Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (12): 1930-1943.DOI: 10.16258/j.cnki.1674-5906.2025.12.010
• Original article [Environmental Science] • Previous Articles Next Articles
LI Qingyun1(
), XIAO Yimin1, LIN Wei2,4, LEI Jinrui2,5,*(
), WANG Yunlei3, KONG Meiman1, YANG Yunfang1
Received:2025-07-08
Online:2025-12-18
Published:2025-12-10
李清云1(
), 肖亦敏1, 林卫2,4, 雷金睿2,5,*(
), 王韫镭3, 孔玫蔓1, 杨云芳1
通讯作者:
*E-mail:raykingre@163.com
作者简介:李清云(1987年生),女,博士研究生,研究方向为湿地生态与水环境科学。E-mail: lqy181268@126.com
基金资助:CLC Number:
LI Qingyun, XIAO Yimin, LIN Wei, LEI Jinrui, WANG Yunlei, KONG Meiman, YANG Yunfang. Remote Sensing Inversion of Water Quality Parameters and Their Correlation with Landscape Patterns in Haikou Changqin Lake Based on UAV Multispectral Data[J]. Ecology and Environmental Sciences, 2025, 34(12): 1930-1943.
李清云, 肖亦敏, 林卫, 雷金睿, 王韫镭, 孔玫蔓, 杨云芳. 基于无人机多光谱数据的海口长钦湖水质参数遥感反演及其与景观格局的相互关系[J]. 生态环境学报, 2025, 34(12): 1930-1943.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.12.010
| 光谱参数 | 计算公式 | 光谱参数 | 计算公式 |
|---|---|---|---|
| V1 | R1 | V9 | (R2+R3)/R5 |
| V2 | R2 | V10 | (R2+R3)R5 |
| V3 | R3 | V11 | R1/(R5+R2) |
| V4 | R4 | V12 | R2+R3 |
| V5 | R5 | V13 | R2+R3+R5 |
| V6 | R3/R2 | V14 | R3/R5 |
| V7 | R2+R5 | V15 | R2/R1 |
| V8 | (R3+R5)/R2 | V16 | R5/R1 |
Table 1 The computational expressions for spectral parameters and their combinations
| 光谱参数 | 计算公式 | 光谱参数 | 计算公式 |
|---|---|---|---|
| V1 | R1 | V9 | (R2+R3)/R5 |
| V2 | R2 | V10 | (R2+R3)R5 |
| V3 | R3 | V11 | R1/(R5+R2) |
| V4 | R4 | V12 | R2+R3 |
| V5 | R5 | V13 | R2+R3+R5 |
| V6 | R3/R2 | V14 | R3/R5 |
| V7 | R2+R5 | V15 | R2/R1 |
| V8 | (R3+R5)/R2 | V16 | R5/R1 |
| 水质要素 | 旱季模型 | TP模型表达式 | r | RMSE | 水质要素 | 雨季模型 | 模型表达式 | r | RMSE |
|---|---|---|---|---|---|---|---|---|---|
| TP | UTP1 | y=0.001x−0.296 | 0.0793 | 0.258 | TP | UTP15 | y=1.166x−1.950 | 0.4767 | 0.080 |
| ETP1 | y=0.067e0.001x | 0.0578 | 0.690 | ETP15 | y=0.002e2.652x | 0.4202 | 0.203 | ||
| PTP1 | y=0.153×10−3x1.091 | 0.0330 | 0.699 | PTP15 | y =0.009x5.366 | 0.4152 | 0.204 | ||
| PLTP1 | y=9.204×10−6x2−0.019x+9.799 | 0.6686 | 0.156 | PLTP15 | y=5.429x2−20.958x+20.568 | 0.5364 | 0.076 | ||
| TN | UTN8 | y= −18.983x+27.059 | 0.6313 | 0.656 | TN | UTN4 | y= −0.008x+10.210 | 0.4578 | 0.748 |
| ETN8 | y=1.515×105e−8.607x | 0.5964 | 0.320 | ETN4 | y=63.535e−0.004x | 0.4623 | 0.328 | ||
| PTN8 | y=40.683x−11.327 | 0.6008 | 0.319 | PTN4 | y=1.311×109x −2.952 | 0.4309 | 0.337 | ||
| PLTN8 | y=133.490x2−369.451x+256.818 | 0.7158 | 0.582 | PLTN4 | y= −4.206×10−5x2+0.064x−20.474 | 0.5806 | 0.665 | ||
| TUB | UTUB14 | y= −8.585x+24.670 | 0.1661 | 2.198 | TUB | UTUB5 | y=0.048x−49.652 | 0.8828 | 1.824 |
| ETUB14 | y=1.162×102e−1.444x | 0.2347 | 0.298 | ETUB5 | y=0.160e0.003x | 0.8184 | 0.163 | ||
| PTUB14 | y=35.051x−2.385 | 0.2066 | 0.303 | PTUB5 | y=5.709×10−14x4.601 | 0.8396 | 0.154 | ||
| PLTUB14 | y= −101.361x2+349.731x−290.720 | 0.6497 | 1.440 | PLTUB5 | y= −2.591×10−5x2+0.119x−98.470 | 0.8885 | 1.798 | ||
| Chl-a | UCHL14 | y=22.879x−37.235 | 0.4177 | 2.787 | Chl-a | UCHL9 | y= −5.989x +36.235 | 0.3067 | 4.193 |
| ECHL14 | y=1.804×10−6e7.790x | 0.3154 | 1.184 | ECHL9 | y=148.488e−0.680x | 0.1614 | 0.722 | ||
| PCHL14 | y=0.001x13.567 | 0.3068 | 1.192 | PCHL9 | y=1506.542x−3.566 | 0.1819 | 0.713 | ||
| PLCHL14 | y=213.491x2−732.793x+629.278 | 0.7241 | 1.939 | PLCHL9 | y=14.054x2−145.658x+380.245 | 0.6299 | 3.096 |
Table 2 Inversion model of water quality parameters
| 水质要素 | 旱季模型 | TP模型表达式 | r | RMSE | 水质要素 | 雨季模型 | 模型表达式 | r | RMSE |
|---|---|---|---|---|---|---|---|---|---|
| TP | UTP1 | y=0.001x−0.296 | 0.0793 | 0.258 | TP | UTP15 | y=1.166x−1.950 | 0.4767 | 0.080 |
| ETP1 | y=0.067e0.001x | 0.0578 | 0.690 | ETP15 | y=0.002e2.652x | 0.4202 | 0.203 | ||
| PTP1 | y=0.153×10−3x1.091 | 0.0330 | 0.699 | PTP15 | y =0.009x5.366 | 0.4152 | 0.204 | ||
| PLTP1 | y=9.204×10−6x2−0.019x+9.799 | 0.6686 | 0.156 | PLTP15 | y=5.429x2−20.958x+20.568 | 0.5364 | 0.076 | ||
| TN | UTN8 | y= −18.983x+27.059 | 0.6313 | 0.656 | TN | UTN4 | y= −0.008x+10.210 | 0.4578 | 0.748 |
| ETN8 | y=1.515×105e−8.607x | 0.5964 | 0.320 | ETN4 | y=63.535e−0.004x | 0.4623 | 0.328 | ||
| PTN8 | y=40.683x−11.327 | 0.6008 | 0.319 | PTN4 | y=1.311×109x −2.952 | 0.4309 | 0.337 | ||
| PLTN8 | y=133.490x2−369.451x+256.818 | 0.7158 | 0.582 | PLTN4 | y= −4.206×10−5x2+0.064x−20.474 | 0.5806 | 0.665 | ||
| TUB | UTUB14 | y= −8.585x+24.670 | 0.1661 | 2.198 | TUB | UTUB5 | y=0.048x−49.652 | 0.8828 | 1.824 |
| ETUB14 | y=1.162×102e−1.444x | 0.2347 | 0.298 | ETUB5 | y=0.160e0.003x | 0.8184 | 0.163 | ||
| PTUB14 | y=35.051x−2.385 | 0.2066 | 0.303 | PTUB5 | y=5.709×10−14x4.601 | 0.8396 | 0.154 | ||
| PLTUB14 | y= −101.361x2+349.731x−290.720 | 0.6497 | 1.440 | PLTUB5 | y= −2.591×10−5x2+0.119x−98.470 | 0.8885 | 1.798 | ||
| Chl-a | UCHL14 | y=22.879x−37.235 | 0.4177 | 2.787 | Chl-a | UCHL9 | y= −5.989x +36.235 | 0.3067 | 4.193 |
| ECHL14 | y=1.804×10−6e7.790x | 0.3154 | 1.184 | ECHL9 | y=148.488e−0.680x | 0.1614 | 0.722 | ||
| PCHL14 | y=0.001x13.567 | 0.3068 | 1.192 | PCHL9 | y=1506.542x−3.566 | 0.1819 | 0.713 | ||
| PLCHL14 | y=213.491x2−732.793x+629.278 | 0.7241 | 1.939 | PLCHL9 | y=14.054x2−145.658x+380.245 | 0.6299 | 3.096 |
| 水质要素 | 旱季模型 | TP回归方程 | r | 回归方程斜率 | 水质要素 | 雨季模型 | TP回归方程 | r | 回归方程斜率 |
|---|---|---|---|---|---|---|---|---|---|
| TP | UTP1 | y=0.072x+0.839 | 0.0374 | 0.0720 | TP | UTP15 | y=0.354x+0.267 | 0.5377 | 0.3539 |
| ETP1 | y=0.018x+0.208 | 0.0610 | 0.0183 | ETP15 | y=0.398x+0.277 | 0.6183 | 0.3979 | ||
| PTP1 | y=0.023x+0.330 | 0.0391 | 0.0232 | PTP15 | y=0.356x+0.259 | 0.6023 | 0.3557 | ||
| PLTP1 | y=0.442x+0.215 | 0.5356 | 0.4421 | PLTP15 | y=0.472x+0.230 | 0.7627 | 0.4715 | ||
| TN | UTN8 | y=0.667x+0.577 | 0.7745 | 0.6677 | TN | UTN4 | y=0.533x+1.511 | 0.5917 | 0.5327 |
| ETN8 | y=0.530x+0.744 | 0.7403 | 0.5298 | ETN4 | y=0.440x+0.756 | 0.5063 | 0.4403 | ||
| PTN8 | y=0.529x+0.745 | 0.7345 | 0.5288 | PTN4 | y=0.525x+1.358 | 0.4906 | 0.5247 | ||
| PLTN8 | y=0.545x+0.796 | 0.6691 | 0.5452 | PLTN4 | y=0.909x−0.284 | 0.6802 | 0.9085 | ||
| TUB | UTUB14 | y=0.262x+7.042 | 0.2844 | 0.2616 | TUB | UTUB5 | y=0.838x−0.888 | 0.9642 | 0.8376 |
| ETUB14 | y=0.363x+5.800 | 0.2311 | 0.3634 | ETUB5 | y=0.729x−2.597 | 0.9809 | 0.7294 | ||
| PTUB14 | y=0.330x+6.113 | 0.2135 | 0.3300 | PTUB5 | y=1.183x−5.147 | 0.9821 | 1.1825 | ||
| PLTUB14 | y=0.671x+2.792 | 0.7670 | 0.6713 | PLTUB5 | y=0.759x−0.620 | 0.9414 | 0.7592 | ||
| Chl-a | UCHL14 | y=0.465x+2.120 | 0.6844 | 0.4654 | Chl-a | UCHL9 | y=0.467x+3.825 | 0.2836 | 0.4674 |
| ECHL14 | y=0.493x+1.039 | 0.8304 | 0.4932 | ECHL9 | y=0.278x+3.650 | 0.3460 | 0.2784 | ||
| PCHL14 | y=0.588x+1.432 | 0.8163 | 0.5877 | PCHL9 | y=0.294x+3.516 | 0.3669 | 0.2944 | ||
| PLCHL14 | y=0.940x+0.461 | 0.8416 | 0.9395 | PLCHL9 | y=0.546x+2.479 | 0.6691 | 0.5456 |
Table 3 Accuracy test of inversion model for water quality parameters
| 水质要素 | 旱季模型 | TP回归方程 | r | 回归方程斜率 | 水质要素 | 雨季模型 | TP回归方程 | r | 回归方程斜率 |
|---|---|---|---|---|---|---|---|---|---|
| TP | UTP1 | y=0.072x+0.839 | 0.0374 | 0.0720 | TP | UTP15 | y=0.354x+0.267 | 0.5377 | 0.3539 |
| ETP1 | y=0.018x+0.208 | 0.0610 | 0.0183 | ETP15 | y=0.398x+0.277 | 0.6183 | 0.3979 | ||
| PTP1 | y=0.023x+0.330 | 0.0391 | 0.0232 | PTP15 | y=0.356x+0.259 | 0.6023 | 0.3557 | ||
| PLTP1 | y=0.442x+0.215 | 0.5356 | 0.4421 | PLTP15 | y=0.472x+0.230 | 0.7627 | 0.4715 | ||
| TN | UTN8 | y=0.667x+0.577 | 0.7745 | 0.6677 | TN | UTN4 | y=0.533x+1.511 | 0.5917 | 0.5327 |
| ETN8 | y=0.530x+0.744 | 0.7403 | 0.5298 | ETN4 | y=0.440x+0.756 | 0.5063 | 0.4403 | ||
| PTN8 | y=0.529x+0.745 | 0.7345 | 0.5288 | PTN4 | y=0.525x+1.358 | 0.4906 | 0.5247 | ||
| PLTN8 | y=0.545x+0.796 | 0.6691 | 0.5452 | PLTN4 | y=0.909x−0.284 | 0.6802 | 0.9085 | ||
| TUB | UTUB14 | y=0.262x+7.042 | 0.2844 | 0.2616 | TUB | UTUB5 | y=0.838x−0.888 | 0.9642 | 0.8376 |
| ETUB14 | y=0.363x+5.800 | 0.2311 | 0.3634 | ETUB5 | y=0.729x−2.597 | 0.9809 | 0.7294 | ||
| PTUB14 | y=0.330x+6.113 | 0.2135 | 0.3300 | PTUB5 | y=1.183x−5.147 | 0.9821 | 1.1825 | ||
| PLTUB14 | y=0.671x+2.792 | 0.7670 | 0.6713 | PLTUB5 | y=0.759x−0.620 | 0.9414 | 0.7592 | ||
| Chl-a | UCHL14 | y=0.465x+2.120 | 0.6844 | 0.4654 | Chl-a | UCHL9 | y=0.467x+3.825 | 0.2836 | 0.4674 |
| ECHL14 | y=0.493x+1.039 | 0.8304 | 0.4932 | ECHL9 | y=0.278x+3.650 | 0.3460 | 0.2784 | ||
| PCHL14 | y=0.588x+1.432 | 0.8163 | 0.5877 | PCHL9 | y=0.294x+3.516 | 0.3669 | 0.2944 | ||
| PLCHL14 | y=0.940x+0.461 | 0.8416 | 0.9395 | PLCHL9 | y=0.546x+2.479 | 0.6691 | 0.5456 |
| 水质参数 | 季节 | 最大值 | 最小值 | 平均值 | 标准差 |
|---|---|---|---|---|---|
| ρ(TP)/ (mg·L−1) | 旱季 | 1.20 | 0.01 | 0.28 | 0.22 |
| 雨季 | 0.62 | 0.34 | 0.48 | 0.07 | |
| ρ(TN)/ (mg·L−1) | 旱季 | 5.72 | 1.25 | 2.57 | 0.75 |
| 雨季 | 3.87 | 1.66 | 3.47 | 0.43 | |
| ρ(TUB)/ (mg·L−1) | 旱季 | 10.95 | 1.85 | 9.07 | 1.55 |
| 雨季 | 3.47 | 0.84 | 1.57 | 0.54 | |
| ρ(Chl-a)/ (μg·L−1) | 旱季 | 20.79 | 0.46 | 4.83 | 3.48 |
| 雨季 | 13.67 | 2.85 | 6.14 | 2.02 |
Table 4 Statistical table of various water quality parameters in Changqin Lake
| 水质参数 | 季节 | 最大值 | 最小值 | 平均值 | 标准差 |
|---|---|---|---|---|---|
| ρ(TP)/ (mg·L−1) | 旱季 | 1.20 | 0.01 | 0.28 | 0.22 |
| 雨季 | 0.62 | 0.34 | 0.48 | 0.07 | |
| ρ(TN)/ (mg·L−1) | 旱季 | 5.72 | 1.25 | 2.57 | 0.75 |
| 雨季 | 3.87 | 1.66 | 3.47 | 0.43 | |
| ρ(TUB)/ (mg·L−1) | 旱季 | 10.95 | 1.85 | 9.07 | 1.55 |
| 雨季 | 3.47 | 0.84 | 1.57 | 0.54 | |
| ρ(Chl-a)/ (μg·L−1) | 旱季 | 20.79 | 0.46 | 4.83 | 3.48 |
| 雨季 | 13.67 | 2.85 | 6.14 | 2.02 |
| [1] |
CHENG X, SONG J P, YAN J Z, 2023. Influences of landscape pattern on water quality at multiple scales in an agricultural basin of western China[J]. Environmental Pollution, 319: 120986.
DOI URL |
| [2] |
DOU J H, XIA R, CHEN Y, et al., 2022. Mixed spatial scale effects of landscape structure on water quality in the Yellow River[J]. Journal of Cleaner Production, 368: 133008.
DOI URL |
| [3] |
DE KEUKELAERE L, MOELANS R, KNAEPS E, et al., 2023. Airborne drones for water quality mapping in inland, transitional and coastal waters—MapEO water data processing and validation[J]. Remote Sensing, 15(5): 1345.
DOI URL |
| [4] |
GHOLIZADEH M H, MELESSE A M, REDDI L, 2016. A comprehensive review on water quality parameters estimation using remote sensing techniques[J]. Sensors, 16(8): 1298.
DOI URL |
| [5] |
HOU Y, ZHANG A, LV R, et al., 2023. Machine learning algorithm inversion experiment and pollution analysis of water quality parameters in urban small and medium-sized rivers based on UAV multispectral data[J]. Environmental Science and Pollution Research, 30(32): 78913-78932.
DOI |
| [6] | HAN H J, YAN X, XIE H W, et al., 2023. Incorporating a new landscape intensity indicator into landscape metrics to better understand controls of water quality and optimal width of riparian buffer zone[J]. Journal of Hydrology, 625(Part B): 130088. |
| [7] |
JONES E R, BIERKENS M F P, VAN P P J T M, et al., 2023. Sub-Saharan Africa will increasingly become the dominant hotspot of surface water pollution[J]. Nature Water, 1(7): 602-613.
DOI |
| [8] | LUNT J, SMEED L, 2019. Turbidity alters estuarine biodiversity and species composition[J]. Journal of Marine Science, 77(1): 379-387. |
| [9] |
LEE S, MCCARTT G W, MOGLEN G E, et al., 2020. Assessing the effectiveness of riparian buffers for reducing organic nitrogen loads in the Coastal Plain of the Chesapeake Bay watershed using a watershed model[J]. Journal of Hydrology, 585: 124779.
DOI URL |
| [10] |
LAURA S M, IZAGUIRRE I, ZAGARESE H, et al., 2023. Drivers of planktonic chlorophyll a in pampean shallow lakes[J]. Ecological Indicators, 146: 109834.
DOI URL |
| [11] |
MA T, SUN S A, FU G T, et al., 2020. Pollution exacerbates China’s water scarcity and its regional inequality[J]. Nature Communications, 11(1): 650.
DOI |
| [12] |
MISHRA A, ALNAHIT A, CAMPBELL B, 2021. Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities: A review and analysis[J]. Journal of Hydrology, 596: 125707.
DOI URL |
| [13] |
SIRABAHENDA Z, ST-HILAIRE A, COURTENAY S C, et al., 2020. Assessment of the effective width of riparian buffer strips to reduce suspended sediment in an agricultural landscape using ANFIS and SWAT models[J]. Catena, 195: 104762.
DOI URL |
| [14] |
WANG J, FU Z, QIAO H, et al., 2019. Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China[J]. Science of the Total Environment, 650(Part 1): 1392-1402.
DOI URL |
| [15] |
XU Q Y, YAN T Z, WANG C Y, et al., 2023. Managing landscape patterns at the riparian zone and sub-basin scale is equally important for water quality protection[J]. Water Research, 229: 119280.
DOI URL |
| [16] |
ZHANG J, LI S, DONG R, et al., 2019. Influences of land use metrics at multi-spatial scales on seasonal water quality: A case study of river systems in the Three Gorges Reservoir Area, China[J]. Journal of Cleaner Production, 206: 76-85.
DOI URL |
| [17] |
ZHANG F, CHEN Y, WANG W W, et al., 2022. Impact of land-use/land-cover and landscape pattern on seasonal in-stream water quality in small watersheds[J]. Journal of Cleaner Production, 357: 131907.
DOI URL |
| [18] |
ZOU W, ZHU G, XU H, et al., 2022. Elucidating phytoplankton limiting factors in lakes and reservoirs of the Chinese Eastern Plains ecoregion[J]. Journal of Environmental Management, 318: 115542.
DOI URL |
| [19] |
ZHANG H X, CAO X H, HUO S, et al., 2023. Changes in China’s river water quality since 1980: Management implications from sustainable development[J]. npj Clean Water, 6(1): 45.
DOI |
| [20] | 范雅双, 于婉晴, 张婧, 等, 2021. 太湖上游水源区河流水质对景观格局变化的响应关系——以东苕溪上游为例[J]. 湖泊科学, 33(5): 1478-1489. |
|
FAN Y S, YU W Q, ZHANG J, et al., 2021. Response of water quality to landscape pattern change in the water source area of upper reaches of lake Taihu: A case study in the upper reaches of Dongtiaoxi River[J]. Journal of Lake Sciences, 33(5): 1478-1489.
DOI URL |
|
| [21] | 黄华, 李茂亿, 陈吟晖, 等, 2021. 基于PLSR的珠江口城市河流水质高光谱反演[J]. 水资源保护, 37(5): 36-42. |
| HUANG H, LI M Y, CHEN Y H, et al., 2021. Water quality retrieval by hyperspectral for city rivers in Pearl River Estuary based on partial least squares regression[J]. Water Resources Protection, 37(5): 36-42. | |
| [22] | 胡艳芳, 范中亚, 陈昭婷, 等, 2021. 汕头市练江流域景观格局与水质的关联分析[J]. 中国环境监测, 37(3): 126133. |
| HU Y F, FANG Z Y, CHEN Z T, et al., 2021. Correlation Analysis Between Landscape Pattern and Water Quality in the Lianjiang River Watershed in Shantou City[J]. Environmental Monitoring in China, 37(3): 126133. | |
| [23] | 胡丛巧, 迪丽努尔·阿吉, 李茹霞, 等, 2025. 博斯腾湖不同时空尺度下土地利用景观格局对水质的影响[J]. 水生态学杂志, 46(1): 34-44. |
| HU C Q, DILINUER A, LI R X, et al., 2025. Effect of land use pattern on water quality in Bosten Lake at different temporal and spatial scales[J]. Journal of Hydroecology, 46(1): 34-44. | |
| [24] | 刘彦君, 夏凯, 冯海林, 等, 2019. 基于无人机多光谱影像的小微水域水质要素反演[J]. 环境科学学报, 39(4): 1241-1249. |
| LIU Y J, XIA K, FENG H L, et al., 2019. Inversion of water quality elements in small and micro-size water region using multispectral image by UAV[J]. Acta Scientiae Circumstantiae, 39(4): 1241-1249. | |
| [25] | 李雪, 张婧, 于婉晴, 等, 2021. 京杭运河杭州段城市景观格局对河网水环境的影响[J]. 生态学报, 41(13): 5242-5253. |
| LI X, ZHANG J, YU W Q, et al., 2021. Impact of the urban landscape pattern in the Hangzhou Section of the Beijing-Hangzhou Grand Canal on the river aquatic environment[J]. Acta Ecologica Sinica, 41(13): 5242-5253. | |
| [26] | 刘智琦, 潘保柱, 韩谞, 等, 2022. 青藏高原湖泊水环境特征及水质评价[J]. 环境科学, 43(11): 5073-5083. |
|
LIU Z Q, PAN B Z, HAN X, et al., 2022. Water environmental characteristics and water quality assessment of Lakes in Tibetan Plateau[J]. Environmental Science, 43(11): 5073-5083.
DOI URL |
|
| [27] | 刘小欢, 张文, 郑和松, 等, 2024. 1980-2020年长江中游阳新县湖群湿地景观格局演变及影响因素[J]. 西北林学院学报, 39(3): 239-247. |
| LIU X H, ZHANG W, ZHENG H S, et al., 2024. Driving force analysis of wetland landscape pattern changes of the Lakes inYangxin in the middle reaches of Yangtze River from 1980 to 2020[J]. Journal of North west Forestry University, 39(3): 239-247. | |
| [28] | 时浩南, 梅琨, 吴宇鹏, 等, 2024. 温瑞塘河流域景观格局对水质影响的空间尺度效应[J]. 环境科学学报, 44(12): 390-402. |
| SHI H N, MEI K, WU Y P, et al., 2024. The spatial scale effects of landscape pattern on water quality in the Wen-Rui Tang River watershed[J]. Acta Scientiae Circumstantiae, 44(12): 390-402. | |
| [29] | 宋继鹏, 2022. 景观格局与河流水质的关系研究——以重庆市龙溪河流域为例[D]. 重庆: 西南大学. |
| SONG J P, 2020. Study on the relationship between landscape pattern and river water quality: A case study of the Longxi River Basin in Chongqing[D]. Chongqing: Southwest University. | |
| [30] | 邬建国, 2007. 景观生态学—格局、过程、尺度与等级[M]. 第2版. 北京: 高等教育出版社. |
| WU J G, 2007. Landscape ecology:Pattern, process, scale and hierarchy[M]. Second Edition. .Beijing: Higher Education Press. | |
| [31] |
吴艾璞, 马春子, 霍守亮, 等, 2025. 河岸带景观格局对密云水库流域河流水质的影响[J]. 地理学报, 80(3): 724-741.
DOI |
|
WU A P, MA C Z, HUO S L, et al., 2025. Impact of riparian landscape patterns on river water quality in the Miyun Reservoir Basin[J]. Acta Geographica Sinica, 80(3): 724-741.
DOI |
|
| [32] | 中华人民共和国环境保护部, 2002. GB 3838—2002中华人民共和国地表水环境质量标准[S]. 北京: 中国环境科学出版社出版. |
| Ministry of Environmental Protection of the People’s Republic of China, 2002. GB 3838—2002 Environmental quality standards for surfacewater of the People’s Republic of China[S]. Being: China Environmental Science Press. | |
| [33] | 张乐, 雷金睿, 陈毅青, 等, 2023. 基于无人机多光谱数据的水质参数反演与评价——以海口市永庄水库为例[J]. 中国环境科学, 43(S1): 258-267. |
| ZHANG L, LEI J R, CHEN Y Q, et al., 2023. Inversion and evaluation of water quality parameters based on UAV multispectral data: A case study of Yongzhuang Reservoir in Haikou[J]. China Environmental Science, 43(S1): 258-267. | |
| [34] | 章佩丽, 宋亮楚, 王昱, 等, 2022. 基于无人机多光谱的城市水体典型河道水质参数反演模型构建[J]. 环境污染与防治, 44(10): 1351-1356. |
| ZHANG P L, SONG L C, WANG Y, et al., 2022. Establishment of Inversion model for water quality parameters in typical urban rivers based on unmanned aerial vehicle multispectral data[J]. Environmental Pollution & Control, 44(10): 1351-1356. | |
| [35] | 张伟燕, 马龙, 吉力力·阿不都外力, 等, 2019. 博尔塔拉河地表水重金属来源分析及其污染评价[J]. 干旱区资源与环境, 33(7): 100-106. |
| ZHANG W Y, MA L, JILILI A, et al., 2019. Source analysis and pollution assessment of heavy metals in surface water of Bortala River[J]. Journal of Arid Land Resources and Environment, 33(7): 100-106. | |
| [36] | 周添红, 苏思霖, 马凯, 等, 2024. 典型区域土地利用/景观格局对黄河上游水体TN的影响[J]. 环境科学, 45(10): 5768-5776. |
| ZHOU T H, SU S L, MA K, et al., 2024. Influence of typical regional land use/landscape pattern on water TN of the upper Yellow River[J]. Environmental Science, 45(10): 5768-5776. | |
| [37] | 朱云芳, 朱利, 李家国, 等, 2017. 基于GF-1 WFV影像和BP神经网络的太湖叶绿素a反演[J]. 环境科学学报, 37(1): 130-137. |
| ZHU Y F, ZHU L, LI J G, et al., 2017. The study of inversion of chlorophyll a in Taihu based on GF-1 WFV image and BP neural network[J]. Acta Scientiae Circumstantiae, 37(1): 130-137. |
| [1] | WANG Xiuling, JIN Cui, WANG Haoran, HOU Mingxuan. Spatial-temporal Variation Characteristics of Vegetation and Its Response to Extreme Climate in Liaoning Province [J]. Ecology and Environmental Sciences, 2025, 34(9): 1410-1420. |
| [2] | LIN Wei, ZHOU Jinxing, HE Rongxiao, CHEN Zongzhu, CHEN Yiqing, WANG Yunlei, ZHONG Yunfang, LEI Jinrui. Temporal-Spatial Evolution of Ecosystem Service Value in the “Three-Space” System and Its Driving Factors in Northern Hainan [J]. Ecology and Environmental Sciences, 2025, 34(8): 1317-1328. |
| [3] | YU Qianru, PEI Sha, LIU Chunlan, QIAO Qing, ZHENG Fangyu, ZHU Linhong. Research on Assessing the Ecosystem Regulating Service Scarcity and Spatial Aggregation Characteristics in Beijing Based on a Multi-Dimensional Perspective [J]. Ecology and Environmental Sciences, 2025, 34(7): 1133-1146. |
| [4] | YANG Haoyu, HUANG Kangjiang, CHEN Xiaodong, ZHAO Jie, XIONG Jun, TIAN Kang. Evolution of Ecological Spatial Efficiency Pattern and Attribution Analysis of Landscape Pattern in Guizhou Province [J]. Ecology and Environmental Sciences, 2025, 34(6): 902-913. |
| [5] | LIU Honglin, ZHAO Fangkai, YANG Lei, SHEN Linjun, YANG Kaifeng, LI Min, CHEN Liding. Study on Heavy Metal Pollution in Urban Park Soil and Influencing Factors: A Case Study of Ningbo City [J]. Ecology and Environmental Sciences, 2025, 34(5): 773-783. |
| [6] | GUO Zhao, SHI Yun, LIU Tieming, ZHANG Yuxin, YAN Yongzhi. Analysis of Spatiotemporal Patterns and Driving Factors of NPP on the Northern Slope of the Qinling Mountains from 2001 to 2020 [J]. Ecology and Environmental Sciences, 2025, 34(3): 401-410. |
| [7] | ZHANG Renfei, XIAO Meng, LIU Zhicheng. Spatio-temporal Heterogeneity and Driving Factors of Landscape Fragmentation in Beijing-Tianjin-Hebei Region [J]. Ecology and Environmental Sciences, 2025, 34(3): 461-473. |
| [8] | ZHAO Lejun, WANG Shiyao, ZHAO Ziyu, HONG Xing, LI Fuxing, WU Jiayi, HUA Jingyu. Spatial and Temporal Variation of AOD in Seven Provinces and Cities of North China Plain from 2008 to 2022 and Its Main Influencing Factors [J]. Ecology and Environmental Sciences, 2025, 34(2): 256-267. |
| [9] | WANG Zongyang, ZENG Xuelan, ZHU Zhenchang, GUO Fen, LUO Lijuan, ZHANG Wuying, DU Qingping, ZHANG Yuan. Spatial Distribution and Driving Mechanisms of Vegetation and Soil Carbon Density in the Mangrove Ecosystem of Zhanjiang City [J]. Ecology and Environmental Sciences, 2025, 34(11): 1705-1714. |
| [10] | ZHANG Shuhan, JIANG Hailing, YU Hailin, FENG Xinhui. Spatio-temporal Evolution and Driving Force Analysis of Landscape Ecological Risk in Shenyang Modern Metropolitan [J]. Ecology and Environmental Sciences, 2024, 33(9): 1471-1481. |
| [11] | ZHANG Baodong, WANG Biao, WU Yanlan, MENG Yu, XU Sheng, QIAN Zhenbing, QIN Jun. Analysis and Identification of Characteristics of Rural Black and Odorous Water Bodies in Anhui Province [J]. Ecology and Environmental Sciences, 2024, 33(8): 1257-1268. |
| [12] | XU Jiale, YANG Xingchuan, ZHAO Wenji, YANG Zhiqiang, ZHONG Yixue, SHI Leyan, MA Pengfei. Evolution Characteristics of Vegetation Coverage in Central and Western Inner Mongolia under the Background of Climate Change [J]. Ecology and Environmental Sciences, 2024, 33(7): 1008-1018. |
| [13] | WANG Zihan, LÜ Shijie, WANG Zhongwu, LIU Hongmei. Effects of Grazing Intensity on Dominant Population and Species Diversity and Their Typical Relationships [J]. Ecology and Environmental Sciences, 2024, 33(6): 869-876. |
| [14] | LIAO Hongsheng, WEI Wei, SHI Yu. Characteristics of Spatial and Temporal Evolution of Soil Erosion in Typical Watersheds in Loess Hilly Areas and Its Driving Mechanisms: A Case Study of Zuli River [J]. Ecology and Environmental Sciences, 2024, 33(6): 908-918. |
| [15] | LÜ Jinling, YOU Ke, HE Bin, LIU Shuang, LIANG Shaomin, GUO Zhanling. Study on the Correlation between Ammonia Volatilization and near Surface Ammonia Concentration during the Maize Basal Fertilizer Period [J]. Ecology and Environmental Sciences, 2024, 33(3): 399-407. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn