Ecology and Environment ›› 2023, Vol. 32 ›› Issue (4): 706-714.DOI: 10.16258/j.cnki.1674-5906.2023.04.008
• Research Articles • Previous Articles Next Articles
LIU Ziwei1,2,3(), GE Jiwen1,2,3,*(
), WANG Yuehuan1,3, YANG Shiyu1,2,3, YAO Dong1,3, XIE Jinlin1,3
Received:
2022-11-03
Online:
2023-04-18
Published:
2023-07-12
Contact:
GE Jiwen
刘紫薇1,2,3(), 葛继稳1,2,3,*(
), 王月环1,3, 杨诗雨1,2,3, 姚东1,3, 谢金林1,3
通讯作者:
葛继稳
作者简介:
刘紫薇(1996年生),女,博士研究生,研究方向为湿地生态学。E-mail: liuziwei@cug.edu.cn
基金资助:
CLC Number:
LIU Ziwei, GE Jiwen, WANG Yuehuan, YANG Shiyu, YAO Dong, XIE Jinlin. Variation Pattern and Influential Factors of Methane Flux in the Dajiuhu Peatland[J]. Ecology and Environment, 2023, 32(4): 706-714.
刘紫薇, 葛继稳, 王月环, 杨诗雨, 姚东, 谢金林. 大九湖泥炭湿地甲烷通量变异特征及影响因素[J]. 生态环境学报, 2023, 32(4): 706-714.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.04.008
年份 | 日均通量/ (μmol∙m−2∙d−1) | 通量极大值/ (μmol∙m−2∙d−1) | 通量极小值/ (μmol∙m−2∙d−1) | 年排放量/ (g∙m−2∙a−1) | 年昼排放量/ (g∙m−2∙a−1) | 年夜排放量/ (g∙m−2∙a−1) | 昼 (夜) 通量占比极大 (小) 值/% | 夜 (昼) 通量占比极大 (小) 值/% | 昼通量占比/% | 夜通量占比/% |
---|---|---|---|---|---|---|---|---|---|---|
2016 | 912.96 | 2916.72 | −70.08 | 5.35 | 3.09 | 2.26 | 74.59 | 48.82 | 57.76 | 42.24 |
2017 | 1318.08 | 4832.88 | −109.68 | 7.70 | 4.55 | 3.14 | 81.85 | 50.54 | 59.09 | 40.91 |
2018 | 1834.56 | 5387.28 | −49.20 | 10.71 | 6.57 | 4.14 | 67.22 | 44.59 | 61.34 | 39.66 |
2019 | 1670.88 | 7650.72 | −1796.16 | 8.93 | 4.54 | 4.39 | 70.12 | 54.31 | 50.84 | 49.16 |
Table 1 The methane emissions of the Dajiuhu peatland from 2016 to 2019
年份 | 日均通量/ (μmol∙m−2∙d−1) | 通量极大值/ (μmol∙m−2∙d−1) | 通量极小值/ (μmol∙m−2∙d−1) | 年排放量/ (g∙m−2∙a−1) | 年昼排放量/ (g∙m−2∙a−1) | 年夜排放量/ (g∙m−2∙a−1) | 昼 (夜) 通量占比极大 (小) 值/% | 夜 (昼) 通量占比极大 (小) 值/% | 昼通量占比/% | 夜通量占比/% |
---|---|---|---|---|---|---|---|---|---|---|
2016 | 912.96 | 2916.72 | −70.08 | 5.35 | 3.09 | 2.26 | 74.59 | 48.82 | 57.76 | 42.24 |
2017 | 1318.08 | 4832.88 | −109.68 | 7.70 | 4.55 | 3.14 | 81.85 | 50.54 | 59.09 | 40.91 |
2018 | 1834.56 | 5387.28 | −49.20 | 10.71 | 6.57 | 4.14 | 67.22 | 44.59 | 61.34 | 39.66 |
2019 | 1670.88 | 7650.72 | −1796.16 | 8.93 | 4.54 | 4.39 | 70.12 | 54.31 | 50.84 | 49.16 |
昼/夜通量 | 模型 | 未标准化系数 | 标准化系数 | 显著性 | ||
---|---|---|---|---|---|---|
B | 标准误差 | Beta | ||||
CH4昼通量 | 常量 | 0.018 | 0.007 | 0.009 | ||
ta | 0.000 | 0.000 | 0.176 | 0.071 | ||
ts | 0.001 | 0.000 | 0.418 | 0.000 | ||
SWC | 0.000 | 0.000 | −0.054 | 0.145 | ||
Prcp | 0.001 | 0.003 | 0.008 | 0.778 | ||
RH | 0.000 | 0.000 | −0.086 | 0.071 | ||
PAR | 0.000 | 0.000 | −0.176 | 0.001 | ||
CH4夜通量 | 常量 | 0.017 | 0.011 | 0.137 | ||
ta | 0.000 | 0.000 | 0.246 | 0.007 | ||
ts | 0.001 | 0.000 | 0.244 | 0.004 | ||
SWC | 0.000 | 0.000 | −0.149 | 0.002 | ||
Prcp | 0.255 | 0.121 | 0.081 | 0.035 | ||
RH | 0.000 | 0.000 | 0.101 | 0.071 | ||
PAR | 0.000 | 0.000 | 0.039 | 0.552 |
Table 2 The multiple linear regression analysis between methane emissions and meteorological parameters in day and night
昼/夜通量 | 模型 | 未标准化系数 | 标准化系数 | 显著性 | ||
---|---|---|---|---|---|---|
B | 标准误差 | Beta | ||||
CH4昼通量 | 常量 | 0.018 | 0.007 | 0.009 | ||
ta | 0.000 | 0.000 | 0.176 | 0.071 | ||
ts | 0.001 | 0.000 | 0.418 | 0.000 | ||
SWC | 0.000 | 0.000 | −0.054 | 0.145 | ||
Prcp | 0.001 | 0.003 | 0.008 | 0.778 | ||
RH | 0.000 | 0.000 | −0.086 | 0.071 | ||
PAR | 0.000 | 0.000 | −0.176 | 0.001 | ||
CH4夜通量 | 常量 | 0.017 | 0.011 | 0.137 | ||
ta | 0.000 | 0.000 | 0.246 | 0.007 | ||
ts | 0.001 | 0.000 | 0.244 | 0.004 | ||
SWC | 0.000 | 0.000 | −0.149 | 0.002 | ||
Prcp | 0.255 | 0.121 | 0.081 | 0.035 | ||
RH | 0.000 | 0.000 | 0.101 | 0.071 | ||
PAR | 0.000 | 0.000 | 0.039 | 0.552 |
研究范围 | 甲烷通量/ (μmol∙m−2∙h−1) | 年排放量/ (g∙m−1) | 参考文献 |
---|---|---|---|
青藏高原日干桥 泥炭湿地 | 249.48 | 34.96 | Chen et al., |
意大利邦东尼峰 高原泥炭湿地 | 126.00 | 17.66 | Pullens et al., |
北欧泥炭湿地 | 0.69‒114.58 | 0.10‒15.96 | Huang et al., |
马来西亚马姆达鲁国家公园泥炭湿地 | 86.40 | 12.11 | Wong et al., |
福建省闽江口 山峪塘湿地 | 1412.50 | 197.98 | Tong et al., |
青海省隆宝滩 沼泽湿地 | 56.61 | 7.93 | 何方杰等, |
波兰别布扎河湿地 | 176.23 | 24.70 | Fortuniak et al., |
广东省珠江口 红树林 | 18.97 | 2.65 | 张涵等, |
阿根廷巴塔哥尼亚山毛榉林 | 4.38 | 0.61 | 2019 |
青海省尕海 湿生草甸 | 2.26‒8.67 | 0.32‒1.22 | Wu et al., |
菲律宾拉古纳 稻田土 | 241.20 | 33.60 | Alberto et al., |
江河岸带 | 372.08 | 52.15 | Tang et al., |
Table 3 The mean methane emissions from different study sites
研究范围 | 甲烷通量/ (μmol∙m−2∙h−1) | 年排放量/ (g∙m−1) | 参考文献 |
---|---|---|---|
青藏高原日干桥 泥炭湿地 | 249.48 | 34.96 | Chen et al., |
意大利邦东尼峰 高原泥炭湿地 | 126.00 | 17.66 | Pullens et al., |
北欧泥炭湿地 | 0.69‒114.58 | 0.10‒15.96 | Huang et al., |
马来西亚马姆达鲁国家公园泥炭湿地 | 86.40 | 12.11 | Wong et al., |
福建省闽江口 山峪塘湿地 | 1412.50 | 197.98 | Tong et al., |
青海省隆宝滩 沼泽湿地 | 56.61 | 7.93 | 何方杰等, |
波兰别布扎河湿地 | 176.23 | 24.70 | Fortuniak et al., |
广东省珠江口 红树林 | 18.97 | 2.65 | 张涵等, |
阿根廷巴塔哥尼亚山毛榉林 | 4.38 | 0.61 | 2019 |
青海省尕海 湿生草甸 | 2.26‒8.67 | 0.32‒1.22 | Wu et al., |
菲律宾拉古纳 稻田土 | 241.20 | 33.60 | Alberto et al., |
江河岸带 | 372.08 | 52.15 | Tang et al., |
[1] |
ALBERTO M C R, WASSMANN R, BURESH R J, et al., 2014. Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer[J]. Field Crops Research, 160: 12-21.
DOI URL |
[2] |
BALCOMBE P, SPEIRS J F, BRANDON N P, et al., 2018. Methane emissions: Choosing the right climate metric and time horizon[J]. Environmental Science: Processes and Impacts, 20(10): 1323-1339.
DOI URL |
[3] |
BOUCHARD V, FREY S D, GILBERT J M, et al., 2007. Effects of macrophyte functional group richness on emergent freshwater wetland functions[J]. Ecology, 88(11): 2903-2914.
PMID |
[4] |
BRIDGHAM S, MEGONIGAL P, KELLER J, et al., 2006. The carbon balance of north American wetlands[J]. Wetlands, 26(6): 889-916.
DOI URL |
[5] |
CHEN H, LIU X W, XUE D, et al., 2021. Methane emissions during different freezing-thawing periods from a fen on the Qinghai-Tibetan Plateau: Four years of measurements[J]. Agricultural and Forest Meteorology, 297: 108279.
DOI URL |
[6] |
CHENG J X, XU L G, WU J H, et al., 2022. Responses of ecosystem respiration and methane fluxes to warming and nitrogen addition in a subtropical littoral wetland[J]. CATENA, 215: 106335.
DOI URL |
[7] |
DENG Y C, CUI X Y, LÜKE C, et al., 2013. Aerobic methanotroph diversity in Riganqiao peatlands on the Qinghai-Tibetan Plateau[J]. Environmental Microbiology Reports, 5(4): 566-574.
DOI PMID |
[8] |
DISE N B, VERRY E S, 2001. Suppression of peatland methane emission by cumulative sulfate deposition in simulated acid rain[J]. Biogeochemistry, 53(2): 143-160.
DOI URL |
[9] |
DREW T S, GREG F, DOROTHY M K, et al., 2009. Improved attribution of climate forcing to emissions[J]. Science, 326(5953): 716-718.
DOI PMID |
[10] |
DUMAN T, SCHÄFER K V R, 2018. Partitioning net ecosystem carbon exchange of native and invasive plant communities by vegetation cover in an urban tidal wetland in the New Jersey Meadowlands (USA)[J]. Ecological Engineering, 114: 16-24.
DOI URL |
[11] | FENG X, DEVENTER M J, LONCHAR R, et al., 2020. Climate sensitivity of peatland methane emissions mediated by seasonal hydrologic dynamics[J]. Geophysical Research Letters, 47(17): e2020GL088875. |
[12] | FORSTER P V, RAMASWAMY P, ARTAXO T, et al., 2007. Changes in atmospheric constituents and in radiative forcing:In:climate change 2007: The physical science basis. contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate changes[R]. United Kingdom: Cambridge University Press: 131-215. |
[13] |
FORTUNIAK K, PAWLAK W, BEDNORZ L, et al., 2017. Methane and carbon dioxide fluxes of a temperate mire in Central Europe[J]. Agricultural and Forest Meteorology, 232: 306-318.
DOI URL |
[14] |
HUANG X, SILVENNOINEN H, KLøVE B, et al., 2021. Modelling CO2 and CH4 emissions from drained peatlands with grass cultivation by the BASGRA-BGC model[J]. Science of the Total Environment, 765: 144385.
DOI URL |
[15] |
JOABSSON A, CHRISTENSEN T R, WALLéN B, 1999. Influence of vascular plant photosynthetic rate on CH4 emission from peat monoliths from southern boreal Sweden[J]. Polar Research, 18(2): 215-220.
DOI URL |
[16] |
KARAKURT I, AYDIN G, AYDINER K, 2012. Sources and mitigation of methane emissions by sectors: A critical review[J]. Renewable Energy, 39(1): 40-48.
DOI URL |
[17] |
LE MER J, ROGER P, 2001. Production, oxidation, emission and consumption of methane by soils: A review[J]. European Journal of Soil Biology, 37(1): 25-50.
DOI URL |
[18] |
LIU H Y, GU Y S, HUANG X Y, et al., 2019. A 13,000-year peatland palaeohydrological response to the ENSO-related Asian monsoon precipitation changes in the middle Yangtze Valley[J]. Quaternary Science Reviews, 212: 80-91.
DOI URL |
[19] |
LIU H Y, GU Y S, GE J W, et al., 2022. The response of the Dajiuhu peatland ecosystem to hydrological variations: implications for carbon sequestration and peatlands conservation[J]. Journal of Hydrology, 612(Part C): 128307.
DOI URL |
[20] |
MALTBY E, IMMIRZI P, 1993. Carbon dynamics in peatlands and other wetland soils regional and global perspectives[J]. Chemosphere, 27(6): 999-1023.
DOI URL |
[21] |
McNICOL G, KNOX S H, GUILDERSON T P, et al., 2020. Where old meets new: An ecosystem study of methanogenesis in a reflooded agricultural peatland[J]. Global Change Biology, 26(2): 772-785.
DOI PMID |
[22] |
MIAO G F, NOORMETS A, DOMEC J C, et al., 2017. Hydrology and microtopography control carbon dynamics in wetlands: implications in partitioning ecosystem respiration in a coastal plain forested wetland[J]. Agricultural and Forest Meteorology, 247: 343-355.
DOI URL |
[23] |
PENG S, LIN X, THOMPSON R L, et al., 2022. Wetland emission and atmospheric sink changes explain methane growth in 2020[J]. Nature, 612(7940): 477-482.
DOI |
[24] |
PULLENS J W M, SOTTOCORNOLA M, KIELY G, et al., 2016. Carbon fluxes of an alpine peatland in Northern Italy[J]. Agricultural and Forest Meteorology, 220: 69-82.
DOI URL |
[25] |
SÁ M M F, SCHAEFER C E G R, LOUREIRO D C, et al., 2019. Fluxes of CO2, CH4, and N2O in tundra-covered and Nothofagus forest soils in the Argentinian Patagonia[J]. Science of the Total Environment, 659: 401-409.
DOI URL |
[26] |
STRöM L, MASTEPANOV M, CHRISTENSEN T R, 2005. Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands[J]. Biogeochemistry, 75(1): 65-82.
DOI URL |
[27] |
TANG W, XU Y J, MA Y M, et al., 2021. Hot spot of CH4 production and diffusive flux in rivers with high urbanization[J]. Water Research, 204: 117624.
DOI URL |
[28] |
TOLLEFSON J, 2022. Scientists raise alarm over ‘dangerously fast’ growth in atmospheric methane[J]. Nature, DOI: 10.1038/d41586-022-00312-2.
DOI |
[29] |
TONG C, BASTVIKEN D, TANG K W, et al., 2021. Annual CO2 and CH4 fluxes in coastal earthen ponds with Litopenaeus vannamei in southeastern China[J]. Aquaculture, 545: 737229.
DOI URL |
[30] |
VAN DER NAT F-J W A, MIDDELBURG J J, 1998. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris[J]. Aquatic Botany, 61(2): 95-110.
DOI URL |
[31] |
WANG L W, GE J W, FENG L, et al., 2022. The Synergism between methanogens and methanotrophs and the nature of their contributions to the seasonal variation of methane fluxes in a wetland: the case of Dajiuhu subalpine peatland[J]. Advances in Atmospheric Sciences, 39(8): 1375-1385.
DOI |
[32] |
WANG R C, WANG H M, XI Z Q, et al., 2022. Hydrology driven vertical distribution of prokaryotes and methane functional groups in a subtropical peatland[J]. Journal of Hydrology, 608: 127592.
DOI URL |
[33] |
WONG G X, HIRATA R, HIRANO T, et al., 2018. Micrometeorological measurement of methane flux above a tropical peat swamp forest[J]. Agricultural and Forest Meteorology, 256-257: 353-361.
DOI URL |
[34] | WOODCOCK N, 1997. Climate change 1995. The science of climate change. Contribution of working group I to the second assessment report of the intergovernmental panel on climate change[J]. Geological Magazine, 134(2): 269-281. |
[35] |
WU J Q, WANG H Y, LI G, et al., 2021. Responses of CH4 flux and microbial diversity to changes in rainfall amount and frequencies in a wet meadow in the Tibetan Plateau[J]. CATENA, 202: 105253.
DOI URL |
[36] | XIAO J Y, XIAO X Y, ZHANG M H, et al., 2015. Late pleistocene montane vegetation and climate history from the Dajiuhu Basin in the western Hubei Province of central China[J]. Review of Palaeobotany & Palynology, 222: 22-32. |
[37] |
XU X Y, ZHANG M M, XIONG Y S, et al., 2020. The influence of soil temperature, methanogens and methanotrophs on methane emissions from cold waterlogged paddy fields[J]. Journal of Environmental Management, 264: 110421.
DOI URL |
[38] | 耿世聪, 陈志杰, 张军辉, 等, 2013. 长白山三种主要林地土壤甲烷通量[J]. 生态学杂志, 32(5): 1091-1096. |
GENG S C, CHEN Z J, ZHANG J H, et al., 2013. Soil methane fluxes of three forest types in Changbai mountain of northeast China[J]. Chinese Journal of Ecology, 32(5): 1091-1096. | |
[39] |
何方杰, 韩辉邦, 马学谦, 等, 2019. 隆宝滩沼泽湿地不同区域的甲烷通量特征及影响因素[J]. 生态环境学报, 28(4): 803-811.
DOI URL |
HE F J, HAN H B, MA X Q, et al., 2019. Characteristics and influence factors of CH4 flux in different areas of Longbaotan marsh wetland[J]. Ecology and Environmental Sciences, 28(4): 803-811. | |
[40] | 李永福, 葛继稳, 翁闻畅, 等, 2019. 神农架大九湖泥炭湿地二氧化碳和甲烷排放化学计量比研究[J]. 安全与环境工程, 26(4): 20-30. |
LI Y F, GE J W, WENG W C, et al., 2019. Stoichiometry ratio of CO2 and CH4 emissions in Dajiuhu peat wetland of Shennongjia[J]. Safety and Environemntal Engineering, 26(4): 20-30. | |
[41] | 栾军伟, 崔丽娟, 宋洪涛, 等, 2012. 国外湿地生态系统碳循环研究进展[J]. 湿地科学, 10(2): 235-242. |
LUAN J W, CUI L J, SONG H T, et al., 2012. Foreign research progress on carbon cycle in wetland ecosystems[J]. Wetland Science, 10(2): 235-242. | |
[42] | 罗涛, 伦子健, 顾延生, 等, 2015. 神农架大九湖湿地植物群落调查与生态保护研究[J]. 湿地科学, 13(2): 153-160. |
LUO T, LUN Z J, GU Y S, et al., 2015. Plant community survey and ecological protection of Dajiuhu wetlands in Shennongjia area[J]. Wetland Science, 13(2): 153-160. | |
[43] | 马己安, 冯克鹏, 李王成, 等, 2020. 压砂地和裸地对比条件下地温与含水率变化差异性分析[J]. 节水灌溉, (7): 63-68. |
MA J A, FENG K P, LI W C, et al., 2020. Analysis of the difference between ground temperature and moisture content under the comparison between gravel-mulched land and bare land[J]. Water Saving Irrigation, (7): 63-68. | |
[44] | 申格, 徐斌, 金云翔, 等, 2016. 若尔盖高原湿地研究进展[J]. 地理与地理信息科学, 32(4): 104-110. |
SHEN G, XU B, JIN Y X, et al., 2016. Multi-model suitability assessment of construction land in Tsinling mountains based on the niche theory: A case study of Shangzhou, Shangluo[J]. Geography and Geo-Information Science, 32(4): 104-110. | |
[45] |
张涵, 唐常源, 禤映雪, 等, 2022. 珠江口红树林土壤甲烷和二氧化碳通量特征及其影响因素研究[J]. 生态环境学报, 31(5): 939-948.
DOI URL |
ZHANG H, TANG C Y, XUAN Y X, et al., 2022. The regular pattern and influencing factors of CO2 and CH4 fluxes from mangrove soil[J]. Ecology and Environmental Sciences, 31(5): 939-948. |
[1] | WU Chenyu, XU Fanfan, WEI Shibo, FAN Jingjing, LIU Guanpeng, WANG Kun. Study on Response of Surface Vegetation Cover to Climate Change in Weihe River Basin [J]. Ecology and Environment, 2023, 32(5): 835-844. |
[2] | WANG Jiali, FENG Jingke, YANG Yuanzheng, ZU Jiaxing, CAI Wenhua, YANG Jian. Research on Spatial Relations between Impervious Surfaces and the Urban Thermal Environment in the Central Metropolitan Area of Nanning City [J]. Ecology and Environment, 2023, 32(3): 525-534. |
[3] | LIU Zhendi, SONG Yanyu, WANG Xianwei, TAN Wenwen, ZHANG Hao, GAO Jinli, GAO Siqi, DU Yu. Effects of Simulated Warming on Plant Growth and Carbon and Nitrogen Characteristics in Permafrost Peatland [J]. Ecology and Environment, 2022, 31(9): 1765-1772. |
[4] | CHEN Wenyu, XIA Lihua, XU Guoliang, YU Shiqin, CHEN Hang, CHEN Jinfeng. Dynamic Variation of NDVI and Its Influencing Factors in the Pearl River Basin from 2000 to 2020 [J]. Ecology and Environment, 2022, 31(7): 1306-1316. |
[5] | SUN Jianbo, CHANG Wenjun, LI Wenbin, ZHANG Shiqing, LI Chunqiang, PENG Ming. Dynamics of Soil Microbial Biomass and Enzyme Activities in Rhizosphere Soil at Different Growing Stages of Banana [J]. Ecology and Environment, 2022, 31(6): 1169-1174. |
[6] | HE Xiaojia, FENG Shuhua, JIANG Ming, LI Mingrui, ZHAN Fangdong, LI Yuan, HE Yongmei. Effects of UV-B Radiation on Conversion of Active Organic Carbon and Methane Production Potential of Rice Rhizosphere Soil [J]. Ecology and Environment, 2022, 31(3): 556-564. |
[7] | HE Rui, JIANG Ran, YANG Fang, ZHANG Xinfeng, LIN Jianluan, ZHU Xiaoping, PENG Songyao. Characteristics of Meso-zooplankton Community and Its Relationship with Environmental Factors in Sea Water near Maoming [J]. Ecology and Environment, 2022, 31(1): 142-150. |
[8] | YUAN Weihao, WANG Hua, XIA Yubao, ZENG Yichuan, DENG Yanqing, LI Yuanyuan, ZHANG Xinyue. Relationship of Chlorophyll A and Water Quality Factors in Poyang Lake Based on GAM Model [J]. Ecology and Environment, 2021, 30(8): 1716-1723. |
[9] | DENG Huiying, CHEN Lixin, YU Yongjiang, WANG Hong. Characteristics of Ozone Pollution Distribution and Its Correlation Analysis with Meteorological Factors in Wuyishan [J]. Ecology and Environment, 2021, 30(7): 1428-1435. |
[10] | MA Bingxin, JING Juanli, XU Yong, HE Hongchang, LIU Bing. Spatial-Temporal Changes of NPP and Its Relationship with Climate Change in Karst Areas of Yunnan, Guizhou and Guangxi from 2000 to 2019 [J]. Ecology and Environment, 2021, 30(12): 2285-2293. |
[11] | WANG Jing, FANG Feng, WANG Ying. Temporal Variation Characteristics and Influencing Factors of Sown Area Variation of Grain Crops in Southwest and South China [J]. Ecology and Environment, 2021, 30(10): 2010-2025. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn