistry, 52(1): 147-154.
DOI URL |
[24] |
YANG Q Q, LI Z Y, LU X N, et al., 2018. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 642: 690-700.
DOI URL |
[25] |
ZENG S Y, MA J, YANG Y J, et al., 2019. Spatial assessment of farmland soil pollution and its potential human health risks in China[J]. Science of the Total Environment, 687: 642-653.
DOI URL |
[26] |
ZHANG J, HUA P, KREBS P, 2017. Influences of land use and antecedent dry-weather period on pollution level and ecological risk of heavy metals in road-deposited sediment[J]. Environmental Pollution, 228: 158-168.
DOI PMID |
[27] |
ZHANG X W, YANG L S, LI Y H, et al., 2012. Impacts of lead/zinc mining and smelting on the environment and human health in China[J]. Environmental Monitoring and Assessment, 184(4): 2261-2273.
DOI URL |
[28] | ZHANG X X, CHEN Z L, HUO X Y, et al., 2021. Application of Fourier transform ion cyclotron resonance mass spectrometry in deciphering molecular composition of soil organic matter: A review[J]. Science of the Total Environment, 756(20): 144140. |
[29] |
ZHAO F J, MA Y B, ZHU Y G, et al., 2015. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science and Technology, 49(2): 750-759.
DOI URL |
[30] |
ZHOU T, LI L Q, ZHANG X H, et al., 2016. Changes in organic carbon and nitrogen in soil with metal pollution by Cd, Cu, Pb and Zn: A meta-analysis[J]. European Journal of Soil Science, 67(2): 237-246.
DOI URL |
[31] |
ZHOU T, WU L H, CHRISTIE P, et al., 2018b. The efficiency of Cd phytoextraction by S. plumbizincicola increased with the addition of rice straw to polluted soils: The role of particulate organic matter[J]. Plant and Soil, 429(1-2): 321-333.
DOI URL |
[32] |
ZHOU T, WU L H, LUO Y M, et al., 2018a. Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils[J]. Environmental Pollution, 232: 514-522.
DOI URL |
[33] | ŻUKOWSKA J, BIZIUK M, 2010. Methodological evaluation of method for dietary heavy metal intake[J]. Journal of Food Science, 73(2): 21-29. |
[34] | 樊霆, 叶文玲, 陈海燕, 等, 2013. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境学报, 22(10): 1727-1736. |
FAN T, YE W L, CHEN H Y, et al., 2013. Review on contamination and remediation technology of heavy metal in agricultural soil[J]. Ecology and Environmental Sciences, 22(10): 1727-1736. | |
[35] | 黄一珂, 邱晓航, 2016. 软硬酸碱理论的发展和应用[J]. 大学化学, 31(11): 45-50. |
HUANG Y K, QIU X H, 2016. Development and application of the concept of Hard-Soft-Acid-Base (HSAB)[J]. University Chemistry, 31(11): 45-50.
DOI URL |
|
[36] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 2000. Analytical methods for soil and agro-chemistry[M]. Beijing: China Agricultural Science and Technology Press. | |
[37] | 生态环境部, 2018. 土壤环境质量-农用地土壤污染风险管控标准 (试行): GB 15618-2018[S]. 北京: 中国环境科学出版社. |
Ministry of Ecology and Environment of the People’s Republic of China, 2018. Soil Environmental quality risk control standard for soil contamination of agricultural land: GB 15618-2018[S]. Beijing, China Environmental Science Press. | |
[38] | 许超, 夏北城, 林颖, 2009. EDTA和柠檬酸对污染土壤中重金属的解吸动力学及其形态的影响[J]. 水土保持学报, 23(4): 146-150. |
XU C, XIA B C, LIN Y, 2009. Kinetics of heavy metal desorption by EDTA and citric in contaminated soil and their redistribution of fractions[J]. Journal of Soil and Water Conservation, 23(4): 146-150. | |
[39] | 曾晓舵, 王向琴, 凃新红, 等, 2019. 农田土壤重金属污染阻控技术研究进展[J]. 生态环境学报, 28(9): 1900-1906. |
ZENG X D, WANG X Q, TU X H, et al., 2019. Research progress on speciation and physiological control of heavy metal in soil-plant system[J]. Ecology and Environmental Sciences, 28(9): 1900-1906. | |
[40] | 张兰萍, 闵文豪, 范志强, 等, 2020. 酸性紫色水稻土颗粒有机质对镉的吸附特性[J]. 中国环境科学, 40(6): 2588-2597. |
ZHANG L P, MIN W H, FAN Z Q, et al., 2020. Characteristics of cadmium adsorption on particulate organic matter isolated from an purple paddy soil[J]. China Environmental Science, 40(6): 2588-2597. | |
[41] | 张叶叶, 莫非, 韩娟, 等, 2021. 秸秆还田下土壤有机质激发效应研究进展[J]. 土壤学报, 58(6): 1381-1392. |
ZHANG Y Y, MO F, HAN J, et al., 2021. Research progress on the native soil carbon priming after straw addition[J]. Acta Pedologica Sinica, 58(6): 1381-1392. | |
[42] | 赵永存, 徐胜祥, 王美艳, 等, 2018. 中国农田土壤固碳潜力与速率: 认识、挑战与研究建议[J]. 中国科学院院刊, 33(2): 191-197. |
ZHAO Y C, XU S X, WANG M Y, et al., 2018. Carbon sequestration potential in Chinese cropland soils: Review, challenge, and research suggestions[J]. Bulletin of Chinese Academy of Sciences, 33(2): 191-197. | |
[43] | 中华人民共和国环境保护部, 中华人民共和国国土资源部, 2014. 全国土壤污染状况调查公报[J]. 中国环保产业 (5): 10-11. |
Ministry of Environmental Protection of the People’s Republic of China, Ministry of Land and Resources of the People’s Republic of China, 2014. Bulletin of national soil pollution survey[J]. China Environmental Protection Industry (5): 10-11. |
[1] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[2] | LI Chuanfu, ZHU Taochuan, MING Yufei, YANG Yuxuan, GAO Shu, DONG Zhi, LI Yongqiang, JIAO Shuying. Effect of Organic Fertilizer and Desulphurized Gypsum on Soil Aggregates and Organic Carbon and Its Fractions Contents in the Saline-alkali Soil of the Yellow River Delta [J]. Ecology and Environment, 2023, 32(5): 878-888. |
[3] | WANG Chao, YANG Qiannan, ZHANG Chi, LIU Tongxu, ZHANG Xialong, CHEN Jing, LIU Kexue. The Characteristics of Soil Phosphorus Fractions and Their Availability under Different Land Use Types in Danxia Mountain [J]. Ecology and Environment, 2023, 32(5): 889-897. |
[4] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[5] | DONG Zhijin, ZHANG Chengchun, ZHAN Xiuli, ZHANG Weifu. Spatial Distribution Characteristics of Soil Nutrients of Biological Soil Crusts and Their Underlying Soil of Sandy Land in the East of Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(5): 910-919. |
[6] | ZHOU Qinyuan, DONG Quanmin, Wang Fangcao, LIU Yuzhen, FENG Bin, YANG Xiaoxia, YU Yang, ZHANG Chunping, CAO Quan, LIU Wenting. Effects of Mixed Grazing on Aggregates and Organic Carbon in Rhizosphere Soil of Stellera chamaejasme in Alpine Grassland [J]. Ecology and Environment, 2023, 32(4): 660-667. |
[7] | PAN Yuling, QU Xiangning, LI Qing, WANG Lei, WANG Xiaoping, TAN Peng, CUI Geng, AN Yu, TONG Shouzheng. Spatial Distribution Characteristics of Soil Physicochemical Factors and Their Response to Microtopography in a Typical Beach Wetland of the Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(4): 668-677. |
[8] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[9] | YU Fei, ZENG Hailong, FANG Huaiyang, FU Lingfang, LIN Shu, DONG Jiahao. Spatio-temporal Variation Characteristics of Phytoplankton Functional Groups and Water Quality Evaluation in the Typical Tidal River Network [J]. Ecology and Environment, 2023, 32(4): 756-765. |
[10] | FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil [J]. Ecology and Environment, 2023, 32(4): 776-783. |
[11] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[12] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[13] | QIN Hao, LI Mengai, GAO Jin, CHEN Kailong, ZHANG Yinbo, ZHANG Feng. Composition and Diversity of Soil Bacterial Communities in Shrub at Different Altitudes in Luya Mountain [J]. Ecology and Environment, 2023, 32(3): 459-468. |
[14] | TANG Haiming, SHI Lihong, WEN Li, CHENG Kaikai, LI Chao, LONG Zedong, XIAO Zhiwu, LI Weiyan, GUO Yong. Effects of Different Long-term Fertilizer Managements on Rhizosphere Soil Nitrogen in the Double-cropping Rice Field [J]. Ecology and Environment, 2023, 32(3): 492-499. |
[15] | LIU Kanghan, ZHENG Liugen, ZHANG Liqun, DING Dan, SHAN Shifeng. Effect of Complex Plant Derived Activator on the Remediation of As Contaminated Soil by Pteris vittata [J]. Ecology and Environment, 2023, 32(3): 635-642. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn