Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (12): 1919-1929.DOI: 10.16258/j.cnki.1674-5906.2025.12.009
• Original article [Environmental Science] • Previous Articles Next Articles
Received:2025-04-15
Online:2025-12-18
Published:2025-12-10
作者简介:熊丽君(1977年生),女,正高级工程师,博士,研究方向为水环境和水生态。E-mail: xionglj@saes.sh.cn
基金资助:CLC Number:
XIONG Lijun. Emission Patterns of Non-point Source Pollution from Underlying Surfaces under Different Rainfall Characteristics in Water Source Areas[J]. Ecology and Environmental Sciences, 2025, 34(12): 1919-1929.
熊丽君. 不同降雨特征下水源地下垫面非点源污染排放规律[J]. 生态环境学报, 2025, 34(12): 1919-1929.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.12.009
| 序号 | 日期 | 雨型 | 雨量/mm | 历时/h | 前期晴天日数/d | 峰值/(mm∙h−1) | 平均雨强/(mm∙h−1) |
|---|---|---|---|---|---|---|---|
| 1 | 20230404 | 中雨 | 21.9 | 10 | 13.8 | 3.6 | 2.2 |
| 2 | 20230618 | 大雨 | 31.8 | 13 | 0.25 | 8.9 | 2.5 |
| 3 | 20230623 | 大暴雨 | 124.8 | 23 | 4.10 | 17.2 | 5.4 |
Table 1 Characteristics of three rainfall events
| 序号 | 日期 | 雨型 | 雨量/mm | 历时/h | 前期晴天日数/d | 峰值/(mm∙h−1) | 平均雨强/(mm∙h−1) |
|---|---|---|---|---|---|---|---|
| 1 | 20230404 | 中雨 | 21.9 | 10 | 13.8 | 3.6 | 2.2 |
| 2 | 20230618 | 大雨 | 31.8 | 13 | 0.25 | 8.9 | 2.5 |
| 3 | 20230623 | 大暴雨 | 124.8 | 23 | 4.10 | 17.2 | 5.4 |
| 污染物 | 雨型 | 统计值 | 交通道路 | 菜地 | 水田 | 村镇住宅 | 林地 |
|---|---|---|---|---|---|---|---|
| COD | 中雨 | 最大RMFFn | 1.5 | - | - | 1.5 | - |
| 累积径流比 | 39% | - | - | 42% | - | ||
| 累积负荷比 | 59% | - | - | 60% | - | ||
| 大雨 | 最大RMFFn | 1.7 | - | - | 1.5 | - | |
| 累积径流比 | 25% | - | - | 27% | - | ||
| 累积负荷比 | 41% | - | - | 41% | - | ||
| 大暴雨 | 最大RMFFn | 1.5 | 1.6 | 1.6 | 1.4 | 1.2 | |
| 累积径流比 | 33% | 33% | 43% | 36% | 31% | ||
| 累积负荷比 | 48% | 57% | 68% | 50% | 37% | ||
| TN | 中雨 | 最大RMFFn | 1.2 | - | - | 1.1 | - |
| 累积径流比 | 39% | - | - | 42% | - | ||
| 累积负荷比 | 48% | - | - | 47% | - | ||
| 大雨 | 最大RMFFn | 1.4 | - | - | 1.1 | - | |
| 累积径流比 | 25% | - | - | 27% | - | ||
| 累积负荷比 | 34% | - | - | 29% | - | ||
| 大暴雨 | 最大RMFFn | 2.4 | 1.3 | 1.3 | 2.5 | 1.1 | |
| 累积径流比 | 33% | 39% | 43% | 28% | 27% | ||
| 累积负荷比 | 78% | 49% | 56% | 69% | 28% | ||
| TP | 中雨 | 最大RMFFn | 1.1 | - | - | 1.0 | - |
| 累积径流比 | 39% | - | - | 86% | - | ||
| 累积负荷比 | 43% | - | - | 88% | - | ||
| 大雨 | 最大RMFFn | 1.1 | - | - | 1.0 | - | |
| 累积径流比 | 32% | - | - | 61% | - | ||
| 累积负荷比 | 61% | - | - | 58% | - | ||
| 大暴雨 | 最大RMFFn | 2.1 | 1.9 | 2.1 | 1.8 | 2.1 | |
| 累积径流比 | 15% | 24% | 29% | 28% | 22% | ||
| 累积负荷比 | 31% | 47% | 59% | 50% | 46% |
Table 2 Cumulative runoff ratio and load ratio corresponding to maximum MFFn
| 污染物 | 雨型 | 统计值 | 交通道路 | 菜地 | 水田 | 村镇住宅 | 林地 |
|---|---|---|---|---|---|---|---|
| COD | 中雨 | 最大RMFFn | 1.5 | - | - | 1.5 | - |
| 累积径流比 | 39% | - | - | 42% | - | ||
| 累积负荷比 | 59% | - | - | 60% | - | ||
| 大雨 | 最大RMFFn | 1.7 | - | - | 1.5 | - | |
| 累积径流比 | 25% | - | - | 27% | - | ||
| 累积负荷比 | 41% | - | - | 41% | - | ||
| 大暴雨 | 最大RMFFn | 1.5 | 1.6 | 1.6 | 1.4 | 1.2 | |
| 累积径流比 | 33% | 33% | 43% | 36% | 31% | ||
| 累积负荷比 | 48% | 57% | 68% | 50% | 37% | ||
| TN | 中雨 | 最大RMFFn | 1.2 | - | - | 1.1 | - |
| 累积径流比 | 39% | - | - | 42% | - | ||
| 累积负荷比 | 48% | - | - | 47% | - | ||
| 大雨 | 最大RMFFn | 1.4 | - | - | 1.1 | - | |
| 累积径流比 | 25% | - | - | 27% | - | ||
| 累积负荷比 | 34% | - | - | 29% | - | ||
| 大暴雨 | 最大RMFFn | 2.4 | 1.3 | 1.3 | 2.5 | 1.1 | |
| 累积径流比 | 33% | 39% | 43% | 28% | 27% | ||
| 累积负荷比 | 78% | 49% | 56% | 69% | 28% | ||
| TP | 中雨 | 最大RMFFn | 1.1 | - | - | 1.0 | - |
| 累积径流比 | 39% | - | - | 86% | - | ||
| 累积负荷比 | 43% | - | - | 88% | - | ||
| 大雨 | 最大RMFFn | 1.1 | - | - | 1.0 | - | |
| 累积径流比 | 32% | - | - | 61% | - | ||
| 累积负荷比 | 61% | - | - | 58% | - | ||
| 大暴雨 | 最大RMFFn | 2.1 | 1.9 | 2.1 | 1.8 | 2.1 | |
| 累积径流比 | 15% | 24% | 29% | 28% | 22% | ||
| 累积负荷比 | 31% | 47% | 59% | 50% | 46% |
| [1] |
GRACE III J M, 2017. Predicting forest road surface erosion and storm runoff from high-elevation sites[J]. Transactions of the ASABE, 60(3): 705-719.
DOI URL |
| [2] | KAWARA O, UEHARA M, IBARAGI K, 1999 A study on the water quality of runoff from forest[J]. Water Science and Technology, 39(12): 93-98. |
| [3] |
LANG M, LI P, YAN X Y, 2013. Runoff concentration and load of nitrogen and phosphorus from a residential area in an intensive agricultural watershed[J]. Science of the Total Environment, 458-460: 238-245.
DOI URL |
| [4] |
LI J K, MA M H, LI Y J, et al., 2019. Influence analysis of different design conditions on urban runoff and non‐point source pollution[J]. Water Environment Research, 91(11): 1546-1557.
DOI URL |
| [5] |
LI Q, OUYANG W, ZHU J, et al., 2023. Discharge dynamics of agricultural diffuse pollution under different rainfall patterns in the middle Yangtze river[J]. Journal of Environmental Management, 347: 119116.
DOI URL |
| [6] |
LI X N, ZHANG W W, WU J Y, et al., 2021. Loss of nitrogen and phosphorus from farmland runoff and the interception effect of an ecological drainage ditch in the North China Plain: A field study in a modern agricultural park. Ecological Engineering [J]. Ecological Engineering, 169: 106310.
DOI URL |
| [7] | PAN Y J, LI Z Q, GAO Y Y, et al., 2021. Analysis of the Migration characteristics of stormwater runoff pollutants on different underlying surfaces in Guangzhou, China[J]. Frontiers in Earth Science, 9: 1-12. |
| [8] |
SOLTANINIA S, ESKANDARIPOUR M, GOLMOHAMMADI M H, et al., 2025. Nitrate pollution in urban runoff: A comprehensive risk assessment for human and ecological health[J]. Science of the Total Environment, 974: 179184.
DOI URL |
| [9] |
WEI H B, WANG Y, LIU J, et al., 2023. Spatiotemporal variations of water eutrophication and non-point source pollution prevention and control in the main stream of the Yellow River in Henan Province from 2012 to 2021[J]. Sustainability, 15(20): 1-18.
DOI URL |
| [10] |
XU Z X, XIONG L J, LI H Z, et al., 2017. Influences of rainfall variables and antecedent discharge on urban effluent concentrations and loads in wet weather[J]. Water Science and Technology, 75(7-8): 1584-1598.
DOI PMID |
| [11] |
XU Z X, XIONG L J, LI H Z, et al., 2019. Runoff simulation of two typical urban green land types with the Stormwater Management Model (SWMM): Sensitivity analysis and calibration of runoff parameters[J]. Environmental Monitoring and Assessment, 191(6): 343.
DOI PMID |
| [12] |
YANG J, LIANG J P, YANG G H, et al., 2020. Characteristics of non-point source pollution under different land use types[J]. Sustainability, 12(5): 1-13.
DOI URL |
| [13] | ZENG J J, HUANG G R, LUO H W, et al., 2019. First flush of non-point source pollution and hydrological effects of LID in a Guangzhou community[J]. Scientific Reports, 9(1): 138651. |
| [14] |
ZHANG Q Q, MIAO L P, WANG X K, et al., 2015. The capacity of greening roof to reduce stormwater runoff and pollution[J]. Landscape and Urban Planning, 144: 142-150.
DOI URL |
| [15] | 车旭恒, 朱君君, 张立维, 等, 2025. 武汉市极端降雨与气候因子的响应研究[J]. 中南民族大学学报(自然科学版), 44(3): 319-326. |
| CHE X H, ZHU J J, ZHANG L W, et al., 2025. A study on the response of extreme rainfall in Wuhan to climatic factors[J]. Journal of South-Central Minzu University (Natural Science Edition), 44(3): 319-326. | |
| [16] | 程明琨, 闵炬, 张艳颖, 等, 2025. 降雨强度及有机无机肥配施对太湖地区典型菜地氮磷动态流失过程的影响[J]. 中国生态农业学报(中英文), 33(2): 265-277. |
| CHENG M K, MIN J, ZHANG Y Y, et al., 2025. Effects of rainfall intensity and combined application of organic and inorganic fertilizer on the dynamic process of nitrogen and phosphorus loss in typical vegetable plots in the Taihu Lake region[J]. Chinese Journal of Eco-Agriculture, 33(2): 265-277. | |
| [17] | 邓华, 高明, 龙翼, 等, 2021. 石盘丘小流域不同土地利用方式下土壤氮磷流失形态及通量[J]. 环境科学, 42(1): 251-262. |
| DENG H, GAO M, LONG Y, et al., 2021. Characteristics of soil nitrogen and phosphorus losses under different land use schemes in the Shipanqiu Watershed[J]. Environmental Science, 42(1): 251-262. | |
| [18] | 端木家耀, 2024. 滨海土壤地区农田面源污染排放系数时间变化特征及影响因素研究[D]. 上海: 华东理工大学: 72-73. |
| DUANMU J Y, 2024. Study on the temporal variation characteristics and influencing factors of the discharge coefficients of farmland non-point source pollution in the coastal soil areas[D]. Shanghai: East China University of Science and Technology: 72-73. | |
| [19] | 房振南, 金科, 王雪姣, 等, 2021. 长三角一体化生态绿色发展示范区主要河湖水质变化趋势分析[J]. 水利水电快报, 42(4): 68-74. |
| FANG Z N, JIN K, WANG X J, et al., 2021. Analysis on water quality variation trend of main rivers and lakes in integrated demonstration area on ecologically friendly development in Yangtze River Delta[J]. Express Water Resources & Hydropower Information, 42(4): 68-74. | |
| [20] | 高艺伦, 2022. 村镇土壤氮磷分布特征及对水环境的影响研究[D]. 重庆: 重庆大学: 81-83. |
| GAO Y L, 2022. Distribution characteristics of soil nitrogen and phosphorus in villages and towns and the impacts on the water environment[D]. Chongqing: Chongqing University: 81-83. | |
| [21] | 高雅弘, 林炳权, 赵晨, 等, 2024. 长江流域丘陵城镇初期雨水污染特征与截流调蓄研究[J]. 环境工程, 42(9): 191-200. |
| GAO Y H, LIN B Q, ZHAO C, et al., 2024. The Characteristics of initial rainwater pollution and interception and storage in hilly towns in the Yangtze River basin[J]. Environmental Engineering, 42(9): 191-200. | |
| [22] |
郭心仪, 张守红, 王国庆, 2024. 城市不同下垫面降雨径流水质监测及特征研究[J]. 中国农村水利水电 (3): 128-136.
DOI |
| GUO X Y, ZHANG S H, WANG G Q, 2024. Monitoring experiment and characteristics analysis of rainfall-runoff-water quality of different urban underlying surfaces[J]. China Rural Water and Hydropower (3): 128-136. | |
| [23] |
龚莉, 张翔, 罗蔚, 等. 2025. 基于多源降雨数据的中游城市群极端降雨特征和风险分析[J]. 长江科学院院报, 42(2): 83-90.
DOI |
| GONG L, ZHANG X, LUO W, et al., 2025. Characterization and risk analysis of extreme precipitation in yangtze river midstream urban agglomerations based on multi-source rainfall data[J]. Journal of Changjiang River Scientific Research Institute, 42(2): 83-90. | |
| [24] |
李琪, 张娜, 罗英杰, 等, 2019. 基于MFF30方法的城市降雨径流初期冲刷效应[J]. 中国科学院大学学报, 36(5): 650-662.
DOI |
|
LI Q, ZHANG N, LUO Y J, et al., 2019. The first flush effect of urban rainfall runoff based on MFF30 method[J]. Journal of University of Chinese Academy of Sciences, 36(5): 650-662.
DOI |
|
| [25] | 李阳, 2019. 上海郊野公园典型林分水源涵养功能综合评价[D]. 南京: 南京林业大学: 62-64. |
| LI Y, 2019. Comprehensive evaluation of water conservation function of typical forest types in country parks in Shanghai[D]. Nanjing: Nanjing Forestry University: 62-64. | |
| [26] | 刘子恒, 2023. 西北某市雨水径流水质特征以及初期雨水界定和控制策略研究[D]. 兰州: 兰州交通大学: 77-78. |
| LIU Z H, 2023. Study on water quality characteristics of stormwater runoff and initial stormwater definition and control strategy of a city in Northwest China[D]. Lanzhou: Lanzhou Jiaotong University: 77-78. | |
| [27] | 刘方严, 黎建强, 杨舒媛, 等, 2025. 林下三七种植对林地土壤抗冲抗蚀性影响[J]. 水土保持研究, 32(5): 1-9. |
| LIU F Y, LI J Q, YANG S Y, et al., 2025. Effects of understory Panax notoginseng planting on soil anti-scourability and anti-erodibility in forestlands[J]. Research of Soil and Water Conservation, 32(5): 1-9. | |
| [28] | 庞维华, 2022. 不同类型园林植物群落雨水截留能力研究[D]. 陕西: 西北农林大学: 49-51. |
| PANG W H, 2022. Research on rainwater intercepting ability of different types of garden plant communities[D]. Shaanxi: College of Landscape Architecture and Art Northwest A & F University: 49-51. | |
| [29] | 上海市生态环境局, 2025. 黄浦江上游饮用水水源保护区划 (2025版) [EB/OL]. [2025-09-28]. https://sthj.sh.gov.cn/hbzhywpt1272/hbzhywpt5406/20250928/fa8404f11b3c40d1bf707cfbac9f793b.html. |
| Shanghai Municipal Bureau of Ecology and Environment, 2025. Protection zones for drinking water sources in the upper reaches of Huangpu River (2025) [EB/OL]. [2025-09-28]. https://sthj.sh.gov.cn/hbzhywpt1272/hbzhywpt5406/20250928/fa8404f11b3c40d1bf707cfbac9f793b.html. | |
| [30] | 佘步存, 杜园园, 2025. 长三角城市群雨水径流水质污染特征与控制技术分析[J]. 净水技术, 44(4): 37-48. |
| SHE B C, DU Y Y, 2025. Analysis of rainwater runoff pollution feature and pollution control technologies of Yangtze River Delta Urban Agglomerations[J]. Water Purification Technology, 44(4): 37-48. | |
| [31] | 史秀芳, 王丽晶, 潘兴瑶, 等, 2024. 老城区降雨径流污染特征分析——以北京东城区某排水分区为例[J]. 西北大学学报(自然科学版), 54(3): 355-365. |
| SHI X F, WANG L J, PAN X Y, et al., 2024. The characteristics of rainfall runoff pollution in the old urban area: A case study of a drainage district in Dongcheng district, Beijing[J]. Journal of Northwest University (Natural Science Edition), 54(3): 355-365. | |
| [32] | 孙婷婷, 2023. 基于氮氧同位素的大莲湖湿地与太浦河水体硝酸盐来源解析[D]. 上海师范大学: 50-51. |
| SUN T T, 2023. Source identification of nitrate in Dalianhu Wetland and Taipu River based on nitrogen and oxygen isotopes[D]. Shanghai: Shanghai Normal University: 50-51. | |
| [33] | 宋珂, 2024. 湖北省三种典型种植模式农田地表径流氮磷流失规律研究[D]. 武汉: 华中农业大学: 57-60. |
| SONG K, 2024. Study on the pattern of nitrogen and phosphorus loss from farmland surface runoff of three typical cropping patterns in Hubei Province[D]. Wuhan: Huazhong Agricultural University: 57-60. | |
| [34] | 王洪山, 王自仲, 唐仁军, 2024. 不同降雨条件下生草栽培对油茶林地产流产沙的影响与预估[J]. 林业科技通讯 (12): 36-39. |
| WANG H S, WANG Z Z, TANG R J, 2024. Effects and predictions of grass cultivation under different rainfall conditions on sediment runoff in camellia oleifera woodland[J]. Forest Science and Technology (12): 36-39. | |
| [35] | 王洁, 叶春, 苗可欣, 等, 2025. 城镇和非城镇降雨径流污染初始冲刷效应分析[J]. 环境科学研究, 38(8): 1837-1846. |
| WANG J, YE C, MIAO K X, et al., 2025. Analysis of the first flush effect in rainfall runoff pollution from urban and non-urban areas[J]. Research of Environmental Sciences, 38(8): 1837-1846. | |
| [36] | 王淼, 李亚峰, 雷坤, 等, 2018. 不同氮污染特征河流N2O浓度、释放通量与排放系数[J]. 环境科学, 39(12): 5400-5409. |
| WANG M, LI Y F, LEI K, et al., 2018. Concentration, flux, and emission factor of N2O in rivers with different nitrogen pollution features[J]. Environmental Science, 39(12): 5400-5409. | |
| [37] | 吴雪, 王燕彩, 张英, 等, 2025. 城市面源污染特征研究趋势与控制措施[J/OL]. 中国给水排水, 1-13 [2025-09-25]. https://link.cnki.net/urlid/12.1073.TU.20250506.1726.002. |
| WU X, WANG Y C, ZHANG Y, et al., 2025. Research trend and control measures on the characteristics of urban non-point source pollution[J/OL]. China Water & Wastewater, 1-13 [2025-09-25]. https://link.cnki.net/urlid/12.1073.TU.20250506.1726.002. | |
| [38] | 向速林, 2013. 赣江流域农田地表径流氮磷迁移与流失研究[J]. 生态环境学报, 22(7): 1204-1207. |
| XIANG S L, 2013. Nitrogen and phosphorus migration and loss of surface runoff in Ganjiang River watershed[J]. Ecology and Environmental Sciences, 22(7): 1204-1207. | |
| [39] | 熊丽君, 吴建强, 黄沈发. 2022. 不同降雨特征下缓冲带水分及TN分配规律[J]. 中国环境科学, 42(4): 1837-1846. |
| XIONG L J, WU J Q, HUANG S F, 2022. Distribution of water and tn loads in buffer strips under different rainfall characteristics[J]. China Environmental Science, 42(4): 1837-1846. | |
| [40] | 颜润润, 晁建颖, 2022. 元荡湖水环境治理及湖心断面达标对策研究[J]. 中国资源综合利用, 40(5): 202-204. |
| YAN R R, CHAO J Y, 2022. Study on the countermeasures for water environment treatment and mid-lake section standard compliance of Yuandang Lake[J]. China Resources Comprehensive Utilization, 40(5): 202-204. | |
| [41] |
杨秋平, 陆丽华, 惠武彬, 等, 2025. 太湖流域典型农区施肥强度组成特征及影响因素——以苏州太湖生态岛为例[J]. 浙江农业科学, 66(5): 1277-1281.
DOI |
| YANG Q P, LU L H, HUI W B, et al., 2025. Composition characteristics of fertilization intensity and influencing factors in typical agricultural region in the Taihu Lake Basin: Taking Suzhou Taihu eco-island as an example[J]. Journal of Zhejiang Agricultural Sciences, 66(5): 1277-1281. | |
| [42] | 杨芷萱, 黎云祥, 朱广伟, 等, 2025. 2003-2023年太湖蓝藻水华面积变化的影响因子分析[J]. 湖泊科学, 37(3): 1-21. |
|
YANG Z X, LI Y X, ZHU G W, et al., 2025. Control factors of cyanobacterial bloom area in Lake Taihu, China (2003-2023)[J]. Journal of Lake Sciences, 37(3): 1-21.
DOI URL |
|
| [43] | 袁绍春, 谭宇俊, 吴攀, 等, 2025. 山地城市典型下垫面径流污染特征及影响因素研究[J/OL]. 环境工程, 1-16 [2025-09-25]. https://link.cnki.net/urlid/11.2097.X.20250515.1508.007. |
| YUAN S C, TAN Y J, WU P, et al., 2025. Characteristics and influencing factors of runoff pollution from typical underlying surfaces in mountainous cities[J/OL]. Environmental Engineering, 1-16 [2025-09-25]. https://link.cnki.net/urlid/11.2097.X.20250515.1508.007. | |
| [44] | 余磊, 杨婷, 贾文飞, 等, 2024. 上海市国控断面水质评价及时空特征分析[J]. 绿色科技, 26(22): 179-184. |
| YU L, YANG T, JIA W F, et al., 2024. Assessment and spatiotemporal analysis of water quality in national monitoring sections in Shanghai[J]. Journal of Green Science and Technology, 26(22): 179-184. | |
| [45] | 张翰林, 2012. 黄浦江上游地区稻田水中溶解性有机氮碳的环境行为研究[D]. 上海: 上海交通大学: 82-85. |
| ZHANG H L, 2012. Study on the environmental behavior of dissolved organic nitrogen and carbon in paddy water in upper reach of Huangpu River Basin[D]. Shanghai: Shanghai Jiao Tong University: 82-85. | |
| [46] | 张洁, 2018. 上海典型水域总磷、总氮含量比较[J]. 净水技术, 37(S1): 14-17, 24. |
| ZHANG J, 2018. Comparison of total phosphorus and total nitrogen content in typical Shanghai waters[J]. Water Purification Technology, 37(S1): 14-17, 24. | |
| [47] | 张晓菊, 2019. 城中村不同降雨特征下的径流污染变化规律研究[J]. 人民珠江, 40(6): 105-110. |
| ZHANG X J, 2019. Research on runoff water quality variation under different rainfall characteristics in urban village[J]. Pearl River, 40(6): 105-110. | |
| [48] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2012. 降水量等级: GB/T 28592—2012[S]. 北京: 中国标准出版社: 1-2. |
| General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China,Standardization Administration of China, 2012. Precipitation Grade: GB/T 28592—2012[S]. Beijing: Standards Press of China: 1-2. | |
| [49] | 朱广伟, 国超旋, 康丽娟, 等, 2025. 太湖水质达Ⅲ类背景下藻情与水质变化特征[J]. 湖泊科学, 37(3): 705-715. |
|
ZHU G W, GUO C X, KANG L J, et al., 2025. Dynamics of cyanobacterial bloom and water quality in Lake Taihu under National Class Ⅲ water quality achieved in 2024[J]. Journal of Lake Sciences, 37(3): 705-715.
DOI URL |
| [1] | ZHAO Chengxiao, MA Jianghong, LIU Hongxia, HU Jingwen, PAN Zitong, WANG Jiaying, LI Jinye. Enhanced Nitrogen Removal of Constructed Wetlands by Biochar [J]. Ecology and Environmental Sciences, 2025, 34(12): 1985-1992. |
| [2] | ZHAO Wenhao, GAO Yifei, CHEN Haiyan, WANG Junhao, WANG Meiying, CHEN Ying, MA Jin, WU Fengchang. Preliminary Study on the Theoretical Framework of Multi-Element Synergistic Environmental Criteria for Human Health in Soil and Groundwater [J]. Ecology and Environmental Sciences, 2025, 34(11): 1788-1801. |
| [3] | ZHAO Yu, FANG Wangkai, ZHANG Ziwei, ZHANG Huanjun, LI Yi. Occurrence Characteristics of Nonsteroidal Anti-inflammatory Drugs and Their Effects on Bacterial Communities and Antibiotic Resistance Genes in Taihu Lake [J]. Ecology and Environmental Sciences, 2025, 34(10): 1495-1506. |
| [4] | LUO Shijie, WEN Qingqi, CHEN Chengyu. Research Progress on the Occurrence, Migration, Fate, and Environmental Risks of Nanoplastics in Oceans and Freshwaters [J]. Ecology and Environmental Sciences, 2025, 34(10): 1532-1546. |
| [5] | WANG Anhou, XIE Zhiyi, CHEN Duohong, WANG Bojin, HUANG Ying, LU Ying, WANG Yu, YANG Xingjian, LI Yongtao. Characterizing Agricultural Non-point Source Pollution in Representative Small Watershed of Guangzhou under Rainfall Conditions [J]. Ecology and Environmental Sciences, 2025, 34(10): 1633-1643. |
| [6] | JIANG Kai, KE Changdong, WANG Liping, LI Penghui, LAI Dizhi, ZHANG Yang, WU Yongjie, WU Renren, XIAO Liping. Source Analysis and Distribution Characteristics of Fecal Pollution and Dissolved Organic Matter in the Guangzhou Section of the Pearl River [J]. Ecology and Environmental Sciences, 2025, 34(9): 1452-1462. |
| [7] | ZHOU Yixiang, TANG Bin, FU Chengzhong, XU Rongqin, ZHOU Dongjing, WANG Junli, ZHENG Jing. Occurrence and Associated Risk Assessment of Bisphenols and Brominated Flame Retardants in the Water Sources of the Middle and Lower Reaches of the Beijiang River [J]. Ecology and Environmental Sciences, 2025, 34(7): 1007-1019. |
| [8] | XIAO Yongyin, WANG Fan, LI Canhua, WANG Chao, WANG Wanjun. Enrichment Characteristics and Health Risks of Antibiotic Resistance Genes in Biofilms on Biodegradable Microplastics in Freshwater [J]. Ecology and Environmental Sciences, 2025, 34(7): 1029-1041. |
| [9] | REN Chenjian, HAO Ruixia, ZHANG Yang, HAN Lijuan, WEI Yuxing, CHAI Lu. The Release Characteristics of Ammonia Nitrogen from River Sediments Driven by Hydrodynamic Forces [J]. Ecology and Environmental Sciences, 2025, 34(6): 931-940. |
| [10] | CHEN Jiadong, ZHANG Peng, GUO Jianchao, QI Shi, LU Xudong, ZUO Qin, WU Hui, CHEN Yizhuang. Study on the Function Zoning and Function Matching Level with Control Measures of Eco-environment Friendly Small Watersheds in Hainan Island [J]. Ecology and Environmental Sciences, 2025, 34(5): 743-753. |
| [11] | WANG Yi, YAN Maoze, XIAO Qian, ZHANG Siyi, HAO Beibei. Current Status and Recommendations for Rural Domestic Sewage Treatment in Guangdong Province [J]. Ecology and Environmental Sciences, 2025, 34(5): 819-830. |
| [12] | JIANG Cunzheng, CHEN Anqiang, HU Wanli, FU Bin, ZHU Linli, LIU Yune, LI Mingqi, WANG Chi, ZHANG Dan. Spatiotemporal Variations of NO3−-N Concentration in Shallow Groundwater around Yilong Lake and Its Source Analysis [J]. Ecology and Environmental Sciences, 2025, 34(4): 570-580. |
| [13] | LIANG Zhu, PAN Shulin, GUO Fangcheng. Variations of the Spatiotemporal Distributions of Nitrogen and Phosphorus in the Sichuan Section Mainstem in the Upper Yangtze River after the Impoundment of the Xiangjiaba Reservoir [J]. Ecology and Environmental Sciences, 2025, 34(4): 581-592. |
| [14] | WANG Longfei, ZHANG Jiaojiao, WANG Ziyi, CHEN Yudong, LI Yi. Innovation and Practice of Biofilm-based Technology in the Ecological Restoration of Aquatic Systems [J]. Ecology and Environmental Sciences, 2025, 34(4): 653-664. |
| [15] | MEI Yaoping, WU Benli, HUANG Long, WU Cangcang, CHEN Jing, CHEN Xiajun, HE Jixiang. Purification of Nitrogen and Phosphorus in Aquaculture Wastewater Using Different Aquatic Plants [J]. Ecology and Environmental Sciences, 2025, 34(3): 442-450. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn
