Ecology and Environment ›› 2020, Vol. 29 ›› Issue (1): 23-34.DOI: 10.16258/j.cnki.1674-5906.2020.01.003
• Research Articles • Previous Articles Next Articles
LU Qiaoqian1(), JIANG Tao1,*(
), LIU Danli1, LIU Zhiyong2
Received:
2019-10-12
Online:
2020-01-18
Published:
2020-03-09
Contact:
JIANG Tao
通讯作者:
江涛
作者简介:
卢乔倩(1997年生),女,硕士研究生,主要研究方向为生态与环境水文学。E-mail: luqq5@mail2.sysu.edu.cn
基金资助:
CLC Number:
LU Qiaoqian, JIANG Tao, LIU Danli, LIU Zhiyong. The Response Characteristics of NDVI with Different Vegetation Cover Types to Temperature and Precipitation in China[J]. Ecology and Environment, 2020, 29(1): 23-34.
卢乔倩, 江涛, 柳丹丽, 刘智勇. 中国不同植被覆盖类型NDVI对气温和降水的响应特征[J]. 生态环境学报, 2020, 29(1): 23-34.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2020.01.003
月份 Month | 月气温 Temperature/℃ | 月降水 Precipitation/mm |
---|---|---|
4 | 8.6 | 43.2 |
5 | 14 | 64.9 |
6 | 17.6 | 101.2 |
7 | 19.8 | 132.8 |
8 | 18.7 | 94.8 |
9 | 13.8 | 70.7 |
10 | 6.9 | 28.7 |
Table 1 Monthly mean temperature and precipitation over China for the period 1982?2012
月份 Month | 月气温 Temperature/℃ | 月降水 Precipitation/mm |
---|---|---|
4 | 8.6 | 43.2 |
5 | 14 | 64.9 |
6 | 17.6 | 101.2 |
7 | 19.8 | 132.8 |
8 | 18.7 | 94.8 |
9 | 13.8 | 70.7 |
10 | 6.9 | 28.7 |
植被覆盖类型 Vegetation types | 最小值 Minimum values | 最大值 Maximum values | 平均值 Mean values |
---|---|---|---|
常绿阔叶林 Evergreen Broadleaf forest | 0.7102 | 0.7968 | 0.7494 |
落叶阔叶林 Deciduous Broadleaf forest | 0.6854 | 0.7832 | 0.7492 |
混交林 Mixed forest | 0.6954 | 0.7662 | 0.7298 |
多树的草原 Woody savannas | 0.6774 | 0.7568 | 0.7131 |
作物和自然植被的镶嵌体 Cropland/Natural vegetation mosaic | 0.6587 | 0.7074 | 0.6799 |
作物 Croplands | 0.5375 | 0.6014 | 0.5734 |
草原 Grasslands | 0.3465 | 0.3850 | 0.3666 |
开放灌丛 Open shrublands | 0.1119 | 0.1314 | 0.1211 |
Table 2 Maximum values, minimum values and mean values of NDVI for different vegetation cover types during the growing season in China in 1982?2012
植被覆盖类型 Vegetation types | 最小值 Minimum values | 最大值 Maximum values | 平均值 Mean values |
---|---|---|---|
常绿阔叶林 Evergreen Broadleaf forest | 0.7102 | 0.7968 | 0.7494 |
落叶阔叶林 Deciduous Broadleaf forest | 0.6854 | 0.7832 | 0.7492 |
混交林 Mixed forest | 0.6954 | 0.7662 | 0.7298 |
多树的草原 Woody savannas | 0.6774 | 0.7568 | 0.7131 |
作物和自然植被的镶嵌体 Cropland/Natural vegetation mosaic | 0.6587 | 0.7074 | 0.6799 |
作物 Croplands | 0.5375 | 0.6014 | 0.5734 |
草原 Grasslands | 0.3465 | 0.3850 | 0.3666 |
开放灌丛 Open shrublands | 0.1119 | 0.1314 | 0.1211 |
植被覆盖类型 Vegetation cover types | 气温 Temperature | 降水 Precipitation |
---|---|---|
常绿阔叶林 Evergreen Broadleaf forest | 0.0845 | -0.3104 |
落叶阔叶林 Deciduous Broadleaf forest | 0.9077** | 0.809* |
混交林 Mixed forest | 0.5614 | 0.3324 |
开放灌丛 Open shrublands | 0.8471* | 0.7232 |
多树的草原 Woody savannas | 0.292 | -0.078 |
草原 Grasslands | 0.8528* | 0.7989 |
作物 Croplands | 0.7033 | 0.5805 |
作物和自然植被的镶嵌体Cropland/Natural vegetation mosaic | 0.6249 | 0.4837 |
Table 3 Correlation coefficients between mean NDVI and temperature/precipitation for 8 vegetation cover types during the growing season in China in 1982?2012
植被覆盖类型 Vegetation cover types | 气温 Temperature | 降水 Precipitation |
---|---|---|
常绿阔叶林 Evergreen Broadleaf forest | 0.0845 | -0.3104 |
落叶阔叶林 Deciduous Broadleaf forest | 0.9077** | 0.809* |
混交林 Mixed forest | 0.5614 | 0.3324 |
开放灌丛 Open shrublands | 0.8471* | 0.7232 |
多树的草原 Woody savannas | 0.292 | -0.078 |
草原 Grasslands | 0.8528* | 0.7989 |
作物 Croplands | 0.7033 | 0.5805 |
作物和自然植被的镶嵌体Cropland/Natural vegetation mosaic | 0.6249 | 0.4837 |
Fig. 7 Boxplot of correlation between NDVI and temperature for each month of the growing season The corresponding relationship of vegetation cover types in abscissa is 1-Evergreen Broadleaf forest, 2-Deciduous Broadleaf forest, 3-Mixed forest, 4-Open shrublands, 5-Woody savannas, 6-Grasslands, 7-Croplands, 8-Cropland/Natural vegetation mosaic. The same below
[1] |
BAO Y J, SONG G B, LI Z H, et al., 2007. Study on the spatial differences and its time lag effect on climatic factors of the vegetation in the Longitudinal Range-Gorge Region[J]. Chinese Science Bulletin, 52(SuppⅡ): 42-49.
DOI URL |
[2] |
FRIEDL M A, MCIVER D K, HODGES J C R, et al., 2002. Global land cover mapping from MODIS: algorithms and early results[J]. Remote sensing of Environment, 83(1-2): 287-302.
DOI URL |
[3] |
JIANG L L, JIAPAER G, BAO A M, et al., 2017. Vegetation dynamics and responses to climate change and human activities in Central Asia[J]. Science of the Total Environment, 599-600: 967-980.
DOI URL |
[4] |
LAMCHIN M, LEE W K, JEON S W, et al., 2018. Long-term trend and correlation between vegetation greenness and climate variables in Asia based on satellite data[J]. Science of the Total Environment, 618: 1089-1095.
DOI URL |
[5] |
LIU Z Y, LI C, ZHOU P, et al., 2016. A probabilistic assessment of the likelihood of vegetation drought under varying climate conditions across China[J]. Scientific Reports, 6(35105): 1-10.
DOI URL |
[6] |
NEMANI R R, KEELING C D, HASHIMOTO H, et al., 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999 [J]. Science, 300(5625): 1560-1563.
DOI URL |
[7] | WANG X, PIAO S L, CIAIS P, et al., 2011. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006 [J]. Proceedings of the National Academy of Sciences of the United States of America, 108(4): 1240-1245. |
[8] |
WEN Z F, WU S J, CHEN J L, et al., 2017. NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China[J]. Science of the Total Environment, 574: 947-959.
DOI URL |
[9] |
WU D H, ZHAO X, LIANG S L, et al., 2015. Time-lag effects of global vegetation responses to climate change[J]. Global Change biology, 21(9): 3520-3531.
DOI URL |
[10] | 崔林丽, 史军, 2011. 中国华东及其周边地区NDVI对气温和降水的月际响应特征[J]. 自然资源学报, 26(12): 2121-2130. |
CUI L L, SHI J, 2011. Inter-monthly Response Characteristics of NDVI to the Variation of Temperature and Precipitation in East China and Its Surrounding Areas[J]. Journal of Natural Resources, 26(12): 2121-2130. | |
[11] | 高江波, 焦珂伟, 吴绍洪, 2019. 1982-2013年中国植被NDVI空间异质性的气候影响 (英文)[J]. Acta Geographica Sinica, 29(10): 1597-1609. |
GAO J B, JIAO K W, WU S H, 2019. Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982-2013 [J]. Acta Geographica Sinica, 29(10): 1597-1609. | |
[12] | 郭志华, 刘祥梅, 肖文发, 等, 2007. 基于GIS的中国气候分区及综合评价[J]. 资源科学, 29(6): 2-9. |
GUO Z H, LIU X M, XIAO W F, et al., 2007. Regionalization and Integrated Assessment of Climate Resource in China based on GIS[J]. Resources Science, 29(6): 2-9. | |
[13] | 何全军, 2019. 基于MODIS数据的珠三角地区NDVI时空变化特征及对气象因素的响应[J]. 生态环境学报, 28(9): 1722-1730. |
HE Q J, 2019. Spatio-temporal Variation of NDVI and Its Response to Meteorological Factors in Pearl River Delta Based on MODIS Data[J]. Ecology and Environment, 28(9): 1722-1730. | |
[14] | 何月, 樊高峰, 张小伟, 等, 2012. 浙江省植被NDVI动态及其对气候的响应[J]. 生态学报, 32(14): 4352-4362. |
HE Y, FAN G F, ZHANG X W, et al., 2012. Variation of vegetation NDVI and its response to climate change in Zhejiang Province[J]. Acta Ecologica Sinica, 32(14): 4352-4362.
DOI URL |
|
[15] | 何云玲, 李同艳, 熊巧利, 等, 2018. 2000-2016年云南地区植被覆盖时空变化及其对水热因子的响应[J]. 生态学报, 38(24): 8813-8821. |
HE Y L, LI T Y, XIONG Q L, et al., 2018. Spatio-temporal patterns of vegetation coverage and response to hydrothermal factors in Yunnan province, China[J]. Acta Ecologica Sinica, 38(24): 8813-8821. | |
[16] | 黄文琳, 张强, 孔冬冬, 等, 2019. 1982-2013年内蒙古地区植被物候对干旱变化的响应[J]. 生态学报, 39(13): 4953-4965. |
HUANG W L, ZHANG Q, KONG D D, et al., 2019. Response of vegetation phenology to drought in Inner Mongolia from 1982 to 2013 [J]. Acta Ecologica Sinica, 39(13): 4953-4965. | |
[17] | 李舒婷, 周艺, 王世新, 等, 2019. 2001-2015年内蒙古NDVI时空变化及其对降水和气温的响应[J]. 中国科学院大学学报, 36(1): 48-55. |
LI S T, ZHOU Y, WANG S X, et al., 2019. Spatial-temporal variation of NDVI and its responses to precipitation and temperature in Inner Mongolia from 2001 to 2015 [J]. Journal of University of Chinese Academy of Sciences, 36(1): 48-55. | |
[18] | 李晓兵, 史培军, 2000. 中国典型植被类型NDVI动态变化与气温、降水变化的敏感性分析[J]. 植物生态学报, 24(3): 379-382. |
LI X B, SHI P J, 2000. Sensitivity analysis of variation in ndvi, temperature and precipitation in typical vegetation types across China[J]. Chinese Journal of Plant Ecology, 24(3): 379-382. | |
[19] | 刘家福, 马帅, 李帅, 等, 2018. 1982-2016年东北黑土区植被NDVI动态及其对气候变化的响应[J]. 生态学报, 38(21): 7647-7657. |
LIU J F, MA S, LI S, et al., 2018. Changes in vegetation NDVI from 1982 to 2016 and its responses to climate change in the black-soil area of Northeast China[J]. Acta Ecologica Sinica, 38(21): 7647-7657. | |
[20] | 刘明光, 2000. 中国自然地理图集[M]. 第2版. 北京: 中国地图出版社. |
LIU M G, 2000. Atlas of natural geography of China[M]. The second edition. Beijing: Sino Maps Press. | |
[21] | 马士彬, 安裕伦, 杨广斌, 等, 2016. 喀斯特地区不同植被类型NDVI变化及驱动因素分析--以贵州为例[J]. 生态环境学报, 25(7): 1106-1114. |
MA S B, AN Y L, YANG G B, et al., The analysis of the difference vegetation variation and driver factors on NDVI change in Karst Region: A case on Guizhou[J]. Ecology and Environment, 25(7): 1106-1114. | |
[22] | 马守存, 保广裕, 郭广, 等, 2018. 1982-2013年黄河源区植被变化趋势及其对气候变化的响应[J]. 干旱气象, 36(2): 226-233. |
MA S C, BAO G Y, GUO G, et al., 2018. Change Trend of Vegetation and Its Responses to Climate Change in the Source Region of the Yellow River[J]. Arid Meteorology, 36(2): 226-233. | |
[23] | 史丹丹, 杨涛, 胡金明, 等, 2018. 基于NDVI的黄河源区生长季植被时空变化及其与气候因子的关系[J]. 山地学报, 36(2): 184-193. |
SHI D D, YANG T, HU J M, et al., 2018. Spatio-temporal variation of NDVI-based wegetation during the growing-season and its relation with climatic factors in the Yellow River Source Region[J]. Mountain Research, 36(2): 184-193. | |
[24] | 田义超, 梁铭忠, 2016. 北部湾沿海地区植被覆盖对气温和降水的旬响应特征[J]. 自然资源学报, 31(3): 488-502. |
TIAN Y C, LIANG M Z, 2016. The NDVI Characteristics of Vegetation and Its Ten-day Response to Temperature and Precipitation in Beibu Gulf Coastal Region[J]. Journal of Natural Resources, 31(3): 488-502. | |
[25] | 王茜, 陈莹, 阮玺睿, 等, 2017. 1982-2012年中国NDVI变化及其与气候因子的关系[J]. 草地学报, 25(4): 691-700. |
WANG Q, CHEN Y, RUAN X R, et al., 2017. The Changes of NDVI in China from 1982 to 2012 and Its Relationship with Climatic Factors[J]. Acta Agrestia Sinica, 25(4): 691-700. | |
[26] | 武正丽, 贾文雄, 赵珍, 等, 2015. 2000-2012年祁连山植被覆盖变化及其与气候因子的相关性[J]. 干旱区地理, 38(6): 241-1252. |
WU Z L, JIA W X, ZHAO Z, et al., 2015. Spatial-temporal variations of vegetation and its correlation with climatic factors in Qilian Mountains from 2000 to 2012 [J]. Arid Land Geography, 38(6): 241-1252. | |
[27] | 熊巧利, 何云玲, 李同艳, 等, 2019. 西南地区生长季植被覆盖时空变化特征及其对气候与地形因子的响应[J]. 水土保持研究, 26(6): 259-266. |
XIONG Q L, HE Y L, LI T Y, et al., 2019. Spatiotemporal patterns of vegetation coverage and response to climatic and topographic factors in growth season in southwest China[J]. Research of Soil and Water Conservation, 26(6): 259-266. | |
[28] | 许翔驰, 2019. 中国植被时空变化特征[J]. 哈尔滨师范大学自然科学学报, 35(2): 100-104. |
XU X C, 2019. Spatial and Temporal Change Characteristics of Vegetation in China[J]. Natural Science Journal of Harbin Normal University, 35(2): 100-104. | |
[29] | 张景华, 封志明, 姜鲁光, 等, 2015. 澜沧江流域植被NDVI于气候因子的相关性分析[J]. 自然资源学报, 30(9): 1425-1435. |
ZHANG J H, FENG Z M, JIANG L G, et al., 2015. Analysis of the Correlation between NDVI and Climate Factors in the Lancang River Basin[J]. Journal of Natural Resources, 30(9): 1425-1435. | |
[30] | 吴征镒, 1980. 中国植被[M]. 北京: 科学出版社. |
WU Z Y, Chinese Vegetation[M]. Beijing: Science Press. | |
[31] | 周金霖, 马明国, 肖青, 等, 2017. 西南地区植被覆盖动态及其与气候因子的关系[J]. 遥感技术与应用, 32(5): 66-972. |
ZHOU J L, MA M G, XIAO Q, et al., 2017. Vegetation Dynamics and Its Relationship with Climatic Factors in Southwestern China[J]. Remote Sensing Technology and Application, 32(5): 66-972. |
[1] | LIU Xia, GUO Shu, WANG Lin. Study on the Value of Land Use and Ecological Services in the Region of Regional Integration: Take Shuanglai Pilot Area as An Example [J]. Ecology and Environment, 2023, 32(6): 1163-1172. |
[2] | WU Chenyu, XU Fanfan, WEI Shibo, FAN Jingjing, LIU Guanpeng, WANG Kun. Study on Response of Surface Vegetation Cover to Climate Change in Weihe River Basin [J]. Ecology and Environment, 2023, 32(5): 835-844. |
[3] | GE Yuankai, ZHAO Longlong, CHEN Jinsong, REN Yanni, LI Hongzhong. Spatio-temporal Evolution Trend of Meteorological Drought and Identification of Drought Events in Southwest China from 1983 to 2020 [J]. Ecology and Environment, 2023, 32(5): 920-932. |
[4] | ZHANG Junwei, XIA Shengjie, CHEN Huiru, LIU Yanhong. Influence of Landscape Pattern Evolution on Thermal Environment of Urban Agglomerations in Central Shanxi Province [J]. Ecology and Environment, 2023, 32(5): 943-955. |
[5] | LI Jianhui, DANG Zheng, CHEN Lin. Spatial-temporal Characteristics of PM2.5 and Its Influencing Factors in the Yellow River Jiziwan Metropolitan Area [J]. Ecology and Environment, 2023, 32(4): 697-705. |
[6] | LIU Ziwei, GE Jiwen, WANG Yuehuan, YANG Shiyu, YAO Dong, XIE Jinlin. Variation Pattern and Influential Factors of Methane Flux in the Dajiuhu Peatland [J]. Ecology and Environment, 2023, 32(4): 706-714. |
[7] | LI Hui, LI Bilong, GE Lili, HAN Chenhui, YANG Qian, ZHANG Yuejun. Temporal and Spatial Characteristics of Vegetation Evolution and Topographic Effects in Fenhe River Basin from 2000 to 2021 [J]. Ecology and Environment, 2023, 32(3): 439-449. |
[8] | WANG Jiali, FENG Jingke, YANG Yuanzheng, ZU Jiaxing, CAI Wenhua, YANG Jian. Research on Spatial Relations between Impervious Surfaces and the Urban Thermal Environment in the Central Metropolitan Area of Nanning City [J]. Ecology and Environment, 2023, 32(3): 525-534. |
[9] | SHENG Meijun, LI Shengjun, YANG Xinyue, WANG Rui, LI Jie, LI Gang, XIU Weiming. Changes of Soil Enzyme Activities in Cropland with Different Land Use Intensities in Fluvo-aquic Soil Area, North China [J]. Ecology and Environment, 2023, 32(2): 299-308. |
[10] | LIN Xin, DUAN Kunyu, GUO Hong, JIANG Dongsheng, JI Xiaoting, WANG Hong. The Causes of the Abnormal Increase of Ozone in Fuzhou City under Extreme High Temperature [J]. Ecology and Environment, 2023, 32(2): 320-330. |
[11] | JIA Zhifeng, LIU Pengcheng, LIU Yu, WU Bobo, CHEN Danzi, ZHANG Xiangfei. Effects of Climatic Change and Human Activities on Vegetation Cover in Songliao River Basin [J]. Ecology and Environment, 2023, 32(1): 1-10. |
[12] | FU Rong, WU Xinmei, CHEN Bin. Analysis on the Spatial Stratified Heterogeneity and Driving Factors Differences of the Urban Land Surface Temperature: A Case Study of Hefei [J]. Ecology and Environment, 2023, 32(1): 110-122. |
[13] | JIANG Tiantian, YANG Chun, LIAO Wei, HU Li, LIU Huanyao, REN Bo, LI Xiaoma. Path Analysis of the Urban Greenspace Landscape Pattern Impacts on Land Surface Temperature: A Case Study in Changsha [J]. Ecology and Environment, 2023, 32(1): 18-25. |
[14] | LI Weiwen, HUANG Jinquan, QI Yujie, LIU Xiaolan, LIU Jigen, MAO Zhichao, GAO Xiufang. Meta-analysis of Soil Microbial Biomass Carbon Content and Its Influencing Factors under Soil Erosion [J]. Ecology and Environment, 2023, 32(1): 47-55. |
[15] | HAN Cui, KANG Yangmei, YU Hailong, Li Bing, HUANG Juying. Effects of Precipitation on Soil Enzyme Activities during Litter Decomposition in A Desert Steppe of Northwestern China [J]. Ecology and Environment, 2022, 31(9): 1802-1812. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn